Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Radiat Res ; 202(2): 420-431, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964743

RESUMEN

Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.


Asunto(s)
Síndrome de Radiación Aguda , Humanos , Historia del Siglo XX , Historia del Siglo XXI , Síndrome de Radiación Aguda/tratamiento farmacológico , Contramedidas Médicas , Protectores contra Radiación/uso terapéutico , Protectores contra Radiación/farmacología , Animales , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/etiología , Estados Unidos
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000080

RESUMEN

The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/terapia , Humanos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad
3.
Front Public Health ; 12: 1394023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887249

RESUMEN

To date, few FDA-approved medical countermeasures are available for addressing hematopoietic acute radiation syndrome (H-ARS). In this study, we present our latest research findings focusing on the evaluation of a novel radiation mitigator known as the mitigating amino acid mixture (MAAM). MAAM is composed of five amino acids as the recently reported amino acid-based oral rehydration solution for mitigating gastrointestinal (GI)-ARS. CD2F1 male and female mice were exposed to 60Co-γ total body irradiation (TBI) at 9.0 or 9.5 Gy. Following irradiation, mice were orally administered with MAAM or a saline vehicle control once daily for a duration of 14 days, commencing 24 h after TBI. Mouse survival and body weight change were monitored for 30 days after irradiation. Complete blood counts (CBCs), bone marrow (BM) stem and progenitor cell survival (clonogenicity), and a serum cytokine antibody array were analyzed using samples from day 30 surviving mice. Our data revealed that MAAM treatment significantly enhanced survival rates in irradiated male CD2F1 mice, and the survival rate increased from 25% in the vehicle control group to 60% in the MAAM-treated group (p < 0.05) after 9.0 Gy TBI. The number of BM colonies significantly increased from 41.8 ± 6.4 /104 cells (in the vehicle group) to 78.5 ± 17.0 /104 cells (in the MAAM group) following 9.0 Gy TBI. Furthermore, MAAM treatment led to a decrease in the levels of six cytokines/proteins [cluster of differentiation 40 (CD40), interleukin (IL)-17A, C-X-C motif chemokine 10 (CXCL10/CRG-2), cutaneous T cell-attracting chemokine (CTACK), macrophage inflammatory protein (MIP)-3ß, and IL-1ß] and an increase in the levels of five other cytokines/proteins [IL-3Rß, IL-5, leptin, IL-6, and stem cell factor (SCF)] in mouse serum compared to the vehicle group after 9.0 Gy TBI. However, similar alleviating effects of MAAM were not observed in the irradiated CD2F1 female mice. The serum cytokine profile in the irradiated female mice was different compared to the irradiated male mice. In summary, our data suggest that the beneficial effects of the mitigative amino acid combination treatment after radiation exposure may depend on sex.


Asunto(s)
Aminoácidos , Irradiación Corporal Total , Animales , Femenino , Masculino , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Citocinas/metabolismo , Factores Sexuales , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico
4.
Sci Rep ; 14(1): 13315, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858439

RESUMEN

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Asunto(s)
Suplementos Dietéticos , Protectores contra Radiación , Animales , Protectores contra Radiación/farmacología , Vitamina E/farmacología , Vitamina E/análogos & derivados , Síndrome de Radiación Aguda/prevención & control , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Cromanos/farmacología , Masculino , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/patología , Macaca mulatta , Hígado/efectos de los fármacos , Hígado/efectos de la radiación , Hígado/patología
5.
Sci Rep ; 14(1): 13571, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866887

RESUMEN

The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.


Asunto(s)
Rayos gamma , Macaca mulatta , Proteómica , Animales , Rayos gamma/efectos adversos , Masculino , Proteómica/métodos , Biomarcadores/sangre , Irradiación Corporal Total/efectos adversos , Síndrome de Radiación Aguda/sangre , Síndrome de Radiación Aguda/etiología , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Proteoma/análisis , Proteoma/metabolismo
6.
Front Public Health ; 12: 1365161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807988

RESUMEN

Introduction: Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods: The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results: No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion: This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.


