Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Commun Biol ; 3(1): 127, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179850

RESUMEN

Fragile X syndrome (FXS) is a prevailing genetic disorder of intellectual disability and autism. There is no efficacious medication for FXS. Through in silico screening with a public database, computational analysis of transcriptome profile in FXS mouse neurons predicts therapeutic value of an FDA-approved drug trifluoperazine. Systemic administration of low-dose trifluoperazine at 0.05 mg/kg attenuates multiple FXS- and autism-related behavioral symptoms. Moreover, computational analysis of transcriptome alteration caused by trifluoperazine suggests a new mechanism of action against PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) activity. Consistently, trifluoperazine suppresses PI3K activity and its down-stream targets Akt (protein kinase B) and S6K1 (S6 kinase 1) in neurons. Further, trifluoperazine normalizes the aberrantly elevated activity of Akt and S6K1 and enhanced protein synthesis in FXS mouse. Together, our data demonstrate a promising value of transcriptome-based computation in identification of therapeutic strategy and repurposing drugs for neurological disorders, and suggest trifluoperazine as a potential treatment for FXS.


Asunto(s)
Reposicionamiento de Medicamentos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transcriptoma , Trifluoperazina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Hipocampo/enzimología , Hipocampo/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , RNA-Seq , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
2.
Hum Genet ; 139(4): 499-512, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31980904

RESUMEN

CHD8, which encodes Chromodomain helicase DNA-binding protein 8, is one of a few well-established Autism Spectrum Disorder (ASD) genes. Over 60 mutations have been reported in subjects with variable phenotypes, but little is known concerning genotype-phenotype correlations. We have identified four novel de novo mutations in Chinese subjects: two nonsense variants (c.3562C>T/p.Arg1188X, c.2065C>A/p.Glu689X), a splice site variant (c.4818-1G>A) and a missense variant (c.3502T>A/p.Tyr1168Asn). Three of these were identified from a 445-member ASD cohort by ASD gene panel sequencing of the 96 subjects who remained negative after molecular testing for copy number variation, Rett syndrome, FragileX and tuberous sclerosis complex (TSC). The fourth (p.Glu689X) was detected separately by diagnostic trio exome sequencing. We used diagnostic instruments and a comprehensive review of phenotypes, including prenatal and postnatal growth parameters, developmental milestones, and dysmorphic features to compare these four subjects. In addition to autism, they also presented with prenatal onset macrocephaly, intellectual disability, overgrowth during puberty, sleep disorder, and dysmorphic features, including broad forehead with prominent supraorbital ridges, flat nasal bridge, telecanthus and large ears. For further comparison, we compiled a comprehensive list of CHD8 variants from the literature and databases, which revealed constitutive and somatic truncating variants in the HELIC (Helicase-C) domain in ASD and in cancer patients, respectively, but not in the general population. Furthermore, HELIC domain mutations were associated with a severe phenotype defined by a greater number of clinical features, lower verbal IQ, and a prominent, consistent pattern of overgrowth as measured by weight, height and head circumference. Overall, this study adds to the ASD-associated loss-of-function mutations in CHD8 and highlights the clinical importance of the HELIC domain of CHD8.


Asunto(s)
Trastorno del Espectro Autista/genética , Codón sin Sentido , Proteínas de Unión al ADN/genética , Síndrome del Cromosoma X Frágil/genética , Trastornos del Desarrollo del Lenguaje/genética , Mutación Missense , Fenotipo , Síndrome de Rett/genética , Factores de Transcripción/genética , Esclerosis Tuberosa/genética , Trastorno del Espectro Autista/enzimología , Niño , Femenino , Síndrome del Cromosoma X Frágil/enzimología , Humanos , Trastornos del Desarrollo del Lenguaje/enzimología , Masculino , Dominios Proteicos , Síndrome de Rett/enzimología , Esclerosis Tuberosa/enzimología
3.
J Med Chem ; 62(10): 4884-4901, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31013090

RESUMEN

Novel pyridine- and pyrimidine-based allosteric inhibitors are reported that achieve PDE4D subtype selectivity through recognition of a single amino acid difference on a key regulatory domain, known as UCR2, that opens and closes over the catalytic site for cAMP hydrolysis. The design and optimization of lead compounds was based on iterative analysis of X-ray crystal structures combined with metabolite identification. Selectivity for the activated, dimeric form of PDE4D provided potent memory enhancing effects in a mouse model of novel object recognition with improved tolerability and reduced vascular toxicity over earlier PDE4 inhibitors that lack subtype selectivity. The lead compound, 28 (BPN14770), has entered midstage, human phase 2 clinical trials for the treatment of Fragile X Syndrome.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diseño de Fármacos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/síntesis química , Regulación Alostérica/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Encefalopatías/enzimología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Síndrome del Cromosoma X Frágil/enzimología , Humanos , Concentración 50 Inhibidora , Masculino , Ratones Endogámicos ICR , Estructura Molecular , Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/farmacología , Relación Estructura-Actividad
4.
Cereb Cortex ; 29(8): 3241-3252, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-30137253

RESUMEN

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.


