Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.270
Filtrar
1.
J Pharm Biomed Anal ; 247: 116205, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38843613

RESUMEN

The P. heterophylla and its adulterants were identified by HPLC-CAD fingerprint of sucrose and oligosaccharides in P. heterophylla. The improved quantitative analysis of multi-components with a single marker (iQAMS) was further established for simultaneous determinations of sucrose and oligosaccharides in P. heterophylla. The HPLC-CAD fingerprint and similarity coefficients between P. heterophylla and its adulterants showed significant differences. The relative errors (REs) between iQAMS method and external standard method (ESM) were below 3.00%, but significant difference was shown between iQAMS (different marker for whole program with gradient elution) and QAMS (one marker for whole program with gradient elution), indicating that QAMS method should be improved, especially for gradient elution which influence the response of analytes. The accuracy, precision, reproducibility, and stability of this method were validated which exhibited satisfactory results, indicating that iQAMS method could be used for quantitative analysis of sucrose and oligosaccharides in P. heterophylla instead of ESM. The iQAMS combined with HPLC-CAD fingerprint could be used to determine the content of each oligosaccharide, and it can be used for quality control of P. heterophylla.


Asunto(s)
Contaminación de Medicamentos , Oligosacáridos , Sacarosa , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Oligosacáridos/análisis , Oligosacáridos/química , Sacarosa/análisis , Sacarosa/química , Contaminación de Medicamentos/prevención & control , Control de Calidad , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química
2.
Cryo Letters ; 45(4): 221-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38809786

RESUMEN

BACKGROUND: Today, synthetic chemicals are used in vitrification solutions for cryopreservation studies to mimic natural cryoprotectants that supply tolerance to organisms in nature against freezing stress. In the case of plants, PVS2, containing glycerol, dimethyl sulfoxide (Me2SO), ethylene glycol and sucrose, is considered as the golden standard for successful cryopreservation. However, Me2SO can generally cause toxicity to certain plant cells, adversely affecting viability after freezing and/or thawing. Hence, the replacement (or substantial reduction) of Me2SO by cheap, non-toxic and natural cryoprotectants became a matter of high priority to vitrification solutions or reducing their content gained escalating importance for the cryopreservation of plants. Fructans, sucrose derivatives mainly consisting of fructose residues, are candidate cryoprotectants. OBJECTIVE: Inspired by their protective role in nature, we here explored, for the first time, the potential of an array of 8 structurally different fructans as cryoprotectants in plant cryopreservation. MATERIALS AND METHODS: Arabidopsis thaliana L. seedlings were used as a model system with a one-step vitrification method. PVS2 solutions with different Me2SO and fructan contents were evaluated. RESULTS: It was found that branched low DP graminan, extracted from milky stage wheat kernels, led to the highest recovery (85%) among tested fructans with 12.5% Me2SO after cryopreservation, which was remarkably close to the viability (90%) observed with the original PVS2 containing 15% Me2SO. Moreover, its protective efficacy could be further optimized by addition of vitamin C acting as an antioxidant. CONCLUSION: Such novel formulations offer great perspectives for cryopreservation of various crop species. Doi.org/10.54680/fr24410110512.


Asunto(s)
Arabidopsis , Criopreservación , Crioprotectores , Dimetilsulfóxido , Fructanos , Vitrificación , Crioprotectores/farmacología , Crioprotectores/química , Criopreservación/métodos , Fructanos/farmacología , Fructanos/química , Arabidopsis/efectos de los fármacos , Vitrificación/efectos de los fármacos , Dimetilsulfóxido/farmacología , Glicerol/farmacología , Glicerol/química , Plantones/efectos de los fármacos , Congelación , Sacarosa/farmacología , Sacarosa/química , Glicol de Etileno/farmacología , Glicol de Etileno/química , Antioxidantes/farmacología
3.
Int J Biol Macromol ; 271(Pt 1): 132261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744367