Asunto(s)
Ciprofloxacina , Microbioma Gastrointestinal , Animales , Ciprofloxacina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Ratones , Antibacterianos/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Rayos gamma , Masculino , Femenino
7.
Stem Cells Dev ; 33(13-14): 343-354, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753703

RESUMEN

In recent years, cell-based therapies have emerged as a promising approach for mitigating radiation-induced injury. Acute radiation syndrome (ARS) results from exposure to high doses of radiation over a short time period. This study aimed to compare the efficacy of donor-recipient chimeric cell (DRCC) therapy in mitigating ARS induced by a total body irradiation (TBI) dose of 10 gray (Gy). Thirty irradiated Lewis rats were employed as ARS models to assess the efficacy of systemic-intraosseous transplantation of different cellular therapies in five experimental groups (n = 6/group): saline control, isogenic bone marrow transplantation (isoBMT), allogeneic BMT (alloBMT), DRCC, and alloBMT+DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. The creation of DRCC and chimeric state was confirmed by flow cytometry (FC) and confocal microscopy (CM). Recovery of blood parameters was evaluated through complete blood count analysis. Graft-versus-host disease (GvHD) signs were assessed clinically and histopathologically using kidney, skin, and small intestine biopsies. FC and CM confirmed the fusion feasibility and the chimeric state of DRCC. A 100% mortality rate was observed in the saline control group, whereas a 100% survival was recorded following DRCC transplantation, correlating with significant recovery of peripheral blood parameters. In addition, no clinical or histopathological signs of GvHD were observed after DRCC and alloBMT+DRCC transplantation. These findings confirm efficacy of DRCC in mitigating GvHD, promoting hematopoietic recovery, and increasing animal survival following TBI-induced ARS. Moreover, tolerogenic and immunomodulatory properties of DRCC therapy support its feasibility for clinical applications. Therefore, this study introduces DRCC as an innovative bridging therapy for alleviating the acute effects of TBI, with broad implications for stem cell research and regenerative medicine.


Asunto(s)
Trasplante de Médula Ósea , Enfermedad Injerto contra Huésped , Ratas Endogámicas Lew , Irradiación Corporal Total , Animales , Irradiación Corporal Total/métodos , Trasplante de Médula Ósea/métodos , Ratas , Enfermedad Injerto contra Huésped/prevención & control , Síndrome de Radiación Aguda/terapia , Masculino , Quimera por Trasplante , Trasplante Homólogo/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38782370

RESUMEN

Current therapies for acute radiation syndrome (ARS) involve bone marrow transplantation (BMT), leading to graft-versus-host disease (GvHD). To address this challenge, we have developed a novel donor-recipient chimeric cell (DRCC) therapy to increase survival and prevent GvHD following total body irradiation (TBI)-induced hematopoietic injury without the need for immunosuppression. In this study, 20 Lewis rats were exposed to 7 Gy TBI to induce ARS, and we assessed the efficacy of various cellular therapies following systemic intraosseous administration. Twenty Lewis rats were randomly divided into four experimental groups (n = 5/group): saline control, allogeneic bone marrow transplantation (alloBMT), DRCC, and alloBMT + DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. Fusion feasibility was confirmed by flow cytometry and confocal microscopy. The impact of different therapies on post-irradiation peripheral blood cell recovery was evaluated through complete blood count, while GvHD signs were monitored clinically and histopathologically. The chimeric state of DRCC was confirmed. Post-alloBMT mortality was 60%, whereas DRCC and alloBMT + DRCC therapies achieved 100% survival. DRCC therapy also led to the highest white blood cell counts and minimal GvHD changes in kidney and skin samples, in contrast to alloBMT treatment. In this study, transplantation of DRCC promoted the recovery of peripheral blood cell populations after TBI without the development of GVHD. This study introduces a novel and promising DRCC-based bridging therapy for treating ARS and extending survival without GvHD.


Asunto(s)
Síndrome de Radiación Aguda , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Ratas Endogámicas Lew , Irradiación Corporal Total , Animales , Ratas , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Médula Ósea/métodos , Síndrome de Radiación Aguda/terapia , Quimera por Trasplante , Masculino , Trasplante Homólogo , Humanos , Células Sanguíneas
9.
Radiat Res ; 201(5): 440-448, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714319

RESUMEN

The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.