Asunto(s)
Comunicación Animal , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Espinas Dendríticas/efectos de los fármacos , Síndrome del Cromosoma X Frágil/enzimología , Hipocampo/efectos de los fármacos , Imidazoles/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Conducta Social , Triazinas/farmacología , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Espinas Dendríticas/patología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Cultivo Primario de Células , Ratas , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo
5.
ACS Chem Neurosci ; 10(3): 1679-1695, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30511829

RESUMEN

Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.


Asunto(s)
Benzamidas/farmacología , Síndrome del Cromosoma X Frágil/fisiopatología , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Quinolinas/farmacología , Animales , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/enzimología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Procesamiento Proteico-Postraduccional/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27233938

RESUMEN

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/enzimología , Anciano , Animales , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Diacilglicerol Quinasa/genética , Diglicéridos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neuronas/metabolismo , Transducción de Señal
7.
J Neurosci ; 35(1): 396-408, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568131

RESUMEN

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/enzimología , Plasticidad Neuronal/fisiología , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Animales Modificados Genéticamente , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Drosophila , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/uso terapéutico
8.
Cell Rep ; 9(5): 1742-1755, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25466251

RESUMEN

Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1(-/y)), we show that phosphorylation of the mRNA 5' cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1(-/y) mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS.


Asunto(s)
Benzofuranos/farmacología , Factor 4E Eucariótico de Iniciación/fisiología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Metaloproteinasa 9 de la Matriz/genética , Biosíntesis de Proteínas/efectos de los fármacos , Adenosina Trifosfatasas/antagonistas & inhibidores , Animales , Trastorno Autístico/enzimología , Benzofuranos/uso terapéutico , Encéfalo/enzimología , Proteínas de Transporte de Catión/antagonistas & inhibidores , Células Cultivadas , ATPasas Transportadoras de Cobre , Espinas Dendríticas/patología , Inducción Enzimática/efectos de los fármacos , Femenino , Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(47): 16907-12, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385607

RESUMEN

Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/psicología , Sistema de Señalización de MAP Quinasas , Memoria , Transducción de Señal , Animales , Síndrome del Cromosoma X Frágil/enzimología , Ratones , Ratones Noqueados
10.
Neurosci Res ; 89: 1-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25218562

RESUMEN

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific tyrosine phosphatase that plays a major role in the development of synaptic plasticity. Recent findings have implicated STEP in several psychiatric and neurological disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, Huntington's disease, stroke/ischemia, and stress-related psychiatric disorders. In these disorders, STEP protein expression levels and activity are dysregulated, contributing to the cognitive deficits that are present. In this review, we focus on the most recent findings on STEP, discuss how STEP expression and activity are maintained during normal cognitive function, and how disruptions in STEP activity contribute to a number of illnesses.


Asunto(s)
Encéfalo/enzimología , Trastornos Mentales/enzimología , Plasticidad Neuronal , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Enfermedad de Alzheimer/enzimología , Animales , Isquemia Encefálica/enzimología , Cognición/fisiología , Síndrome del Cromosoma X Frágil/enzimología , Humanos , Enfermedad de Huntington/enzimología , Fosforilación , Esquizofrenia/enzimología , Estrés Psicológico/enzimología , Accidente Cerebrovascular/enzimología
11.
Neurosciences (Riyadh) ; 18(4): 356-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24141459

RESUMEN

OBJECTIVE: To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. METHODS: One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. RESULTS: Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (p<0.05), and significantly reduced open-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (p<0.05) in knockout mice. In wild type mice, significant changes were observed in both behavior tests in some treatment groups. Lithium ameliorated P-GSK3beta expression in the hippocampus of all the treatment groups in knockout mice (p<0.05). However, lithium did not modify either GSK3beta expression in tissues of knockout mice, or P-GSK3beta or GSK3beta expression in tissues of wild type mice. CONCLUSION: Lithium ameliorated open-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.