RESUMEN

Co-solutes such as sucrose and sugar alcohol play a significant part in low methoxyl pectin (LMP) gelation. To explore their gelation mechanism, we investigated the gelation behavior of LMP in the presence of erythritol and sucrose with Ca2+. Results revealed that the introduction of erythritol and sucrose improved the hardness of the gels, fixed more free water, accelerated the rate of gel structuring, and enhanced the gel strength. FT-IR confirmed the reinforced hydrogen bonding and hydrophobic forces between the pectin chains after introducing co-solutes. And it could be observed clearly by SEM that the cross-linking density of gel network enhanced with co-solutes. Furthermore, gel disruption experiments suggested the presence of ionic interaction, hydrogen bonding, and hydrophobic forces in LMP gels. Finally, we concluded that the egg-box regions cross-linked only by LMP and Ca2+ were too weak to form a stable gel network structure. Adding co-solutes could increase the amount of cross-linking between pectin chains and enlarge the cross-linking zones, which favored the formation of a dense gel network by more hydrogen bonding and hydrophobic forces. Sucrose gels had superior physicochemical properties and microstructure than erythritol gels due to sucrose's excellent hydration capacity and chemical structure characteristics.


Asunto(s)
Eritritol , Geles , Pectinas , Sacarosa , Pectinas/química , Eritritol/química , Sacarosa/química , Geles/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Calcio/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Food Res Int ; 187: 114430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763679

RESUMEN

Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.


Asunto(s)
Lecitinas , Compuestos Orgánicos , Reología , Aceite de Girasol , Tensoactivos , Lecitinas/química , Compuestos Orgánicos/química , Aceite de Girasol/química , Tensoactivos/química , Hexosas/química , Sustitutos de Grasa/química , Glicéridos/química , Sacarosa/química
5.
J Phys Chem B ; 128(20): 4922-4930, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38733344

RESUMEN

The disaccharide trehalose is generally acknowledged as a superior stabilizer of proteins and other biomolecules in aqueous environments. Despite many theories aiming to explain this, the stabilization mechanism is still far from being fully understood. This study compares the stabilizing properties of trehalose with those of the structurally similar disaccharide sucrose. The stability has been evaluated for the two proteins, lysozyme and myoglobin, at both low and high temperatures by determining the glass transition temperature, Tg, and the denaturation temperature, Tden. The results show that the sucrose-containing samples exhibit higher Tden than the corresponding trehalose-containing samples, particularly at low water contents. The better stabilizing effect of sucrose at high temperatures may be explained by the fact that sucrose, to a greater extent, binds directly to the protein surface compared to trehalose. Both sugars show Tden elevation with an increasing sugar-to-protein ratio, which allows for a more complete sugar shell around the protein molecules. Finally, no synergistic effects were found by combining trehalose and sucrose. Conclusively, the exact mechanism of protein stabilization may vary with the temperature, as influenced by temperature-dependent interactions between the protein, sugar, and water. This variability can make trehalose to a superior stabilizer under some conditions and sucrose under others.


Asunto(s)
Rastreo Diferencial de Calorimetría , Muramidasa , Mioglobina , Sacarosa , Trehalosa , Trehalosa/química , Sacarosa/química , Muramidasa/química , Muramidasa/metabolismo , Mioglobina/química , Estabilidad Proteica , Animales , Temperatura
6.
Acta Pharm ; 74(2): 289-300, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815206

RESUMEN

At present, society has embraced the fact apropos population aging and climate changes, that demand, amongst others, innovative pharmaceutical technologies, emphasising the development of patient-specific delivery systems and thus the provision of efficient and sustainable drugs. Protein drugs for subcutaneous administration, by allowing less frequent application, represent one of the most important parts of the pharmaceutical field, but their development is inevitably faced with obstacles in providing protein stability and suitable formulation viscosity. To gain further knowledge and fill the gaps in the already constructed data platform for the development of monoclonal antibody formulations, we designed a study that examines small model proteins, i.e., bovine serum albumin. The main aim of the presented work is to evaluate the effect of protein concentrations on critical quality attributes of both, pre-lyophilised liquid formulations, and lyophilised products. Through the study, the hypothesis that increasing protein concentration leads to higher viscosity and higher reconstitution time without affecting the stability of the protein was confirmed. The most important finding is that sucrose plays a key role in the lyophilisation of investigated protein, nevertheless, it can be predicted that, to ensure the beneficial effect of mannitol, its amount has to prevail over the amount of sucrose.