Asunto(s)
Síndrome de Radiación Aguda , Liberación de Radiactividad Peligrosa , Triaje , Humanos , Síndrome de Radiación Aguda/etiología , Radiometría/métodos , Medición de Riesgo , Triaje/métodos
10.
Ann Plast Surg ; 93(1): 100-106, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785378

RESUMEN

BACKGROUND: Exposure to high doses of total body irradiation (TBI) may lead to the development of acute radiation syndrome (ARS). This study was conducted to establish an experimental rat model of TBI to assess the impact of different doses of TBI on survival and the kinetics of changes within the hematopoietic system in ARS. MATERIALS AND METHODS: In this study, 132 Lewis rats irradiated with a 5Gy or 7Gy dose served as experimental models to induce ARS and to evaluate the hematopoietic response of the bone marrow (BM) compartment. Animals were divided into 22 experimental groups (n = 6/group): groups 1-11 irradiated with 5Gy dose and groups 12-22 irradiated with 7Gy dose. The effects of TBI on the hematopoietic response were assessed at 2, 4, 6, 8 hours and 5, 10, 20, 30, 40, 60 and 90 days following TBI. Signs of ARS were evaluated by analyzing blood samples through complete blood count in addition to the clinical assessment. RESULTS: Groups irradiated with 5Gy TBI showed 100% survival, whereas after 7Gy dose, 1.6% mortality rate was observed. Assessment of the complete blood count revealed that lymphocytes were the first to be affected, regardless of the dose used, whereas an "abortive rise" of granulocytes was noted for both TBI doses. None of the animals exhibited signs of severe anemia or thrombocytopenia. All animals irradiated with 5Gy dose regained initial values for all blood cell subpopulations by the end of observation period. Body weight loss was reported to be dose-dependent and was more pronounced in the 7Gy groups. However, at the study end point at 90 days, all animals regained or exceeded the initial weight values. CONCLUSIONS: We have successfully established a rat experimental model of TBI. This study revealed a comparable hematopoietic response to the sublethal or potentially lethal doses of ionizing radiation. The experimental rat model of TBI may be used to assess different therapeutic approaches including BM-based cell therapies for long-term reconstitution of the hematopoietic and BM compartments allowing for comprehensive analysis of both the hematological and clinical symptoms associated with ARS.


Asunto(s)
Síndrome de Radiación Aguda , Ratas Endogámicas Lew , Irradiación Corporal Total , Animales , Ratas , Relación Dosis-Respuesta en la Radiación , Modelos Animales de Enfermedad , Masculino , Hematopoyesis/efectos de la radiación , Traumatismos Experimentales por Radiación , Médula Ósea/efectos de la radiación
11.
Radiat Res ; 202(1): 26-37, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714310

RESUMEN

BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.


Asunto(s)
Macaca mulatta , Metabolómica , Polietilenglicoles , Protectores contra Radiación , Animales , Protectores contra Radiación/farmacología , Protectores contra Radiación/farmacocinética , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Polietilenglicoles/química , Masculino , Interleucina-11 , Femenino , Metaboloma/efectos de los fármacos , Metaboloma/efectos de la radiación , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control
12.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674120

RESUMEN

Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.


Asunto(s)
Síndrome de Radiación Aguda , Captopril , Modelos Animales de Enfermedad , Ferroptosis , Microbioma Gastrointestinal , Inflamación , Porcinos Enanos , Irradiación Corporal Total , Animales , Síndrome de Radiación Aguda/tratamiento farmacológico , Porcinos , Inflamación/patología , Captopril/farmacología , Irradiación Corporal Total/efectos adversos , Ferroptosis/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/microbiología , Intestinos/patología , Intestinos/efectos de los fármacos , Intestinos/efectos de la radiación , Masculino , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología
13.
Medicina (Kaunas) ; 60(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674299

RESUMEN

Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (ß) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.


Asunto(s)
Radiación Ionizante , Humanos , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/fisiopatología , Cuerpo Humano , Transferencia Lineal de Energía
14.
Immunology ; 172(4): 614-626, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685744

RESUMEN

Ionising radiation exposure can lead to acute haematopoietic radiation syndrome. Despite significant advancements in the field of radioprotection, no drugs with high efficacy and low toxicity have yet been approved by the Food and Drug Administration. FG-4592, as a proline hydroxylase inhibitor, may play an important role in radioprotection of the haematopoietic system. Mice were peritoneal injected with FG-4592 or normal saline. After irradiation, the survival time, body weight, peripheral blood cell and bone marrow cell (BMC) count, cell apoptosis, pathology were analysed and RNA-sequence technique (RNA-Seq) was conducted to explore the mechanism of FG-4592 in the haematopoietic system. Our results indicated that FG-4592 improved the survival rate and weight of irradiated mice and protected the spleen, thymus and bone marrow from IR-induced injury. The number of BMCs was increased and protected against IR-induced apoptosis. FG-4592 also promoted the recovery of the blood system and erythroid differentiation. The results of RNA-Seq and Western blot showed that the NF-κB signalling pathway and hypoxia-inducible factor-1 (HIF-1) signalling pathway were upregulated by FG-4592. Meanwhile, RT-PCR results showed that FG-4592 could promote inflammatory response significantly. FG-4592 exhibited radioprotective effects in the haematopoietic system by promoting inflammatory response and targeting the NF-κB, HIF signalling pathway.