Asunto(s)
Antimaníacos/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Síndrome del Cromosoma X Frágil/enzimología , Glucógeno Sintasa Quinasa 3/biosíntesis , Cloruro de Litio/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Animales , Western Blotting , Encéfalo/enzimología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Inmunohistoquímica , Ratones , Ratones Noqueados
12.
Am J Med Genet A ; 161A(8): 1897-903, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824974

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by lack of the FMR1 protein, FMRP, a translational repressor. Its absence leads to up-regulation of locally translated proteins involved in synaptic transmission and plasticity, including the matrix metalloproteinase-9 (MMP-9). In the Fmr1 knock-out (KO), a mouse model of FXS, an abnormal elevated expression of MMP-9 in the brain was pharmacologically down-regulated after treatment with the tetracycline derivative minocycline. Moreover, the rescue of immature dendritic spine morphology and a significant improvement of abnormal behavior were associated with down-regulation of MMP-9. Here, we report on high plasma activity of MMP-9 in individuals with FXS. In addition, we investigate MMP-9 changes in patients with FXS who have gone through a minocycline controlled clinical trial and correlate MMP-9 activity to clinical observations. The results of this study suggest that, in humans, activity levels of MMP-9 are lowered by minocycline and that, in some cases, changes in MMP-9 activity are positively associated with improvement based on clinical measures.


Asunto(s)
Antibacterianos/uso terapéutico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/sangre , Síndrome del Cromosoma X Frágil/sangre , Metaloproteinasa 9 de la Matriz/sangre , Minociclina/uso terapéutico , Adolescente , Animales , Células Cultivadas , Niño , Preescolar , Estudios Cruzados , Método Doble Ciego , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
13.
Med Hypotheses ; 80(3): 289-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23313071

RESUMEN

Fragile X mental retardation is caused by the absence of the FMRP (fragile X mental retardation protein) a RNA-binding protein encoded by the Fmr1 gene. Despite the large number of studies about this syndrome, it is still unclear how the absence of FMRP affects the physiology of the nervous system. It has been reported however that the brain of the Fmr1-KO mouse shows altered membrane protein and lipid oxidation. There is also indirect evidence that FMRP may be involved in a negative feedback mechanism with metabotropic glutamate receptors (mGluRs). In this article, we will discuss several lines of evidences which tend to prove that the lipoxygenase pathway might be the missing link between FMRP and mGluRs.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Lipooxigenasas/metabolismo , Animales , Ácido Araquidónico/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/enzimología , Ratones , Ratones Noqueados , Modelos Teóricos , Estrés Oxidativo
14.
Neural Plast ; 2012: 124548, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685676

RESUMEN

Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , Inhibidores de la Metaloproteinasa de la Matriz , Minociclina/uso terapéutico , Animales , Drosophila , Humanos , Metaloproteinasas de la Matriz/genética , Ratones , Minociclina/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico
15.
Biofactors ; 38(5): 349-59, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22730114

RESUMEN

Sirtuins 1-7 (SIRT1-7) belong to the third class of deacetylase enzymes, which are dependent on NAD(+) for activity. Sirtuins activity is linked to gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection, and healthy aging. Because sirtuins modulation could have beneficial effects on human diseases there is a growing interest in the discovery of small molecules modifying their activities. We review here those compounds known to activate or inhibit sirtuins, discussing the data that support the use of sirtuin-based therapies. Almost all sirtuin activators have been described only for SIRT1. Resveratrol is a natural compound which activates SIRT1, and may help in the treatment or prevention of obesity, and in preventing tumorigenesis and the aging-related decline in heart function and neuronal loss. Due to its poor bioavailability, reformulated versions of resveratrol with improved bioavailability have been developed (resVida, Longevinex(®) , SRT501). Molecules that are structurally unrelated to resveratrol (SRT1720, SRT2104, SRT2379, among others) have been also developed to stimulate sirtuin activities more potently than resveratrol. Sirtuin inhibitors with a wide range of core structures have been identified for SIRT1, SIRT2, SIRT3 and SIRT5 (splitomicin, sirtinol, AGK2, cambinol, suramin, tenovin, salermide, among others). SIRT1 inhibition has been proposed in the treatment of cancer, immunodeficiency virus infections, Fragile X mental retardation syndrome and for preventing or treating parasitic diseases, whereas SIRT2 inhibitors might be useful for the treatment of cancer and neurodegenerative diseases.