Asunto(s)
Composición de Medicamentos , Liofilización , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Viscosidad , Composición de Medicamentos/métodos , Humanos , Sacarosa/química , Estabilidad de Medicamentos , Química Farmacéutica/métodos , Excipientes/química , Manitol/química , Estabilidad Proteica
7.
Analyst ; 149(12): 3317-3324, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742381

RESUMEN

In this work, the release of giant liposome (∼100 µm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.


Asunto(s)
Electrodos , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Liposomas/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Propilaminas/química , Liposomas Unilamelares/química , Sacarosa/química , Compuestos de Estaño
8.
Mol Pharm ; 21(6): 3017-3026, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38758116

RESUMEN

Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.


Asunto(s)
Estabilidad de Medicamentos , Excipientes , Liofilización , Polímeros , Povidona , Temperatura de Transición , Trehalosa , Liofilización/métodos , Povidona/química , Trehalosa/química , Excipientes/química , Polímeros/química , Sacarosa/química , Azúcares/química , Enlace de Hidrógeno , Almacenaje de Medicamentos , Química Farmacéutica/métodos , Rastreo Diferencial de Calorimetría , Humedad , Pirrolidinas/química , Compuestos de Vinilo/química
9.
Int J Biol Macromol ; 271(Pt 1): 132397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821787

RESUMEN

The thickening and gelling mechanism of high-methoxyl pectins (HMPs) with different degree of esterification (DE) values (60.6 %, 66.1 %, and 72.4 %) synergistically affected by calcium ion (Ca2+) and sucrose was investigated using several technical methods. Rheological measurements, including steady-shear flow, thixotropy and dynamic viscoelasticity tests, texture analysis, water-holding capacity (WHC), thermal analyses (TG), and microstructure observation (TEM), were all systemically conducted. The results showed that the main thickening and gelling mechanism of Ca2+ on different HMPs was complex and the presence of sucrose had a synergistic effect on structure formation in HMP systems. Ca2+ was not always conducive to structure formation, and excessive Ca2+ addition may hinder structure formation. HMP systems with lower DE values had higher gel strengths due to the presence of more binding domains. The results of the texture properties, WHC, and thermal characteristics coincided with those obtained from the rheological measurements, which reflect the variations in HMPs affected by Ca2+ and DE. All of these results showed that Ca2+ addition at an appropriate concentration in the presence of sucrose favors HMP gelation even in the absence of acid. The results obtained here are expected to broaden the application of HMPs in acid-free gel food products.


Asunto(s)
Calcio , Malus , Pectinas , Reología , Sacarosa , Pectinas/química , Malus/química , Sacarosa/química , Calcio/química , Viscosidad , Geles/química , Esterificación , Agua/química
10.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675593

RESUMEN

Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-ß-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, ß-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.


Asunto(s)
Disacáridos , Fructosa , Glucosa , Sacarosa , Disacáridos/química , Disacáridos/síntesis química , Sacarosa/química , Glicosilación , Edulcorantes/química
11.
Food Chem ; 449: 139180, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579650

RESUMEN

Maple syrup, a popular natural sweetener has a high content of sucrose, whose consumption is linked to different health issues such as obesity and diabetes. Hence, within this paper, the conversion of sucrose to prebiotics (fructo-oligosaccharides, FOS) was proposed as a promising approach to obtaining a healthier, value-added product. Enzymatic conversion was optimized with respect to key experimental factors, and thereafter derived immobilized preparation of fructosyltransferase (FTase) from Pectinex® Ultra SP-L (FTase-epoxy Purolite, 255 IU/g support) was successfully utilized to produce novel functional product in ten consecutive reaction cycles. The product, obtained under optimal conditions (60 °C, 7.65 IU/mL, 12 h), resulted in 56.0% FOS, 16.7% sucrose, and 27.3% monosaccharides of total carbohydrates, leading to a 1.6-fold reduction in caloric content. The obtained products` prebiotic potential toward the probiotic strain Lactobacillus plantarum 299v was demonstrated. The changes in physico-chemical and sensorial characteristics were esteemed as negligible.


Asunto(s)
Acer , Proteínas Bacterianas , Hexosiltransferasas , Oligosacáridos , Prebióticos , Sacarosa , Prebióticos/análisis , Oligosacáridos/química , Oligosacáridos/metabolismo , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Sacarosa/metabolismo , Sacarosa/química , Acer/química , Acer/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/química , Biocatálisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
12.
Eur J Pharm Biopharm ; 198: 114269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527635

RESUMEN

Sucrose esters (SEs) have great potential in the field of nucleic acid delivery due to their unique physical and chemical properties and good biosafety. However, the mechanism of the effect of SEs structure on delivery efficiency has not been studied. The liposomes containing peptide lipids and SEs were constructed, and the effects of SEs on the interaction between the liposomes and DNA were studied. The addition of SEs affects the binding rate of liposomes to DNA, and the binding rate gradually decreases with the increase of SEs' carbon chain length. SEs also affect the binding site and affinity of liposomes to DNA, promoting the aggregation of lipids to form liposomes, where DNA wraps around or compresses inside the liposomes, allowing it to compress DNA without damaging the DNA structure. COL-6, which is composed of sucrose laurate, exhibits the optimal affinity for DNA, and SE promotes the formation of ordered membrane structure and enhances membrane stability, so that COL-6 exhibits a balance between rigidity and flexibility, and thus exhibits the highest delivery efficiency of DNA among these formulations. This work provides theoretical foundations for the application of SE in gene delivery and guides for the rational design of delivery systems.


Asunto(s)
Ésteres , Liposomas , Liposomas/química , Ésteres/química , ADN/metabolismo , Sacarosa/química , Lípidos/química
13.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551918

RESUMEN

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Asunto(s)
Rastreo Diferencial de Calorimetría , Excipientes , Liofilización , Poloxámero , Trehalosa , Liofilización/métodos , Poloxámero/química , Excipientes/química , Trehalosa/química , Rastreo Diferencial de Calorimetría/métodos , Sacarosa/química , Difracción de Rayos X , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Cristalización/métodos , Química Farmacéutica/métodos , Proteínas/química , Composición de Medicamentos/métodos , Congelación
14.
Chem Biodivers ; 21(5): e202400302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454878

RESUMEN

This study isolated pure compounds from Canna edulis aerial parts and assessed their antiplatelet and anticoagulant potential. Structural elucidation resulted in the identification of two new compounds: caneduloside A (1) and caneduloside B (2), and eleven known compounds: 6'-acetyl-3,6,2'-tri-p-coumaroyl sucrose (3), 6'-acetyl-3,6,2'-triferuloyl sucrose (4), tiliroside (5), afzelin (6), quercitrin (7), 2-hydroxycinnamaldehyde (8), cinnamic acid (9), 3,4-dimethoxycinnamic acid (10), dehydrovomifoliol (11), 4-hydroxy-3,5-dimethoxybenzaldehyde (12), and (S)-(-)-rosmarinic acid (13). Compounds 3, 4, 6-9, 13 were previously reported for antithrombotic properties. Hence, antithrombotic tests were conducted for 1, 2, 5, 10-12. All tested compounds demonstrated a dose-dependent antiaggregatory effect, and 10 and 12 were the most potent for both ADP and collagen activators. Additionally, 10 and 12 showed anticoagulant effects, with prolonged prothrombin time and activated partial thromboplastin time. The new compound 1 displayed antiplatelet and anticoagulant activity, while 2 mildly inhibited platelet aggregation. C. edulis is a potential source for developing antithrombotic agents.


Asunto(s)
Anticoagulantes , Componentes Aéreos de las Plantas , Inhibidores de Agregación Plaquetaria , Sacarosa , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Sacarosa/química , Sacarosa/farmacología , Sacarosa/metabolismo , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Humanos , Ésteres/química , Ésteres/farmacología , Ésteres/aislamiento & purificación , Agregación Plaquetaria/efectos de los fármacos , Myristicaceae/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Animales
15.
J Food Sci ; 89(5): 2684-2700, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551186

RESUMEN

Salted egg yolks have a tender, loose, gritty, and oily texture and are commonly employed as fillings in baked goods. This study investigated the formation mechanism of egg yolk gels using three different pickling methods: NaCl, sucrose, and mixed groups. The results revealed that of these pickling methods, egg yolks pickled with the mixture had the lowest moisture content (11.59% at 25°C and 10.21% at 45°C), almost no free water content, and the highest hardness (19.11 N at 25°C and 31.01 N at 45°C). Intermolecular force measurements indicated that pickling with the mixture mitigated the surface hardening effect of sucrose and facilitated protein cross-linking. Moreover, confocal laser scanning microscopy of the egg yolk gels pickled with the mixture displayed macromolecular aggregates and oil exudation, suggesting that this method partially disrupted the lipoprotein structure and notably promoted yolk protein aggregation and lipid release. Overall, egg yolks formed a dense gel via the mixed pickling method owing to the ionic concentration and dehydration effects. These findings show the impact of NaCl and sucrose in pickling egg yolks, providing a crucial foundation for developing innovative and desirable egg yolk products. PRACTICAL APPLICATION: This study introduces a novel pickling strategy that combines sucrose and NaCl for egg yolk processing. The egg yolk pickled using this method exhibited improved quality according to the evaluated textural characteristics, moisture distribution, and protein aggregation behavior. The findings may broaden the use of sucrose as a pickling agent for egg yolk processing and provide new ideas for developing and producing pickled eggs and other food products.


Asunto(s)
Proteínas del Huevo , Yema de Huevo , Manipulación de Alimentos , Cloruro de Sodio , Sacarosa , Agua , Yema de Huevo/química , Sacarosa/química , Cloruro de Sodio/química , Agua/química , Proteínas del Huevo/química , Manipulación de Alimentos/métodos , Agregado de Proteínas , Geles/química , Animales , Pollos
16.
Cryobiology ; 115: 104886, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555011

RESUMEN

Nowadays, the physical nature of supersaturated binary aqueous sugar solutions in the vicinity of the glass transition represents a very important issue due to their biological applications in cryopreservation of cells and tissues, food science and stabilization and storage of nano genetic drugs. We present the construction of the Supplemented Phase Diagram and the non-equilibrium nature of the undersaturated-supersaturated kinetic transition. The description of its thermodynamic nature is achieved through the study of behavior of their viscosity as temperature is lowered and concentration increased. In this work, we find a universal character for the viscosities of several sugar water solutions.


Asunto(s)
Criopreservación , Vitrificación , Agua , Viscosidad , Criopreservación/métodos , Agua/química , Azúcares/química , Crioprotectores/química , Crioprotectores/farmacología , Termodinámica , Transición de Fase , Soluciones , Sacarosa/química , Trehalosa/química , Temperatura
17.
J Agric Food Chem ; 72(10): 5439-5451, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412221

RESUMEN

Increasing hydrogen peroxide (H2O2)-based systems have been developed to degrade various polysaccharides due to the presence of highly reactive free radicals, but published degradation mechanisms are still limited. Therefore, this study aimed to clarify the degradation mechanism of six typical glucosidic bonds from different disaccharides in an ultraviolet (UV)/H2O2 system. The results showed that the H2O2 concentration, disaccharide concentration, and radiation intensity were important factors affecting pseudo-first-order kinetic constants. Hydroxyl radical, superoxide radical, and UV alone contributed 58.37, 18.52, and 19.17% to degradation, respectively. The apparent degradation rates ranked in the order of cellobiose ≈ lactose > trehalose ≈ isomaltose > turanose > sucrose ≈ maltose. The reaction pathways were then deduced after identifying their degradation products. According to quantum chemical calculations, the cleavage of α-glycosidic bonds was more kinetically unfavorable than that of ß-glycosidic bonds. Additionally, the order of apparent degradation rates depended on the energy barriers for the formation of disaccharide-based alkoxyl radicals. Moreover, energy barriers for homolytic scissions of glucosidic C1-O or C7-O sites of these alkoxyl radicals ranked in the sequence: α-(1 → 2) ≈ α-(1 → 3) < α-(1 → 4) < ß-(1 → 4) < α-(1 → 6) < α-(1 → 1) glucosidic bonds. This study helps to explain the mechanisms of carbohydrate degradation by free radicals.


Asunto(s)
Alcoholes , Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Glucósidos , Disacáridos/química , Maltosa/metabolismo , Sacarosa/química , Rayos Ultravioleta , Oxidación-Reducción , Cinética , Contaminantes Químicos del Agua/química
18.
J Pharm Sci ; 113(6): 1506-1514, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38342340

RESUMEN

Primary drying is the most critical stage of the freeze-drying process. This work aimed to establish a design space for this process by means of mathematical modeling of the primary drying stage, capable of addressing the thermal characteristics of distinct vial suppliers. Modeling of primary drying was implemented on Microsoft Excel using steady-state heat and mass transfer equations at two extreme conditions as assessed by risk analysis, to predict product temperature and primary-drying time. The heat transfer coefficients (Kv) of four different vial suppliers were experimentally determined, both, at the center and edge of the freeze-dryer's shelf. Statistically significant differences (ANOVA p<0.05) were observed between suppliers throughout the assessed pressure range. Overall, the average Kve/Kvc (edge/center) ratio was higher than 1.6 for all suppliers due to the radiation effect. A design space for the drying process was established using mathematical modeling taking into account the Kv of the worst-case supplier, in the shelf edge. A primary drying cycle was carried out at a shelf temperature of -25 °C and a chamber pressure of 45 mTorr for 8 % sucrose and at -10 °C and 75 mTorr for 5 % NaCl. Freeze-dried products with good cosmetic appearance were obtained for the four vial suppliers both, in the shelf center and edge. The results show that it is possible to predict and establish the critical parameters for the primary drying stage, under a design space concept, considering the differences in the Kv of vial suppliers without adverse consequences on the quality of the finished freeze-dried product.


Asunto(s)
Liofilización , Liofilización/métodos , Modelos Teóricos , Sacarosa/química , Temperatura , Presión , Calor
19.
Int J Pharm ; 652: 123803, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38218506

RESUMEN

This paper explores how vacuum foam-drying of a protein is influenced by formulation parameters by investigating the foam structure, physical properties of the foam, and the stability of the protein. Recombinant human bile salt-stimulated lipase was used as a model of a protein drug. The stability of the lipase was evaluated through activity measurements. Two disaccharides (sucrose and trehalose), strongly tending to an amorphous form, were used as matrix formers, and the physical properties were assessed through residual water content, glass transition temperature, and crystalline state. Moreover, some formulations included surfactants with different sizes and structures of the head group. The alkyl chain length was kept constant to only investigate the impact of the surfactant head group, in the presence of the lipase, on the foamability and surface coverage of the lipase. The study demonstrated that the lipase allowed for a dry, solid foam with a foam overrun of up to 2600 %. The wall thickness of the dry, solid foam was estimated to be 20-50 µm. Clear differences between sucrose and trehalose as matrix former were identified. The lipase showed no tendency to lose activity because of the drying and rehydration, despite a proportion of the lipase covering the surfaces of the dry material.


Asunto(s)
Sacarosa , Trehalosa , Humanos , Liofilización , Trehalosa/química , Vacio , Estabilidad de Medicamentos , Sacarosa/química , Tensoactivos/química , Lipasa
20.
J Phys Chem B ; 128(3): 676-683, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38197901

RESUMEN

Addition of sugars such as sucrose to aqueous protein solutions generally stabilizes proteins against thermal denaturation by preferential exclusion of sugars from proteins (preferential hydration of proteins). In this study, we investigated the effect of sucralose, a chlorinated sucrose derivative, on protein stability and preferential solvation. Circular dichroism and small-angle X-ray scattering measurements showed that sucrose increased the denaturation temperature of myoglobin and was preferentially excluded from the protein, whereas sucralose decreased the denaturation temperature of myoglobin and was preferentially adsorbed to the protein. No clear evidence was obtained for the indirect effects of sucralose on protein destabilization via the structure and properties of solvent water from the physicochemical properties (mass density, sound velocity, viscosity, and osmolality) of aqueous sucralose solutions; therefore, we concluded that a direct protein-sucralose interaction induced protein destabilization.


Asunto(s)
Mioglobina , Agua , Agua/química , Mioglobina/química , Solventes/química , Sacarosa/química , Desnaturalización Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...