Asunto(s)
Apoptosis , Radiación Ionizante , Protectores contra Radiación , Animales , Ratones , Protectores contra Radiación/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Ratones Endogámicos C57BL , Sistema Hematopoyético/efectos de los fármacos , Sistema Hematopoyético/efectos de la radiación , Síndrome de Radiación Aguda/prevención & control , Síndrome de Radiación Aguda/tratamiento farmacológico , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/metabolismo , Irradiación Corporal Total , Glicina/análogos & derivados , Isoquinolinas
15.
Radiat Res ; 201(6): 628-646, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616048

RESUMEN

There have been a number of reported human exposures to high dose radiation, resulting from accidents at nuclear power plants (e.g., Chernobyl), atomic bombings (Hiroshima and Nagasaki), and mishaps in industrial and medical settings. If absorbed radiation doses are high enough, evolution of acute radiation syndromes (ARS) will likely impact both the bone marrow as well as the gastrointestinal (GI) tract. Damage incurred in the latter can lead to nutrient malabsorption, dehydration, electrolyte imbalance, altered microbiome and metabolites, and impaired barrier function, which can lead to septicemia and death. To prepare for a medical response should such an incident arise, the National Institute of Allergy and Infectious Diseases (NIAID) funds basic and translational research to address radiation-induced GI-ARS, which remains a critical and prioritized unmet need. Areas of interest include identification of targets for damage and mitigation, animal model development, and testing of medical countermeasures (MCMs) to address GI complications resulting from radiation exposure. To appropriately model expected human responses, it is helpful to study analogous disease states in the clinic that resemble GI-ARS, to inform on best practices for diagnosis and treatment, and translate them back to inform nonclinical drug efficacy models. For these reasons, the NIAID partnered with two other U.S. government agencies (the Biomedical Advanced Research and Development Authority, and the Food and Drug Administration), to explore models, biomarkers, and diagnostics to improve understanding of the complexities of GI-ARS and investigate promising treatment approaches. A two-day workshop was convened in August 2022 that comprised presentations from academia, industry, healthcare, and government, and highlighted talks from 26 subject matter experts across five scientific sessions. This report provides an overview of information that was presented during the conference, and important discussions surrounding a broad range of topics that are critical for the research, development, licensure, and use of MCMs for GI-ARS.


Asunto(s)
Síndrome de Radiación Aguda , Biomarcadores , Contramedidas Médicas , Síndrome de Radiación Aguda/etiología , Humanos , Animales , Tracto Gastrointestinal/efectos de la radiación , Enfermedades Gastrointestinales/etiología
16.
Stem Cell Res Ther ; 15(1): 123, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679747

RESUMEN

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Ratones Endogámicos C57BL , Trombopoyetina , Animales , Masculino , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/efectos de la radiación , Trombopoyetina/farmacología , Irradiación Corporal Total , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/uso terapéutico
17.
Stem Cell Res Ther ; 15(1): 72, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475968

RESUMEN

BACKGROUND: Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. METHODS: EVs were isolated by ultracentrifugation from unprimed and lipopolysaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. RESULTS: Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. CONCLUSIONS: LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.


Asunto(s)
Síndrome de Radiación Aguda , Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Lipopolisacáridos , Vesículas Extracelulares/metabolismo , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/metabolismo
18.
Sci Rep ; 14(1): 5757, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459144

RESUMEN

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Asunto(s)
Síndrome de Radiación Aguda , Cromanos , Contramedidas Médicas , Protectores contra Radiación , Vitamina E/análogos & derivados , Animales , Estados Unidos , Humanos , Vitamina E/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Protectores contra Radiación/farmacología , Macaca mulatta
19.
Radiat Res ; 201(5): 514-522, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38514385