Asunto(s)
Antioxidantes/química , Activadores de Enzimas/química , Inhibidores Enzimáticos/química , Naftoles/química , Sirtuinas/metabolismo , Estilbenos/química , Antioxidantes/uso terapéutico , Activadores de Enzimas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , VIH/efectos de los fármacos , VIH/fisiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Humanos , Naftoles/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Obesidad/tratamiento farmacológico , Obesidad/enzimología , Sirtuinas/antagonistas & inhibidores , Estilbenos/uso terapéutico , Relación Estructura-Actividad
16.
Results Probl Cell Differ ; 54: 223-41, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22009355

RESUMEN

A priority of fragile X syndrome (FXS) research is to determine the molecular mechanisms underlying the functional, behavioral, and structural deficits in humans and in the FXS mouse model. Given that metabotropic glutamate receptor (mGluR) long-term depression (LTD) is exaggerated in FXS mice, considerable effort has focused on proteins that regulate this form of synaptic plasticity. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific phosphatase implicated as an "LTD protein" because it mediates AMPA receptor internalization during mGluR LTD. STEP also promotes NMDA receptor endocytosis and inactivates ERK1/2 and Fyn, thereby opposing synaptic strengthening. We hypothesized that dysregulation of STEP may contribute to the pathophysiology of FXS. We review how STEP's expression and activity are regulated by dendritic protein synthesis, ubiquitination, proteolysis, and phosphorylation. We also discuss implications for STEP in FXS and other disorders, including Alzheimer's disease. As highlighted here, pharmacological interventions targeting STEP may prove successful for FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Empalme Alternativo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
17.
Hum Mol Genet ; 21(3): 681-91, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048960

RESUMEN

Fragile X syndrome (FXS), a common inherited form of intellectual disability with learning deficits, results from a loss of fragile X mental retardation protein (FMRP). Despite extensive research, treatment options for FXS remain limited. Since FMRP is known to play an important role in adult hippocampal neurogenesis and hippocampus-dependent learning and FMRP regulates the adult neural stem cell fate through the translational regulation of glycogen synthase kinase 3ß (GSK3ß), we investigated the effects of a GSK3ß inhibitor, SB216763, on Fmr1 knockout mice (Fmr1 KO). We found that the inhibition of GSK3ß could reverse the hippocampus-dependent learning deficits and rescue adult hippocampal neurogenesis at multiple stages in Fmr1 KO mice. Our results point to GSK3ß inhibition as a potential treatment for the learning deficits seen in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/enzimología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Indoles/farmacología , Aprendizaje/efectos de los fármacos , Maleimidas/farmacología , Neurogénesis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Noqueados , Red Nerviosa , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Fosforilación/efectos de los fármacos
18.
Dis Model Mech ; 4(5): 673-85, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21669931

RESUMEN

Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster/enzimología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , Metaloproteinasa 1 de la Matriz/deficiencia , Minociclina/uso terapéutico , Red Nerviosa/patología , Animales , Forma de la Célula/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Eliminación de Gen , Metaloproteinasa 1 de la Matriz/metabolismo , Minociclina/farmacología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/patología , Cuerpos Pedunculados/fisiopatología , Red Nerviosa/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fenotipo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Inhibidores Tisulares de Metaloproteinasas/metabolismo
19.
PLoS Genet ; 6(12): e1001240, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21170301

RESUMEN

Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11) suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT) inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Silenciador del Gen , Histona Desacetilasas/metabolismo , Repeticiones de Trinucleótidos , Acetilación , Adulto , Anciano de 80 o más Años , Animales , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Inhibidores Enzimáticos/farmacología , Ojo/enzimología , Ojo/inervación , Ojo/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad
20.
J Neurosci ; 30(46): 15616-27, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21084617

RESUMEN

Fragile X syndrome (FXS) is caused by loss of the FMR1 gene product FMRP (fragile X mental retardation protein), a repressor of mRNA translation. According to the metabotropic glutamate receptor (mGluR) theory of FXS, excessive protein synthesis downstream of mGluR5 activation causes the synaptic pathophysiology that underlies multiple aspects of FXS. Here, we use an in vitro assay of protein synthesis in the hippocampus of male Fmr1 knock-out (KO) mice to explore the molecular mechanisms involved in this core biochemical phenotype under conditions where aberrant synaptic physiology has been observed. We find that elevated basal protein synthesis in Fmr1 KO mice is selectively reduced to wild-type levels by acute inhibition of mGluR5 or ERK1/2, but not by inhibition of mTOR (mammalian target of rapamycin). The mGluR5-ERK1/2 pathway is not constitutively overactive in the Fmr1 KO, however, suggesting that mRNA translation is hypersensitive to basal ERK1/2 activation in the absence of FMRP. We find that hypersensitivity to ERK1/2 pathway activation also contributes to audiogenic seizure susceptibility in the Fmr1 KO. These results suggest that the ERK1/2 pathway, and other neurotransmitter systems that stimulate protein synthesis via ERK1/2, represent additional therapeutic targets for FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/toxicidad , Proteína Quinasa 3 Activada por Mitógenos/toxicidad , Biosíntesis de Proteínas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Regulación hacia Arriba/fisiología , Animales , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Hipocampo/patología , Isoenzimas/genética , Isoenzimas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...