RESUMEN

In times of war, radiological/nuclear emergency scenarios have become a reemphasized threat. However, there are challenges in transferring whole-blood samples to laboratories for specialized diagnostics using RNA. This project aims to miniaturize the process of unwieldy conventional RNA extraction with its stationed technical equipment using a microfluidic-based slide (MBS) for point-of-care diagnostics. The MBS is thought to be a preliminary step toward the development of a so-called lab-on-a-chip microfluidic device. A MBS would enable early and fast field care combined with gene expression (GE) analysis for the prediction of hematologic acute radiation syndrome (HARS) severity or identification of RNA microbes. Whole blood samples from ten healthy donors were irradiated with 0, 0.5 and 4 Gy, simulating different ARS severity degrees. RNA quality and quantity of a preliminary MBS was compared with a conventional column-based (CB) RNA extraction method. GE of four HARS severity-predicting radiation-induced genes (FDXR, DDB2, POU2AF1 and WNT3) was examined employing qRT-PCR. Compared to the CB method, twice as much total RNA from whole blood could be extracted using the MBS (6.6 ± 3.2 µg vs. 12.0 ± 5.8 µg) in half of the extraction time, and all MBS RNA extracts appeared DNA-free in contrast to the CB method (30% were contaminated with DNA). Using MBS, RNA quality [RNA integrity number equivalent (RINe)] values decreased about threefold (3.3 ± 0.8 vs. 9.0 ± 0.4), indicating severe RNA degradation, while expected high-quality RINe ≥ 8 were found using column-based method. However, normalized cycle threshold (Ct) values, as well as radiation-induced GE fold-changes appeared comparable for all genes utilizing both methods, indicating that no RNA degradation took place. In summary, the preliminary MBS showed promising features such as: 1. halving the RNA extraction time without the burden of heavy technical equipment (e.g., a centrifuge); 2. absence of DNA contamination in contrast to CB RNA extraction; 3. reduction in blood required, because of twice the biological output of RNA; and 4. equal GE performance compared to CB, thus, increasing its appeal for later semi-automatic parallel field applications.


Asunto(s)
Sistemas de Atención de Punto , ARN , Humanos , ARN/aislamiento & purificación , ARN/sangre , ARN/genética , Dispositivos Laboratorio en un Chip , Síndrome de Radiación Aguda/sangre , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/diagnóstico , Síndrome de Radiación Aguda/genética
20.
Front Public Health ; 12: 1349552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544733

RESUMEN

Introduction: Mouse models of radiation injury are critical to the development of medical countermeasures (MCMs) against radiation. Now that MCMs against hematopoietic acute radiation syndrome (H-ARS) have achieved regulatory approval, attention is shifting to develop MCMs against the adverse effects of gastrointestinal acute radiation syndrome (GI-ARS) and delayed effects of acute radiation exposure (DEARE). The C57L/J mouse model of partial body irradiation (PBI) with 2.5% bone marrow shielding (BM2.5) is being leveraged to examine both GI-ARS and DEARE effects. Within days of PBI, mice may develop H- and GI-ARS followed several months later by DEARE as a multi-organ injury, which typically involves the lung and kidney (L- and K-DEARE, respectively). The objective of this manuscript is to describe the dose response relationship and progression of radiation injury in the C57L/J mouse and to evaluate its suitability for use in DEARE MCM testing. Materials and methods: In two separate studies conducted over 2 years, male and female C57L/J mice were exposed to PBI BM2.5 with one hindlimb shielded from radiation, representing ~2.5% bone marrow shielding/sparing. Mice were X-ray irradiated at doses ranging from 9 to 13 Gy at 10 to 12 weeks of age for the purposes of assessing ARS survival at 30 days and DEARE survival at 182 days post-irradiation. Clinical indicators of ARS and DEARE were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging (MRI) of lung, and histopathology of selected tissues. Results: C57L/J mice developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in dose dependent mortality at doses ≥11 Gy between 1- and 15-days post-irradiation. In animals that survived ARS, DEARE associated mortality occurred in dose dependent fashion at ≥9 Gy for both sexes between 60- and 159-days post-irradiation with histopathology examinations indicating lung injury as the primary cause of death in moribund animals. Conclusion: The PBI BM2.5 C57L/J mouse model reliably produced known H- and GI-ARS effects at doses greater than those resulting in DEARE effects. Because of this, the C57L/J mouse can be used to test MCMs against L-DEARE injury, while avoiding ARS associated mortality.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Masculino , Femenino , Ratones , Animales , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA