Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Bioresour Technol ; 401: 130728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657827

RESUMEN

This study investigated a lignin-first approach to produce furan-modified lignin from sugarcane bagasse (SB), rice hull (RH), and sunn hemp biomass (SHB) using 5 methylfurfural (MF) and 5 methul-2-furanmethanol (MFM). The reaction time (5 h) was selected based on the delignification of SB using methanol and Ru/C catalyst which yielded the highest hydroxyl content. Delignification of SB with various MF weight ratios (1:1, 1:2, 1:3, 2:1, and 3:1) revealed that 1:1 and 2:1 ratios produced the highest hydroxyl content (7.7 mmol/g) and bio-oil yield (23.2 % wt% total weight). Further exploration identified that RH and MF at 1:1 ratio and SHB and MF at a 2:1 ratio produced the highest hydroxyl content (13.0 mmol/g) and bio-oil yield (31.6 % wt% tot. weight). This study developed a one-step method to extract and modify lignin with furan compounds simultaneously while opening new avenues for developing value-added products.


Asunto(s)
Furanos , Lignina , Lignina/química , Furanos/química , Biomasa , Agricultura , Oryza/química , Celulosa/química , Saccharum/química , Biocombustibles , Residuos , Cannabis/química
2.
GM Crops Food ; 15(1): 67-84, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507337

RESUMEN

The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.


Asunto(s)
Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Saccharum/genética , Saccharum/química , Saccharum/metabolismo , Oxigenasas de Función Mixta/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo , Etanol/metabolismo
3.
Int J Biol Macromol ; 265(Pt 2): 130969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508562

RESUMEN

Polyethyleneimine-modified magnetic sugarcane bagasse cellulose film (P-SBC/Fe3O4 film) was simply fabricated for the removal of ibuprofen (IBP), a typical emerging organic contaminant. The P-SBC/Fe3O4 film exhibited an equilibrium adsorption amount of 370.52 mg/g for IBP and a corresponding removal efficiency of 92.63 % under following adsorption conditions: 318 K, pH 4, and 0.25 mg/mL dosage. Thermodynamic studies indicated that adsorption of IBP on the P-SBC/Fe3O4 film was spontaneous (∆G < 0) and endothermic (∆H > 0). The adsorption data conformed to the Freundlich isotherm model and multilayer adsorption model (two layers), and an average of 3-4 active sites on the P-SBC/Fe3O4 film share an IBP molecule. Both the EDR-IDR and AOAS models vividly described the dynamic characteristics of adsorption process. Model fitting results, theoretical calculations, and comprehensive characterization revealed that adsorption is driven by electrostatic interactions between the primary amine of P-SBC/Fe3O4 film and the carboxyl group of IBP molecule, while other weak interactions are also non-ignorable. Furthermore, quantitative calculations based on density functional theory (DFT) underscored the importance of PEI functionalization. In conclusion, P-SBC/Fe3O4 film is an environmentally friendly and cost-effective adsorbent with significant potential for effectively removing IBP, while maintaining its efficacy over multiple cycles.


Asunto(s)
Polietileneimina/análogos & derivados , Saccharum , Contaminantes Químicos del Agua , Adsorción , Celulosa/química , Ibuprofeno , Saccharum/química , Polietileneimina/química , Fenómenos Magnéticos , Cinética , Concentración de Iones de Hidrógeno
4.
Chemosphere ; 355: 141748, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521109

RESUMEN

Sugarcane bagasse is one of the most common Vietnamese agricultural waste, which possesses a large percentage of cellulose, making it an abundant and environmentally friendly source for the fabrication of cellulose carbon aerogel. Herein, waste sugarcane bagasse was used to synthesize cellulose aerogel using different crosslinking agents such as urea, polyvinyl alcohol (PVA) and sodium alginate (SA). The 3D porous network of cellulose aerogels was constructed by intermolecular hydrogen bonding, which was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen adsorption/desorption. Among the three cellulose aerogel samples, cellulose - SA aerogel (SB-CA-SA) has low density of 0.04 g m-3 and high porosity of 97.38%, leading to high surface area of 497.9 m2 g-1 with 55.67% micropores of activated carbon aerogel (SB-ACCA-SA). The salt adsorption capacity was high (17.87 mg g-1), which can be further enhanced to 31.40 mg g-1 with the addition of CNT. Moreover, the desalination process using the SB-ACCA-SA-CNT electrode was stable even after 50 cycles. The results show the great combination of cellulose from waste sugarcane bagasse with sodium alginate and carbon nanotubes in the fabrication of carbon materials as the CDI-utilized electrodes with high desalination capability and good durability.


Asunto(s)
Nanotubos de Carbono , Saccharum , Celulosa/química , Saccharum/química , Alginatos
5.
J Biotechnol ; 386: 28-41, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461861

RESUMEN

Low production costs and a potential feedstock supply make lignocellulosic ethanol (bioethanol) an important source of advanced biofuels. The physical and chemical preparation of this kind of lignocellulosic feedstock led to a high ethanol yield. In order to increase the yield of fermentable sugars, pretreatment is an essential process step that alters the lignocellulosic structure and improves its accessibility for the expensive hydrolytic enzymes. In this context, the chemical composition of sugarcane trash (dry leaves, green leaves, and tops) and jatropha (shell and seed cake) was determined to be mainly cellulose, hemicellulose, and lignin. Hydrogen peroxide and sodium hydroxide were applied in an attempt to facilitate the solubilization of lignin and hemicelluloses in five agrowastes. The extraction of hydrogen peroxide was much better than that of sodium hydroxide. A comparative study was done using SEM, EDXA, and FTIR to evaluate the difference between the two methods. The pretreated wastes were subjected to saccharification by commercial cellulases (30 IU/g substrate). The obtained glucose was fortified with nutrients and fermented statically by Saccharomyces cerevisiae F-307 for bioethanol production. The results revealed the bioethanol yields were 325.4, 310.8, 282.9, 302.4 and 264.0 mg ethanol/g treated agrowastes from green leaves of sugarcane, jatropha deolied seed cake, tops sugarcane, dry leaves of sugarcane, and jatropha shell, respectively. This study emphasizes the value of lignocellulosic agricultural waste as a resource for the production of biofuels as well as the significance of the extraction process.


Asunto(s)
Jatropha , Saccharum , Lignina/metabolismo , Saccharum/química , Jatropha/metabolismo , Biocombustibles , Hidróxido de Sodio , Peróxido de Hidrógeno , Etanol , Saccharomyces cerevisiae/metabolismo , Hidrólisis , Fermentación
6.
J Environ Manage ; 356: 120634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518490

RESUMEN

Vinasse and ash from sugarcane bagasse (SCB) are key byproducts in the sugar-energy industry. Vinasse is nutrient-rich but environmentally challenging, while sugarcane bagasse ash (SCBA) offers excellent adsorbent for treating effluents. This work aims to assess the effectiveness of SCBA in removing nitrogen (N) and potassium (K) nutrients from Vinasse. Simulated standard solutions of K2SO4 and (NH4)2HPO4 were used to mimic the nutrient concentrations in Vinasse and optimize experimental parameters such as adsorbent mass and contact time. Kinetic and isotherm models were also applied to elucidate the underlying adsorption mechanisms. Structural, morphological, and thermal analyses revealed the micro-mesoporous and heterogeneous nature of SCBA, primarily composed of SiO2 (quartz and cristobalite). The sorption assessment indicated the ideal conditions involved lower SCBA masses (2.5 g) and 6 h of contact time for the simulated standard solutions. The replicated conditions for Vinasse (at an adjusted sorption time of 24 h) demonstrated nutrient sorption and pH correction of the Vinasse, attributed to the alkaline nature of SCBA. Analysis of the sorption kinetic models for K+ and NH4+ revealed that SCBA interacts diffusively with the environment, not necessarily controlled by adsorption on active sites, indicating non-uniform characteristics. The sorption isotherms for K+ and NH4+ showed the non-linearized Freundlich model was the most suitable, indicating the adsorption sites with varying energy levels and a multilayer sorption process. In conclusion, we successfully demonstrated the sorption of nutrients from Vinasse by SCBA, enhancing the value of these residues and mitigating their environmental impact when used in agricultural applications.


Asunto(s)
Residuos Industriales , Saccharum , Celulosa/química , Azúcares , Dióxido de Silicio , Saccharum/química , Adsorción
7.
Int J Biol Macromol ; 264(Pt 2): 130674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458273

RESUMEN

Microcrystalline cellulose (MCC) was successfully synthesized from sugarcane bagasse using a rapid, low-temperature hydrochloric acid (HCl) gas treatment. The primary aim was to develop an energy-efficient "green" cellulose extraction process. Response surface methodology optimized the liquid-phase hydrolysis conditions to 3.3 % HCl at 117 °C for 127 min to obtain MCC with 350 degree of polymerization. An alternative gas-phase approach utilizing gaseous HCl diluted in hot 40 °C air was proposed to accelerate MCC production. The cellulose pulp was moistened to 15-18 % moisture content and then exposed to HCl gas, which was absorbed by the moisture in the cellulose fibers to generate a highly concentrated acidic solution that hydrolyzed the cellulose. The cellulose pulp was isolated from depithed bagasse through soda pulping, multistage bleaching and cold alkali purification. Hydrolysis was conducted by saturating the moist cellulose fibers with gaseous HCl mixed with hot air. Extensive analytical characterization using FT-IR, XRD, SEM, TGA, DSC, particle size, and porosity analyses verified comparable physicochemical attributes between MCC samples prepared via liquid and gas phase methods. The gas-produced MCC revealed 85% crystallinity, 71 Å crystallite dimensions, and thermally stable rod-shaped morphology with an average diameter below 200 µm. The similar material properties validate the proposed gas-based technique as an equally effective yet more energy-efficient alternative to conventional aqueous acid hydrolysis for fabricating highly pure MCC powders from lignocellulose. This sustainable approach enables the value-addition of sugarcane bagasse agro-industrial residue into cellulosic nanomaterials for wide-ranging industrial applications. In summary, the key achievements of this work are rapid MCC production under mild temperatures using HCl gas, optimization of liquid phase hydrolysis, successful demonstration of gas phase method, and extensive characterization verifying equivalence between both protocols. The gas methodology offers a greener cellulose extraction process from biomass.


Asunto(s)
Celulosa , Saccharum , Celulosa/química , Hidrólisis , Ácido Clorhídrico/química , Saccharum/química , Espectroscopía Infrarroja por Transformada de Fourier
8.
Int J Biol Macromol ; 263(Pt 1): 130111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346614

RESUMEN

Sugarcane bagasse was pretreated with dilute phosphoric acid or sulfuric acid to facilitate cellulose hydrolysis and lignin extraction. With phosphoric acid, only 8 % of the initial cellulose was lost after delignification, whereas pretreatment with sulfuric acid resulted in the solubilization of 38 % of the initial cellulose. After enzymatic hydrolysis, the process using phosphoric acid produced approximately 35 % more glucose than that using sulfuric acid. In general, the lignins showed 95-97 % purity (total lignin, w/w), an average molar mass of 9500-10,200 g mol-1, a glass transition temperature of 140-160 °C, and a calorific value of 25 MJ kg-1. Phosphoric acid lignin (PAL) was slightly more polar than sulfuric acid lignin (SAL). PAL had 13 % more oxidized units and 20 % more OH groups than SAL. Regardless of the acid used, the lignins shared similar properties, but differed slightly in the characteristics of their functional groups and chemical bonds. These findings show that pretreatment catalyzed with either of the two acids resulted in lignin with sufficiently good characteristics for use in industrial processes.


Asunto(s)
Celulosa , Saccharum , Celulosa/química , Lignina/química , Saccharum/química , Hidrólisis , Ácidos Fosfóricos , Ácidos Sulfúricos
9.
Environ Sci Pollut Res Int ; 31(11): 17494-17510, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342834

RESUMEN

In this study, sugarcane bagasse (SB) was strategically subjected to a delignification process followed by the in situ growth of multi-layered molybdenum disulfide (MoS2) nanosheets with hexagonal phase (2H-phase) crystal structure via hydrothermal treatment. The MoS2 nanosheets underwent self-assembly to form nanoflower-like structures in the aligned cellulose inter-channels of delignified sugarcane bagasse (DSB), the mechanism of which was understood through FTIR and XPS spectroscopic studies. DSB, due to its porous morphology and abundant hydroxyl groups, shows remediation capabilities of methylene blue (MB) dye through physio-sorption but shows a low adsorption capacity of 80.21 mg/g. To improve the removal capacity, DSB after in situ growth of MoS2 (DSB-MoS2) shows enhanced dye degradation to 114.3 mg/g (in the dark) which further improved to 158.74 mg/g during photodegradation, due to catalytically active MoS2. Interestingly, DSB-MoS2 was capable of continuous dye degradation with recyclability for three cycles, reaching an efficiency of > 83%, along with a strong antibacterial response against Gram-positive Staphylococcus aureus (S.aureus) and Gram-negative Escherichia coli (E. coli). The present study introduces a unique strategy for the up-conversion of agricultural biomass into value-added bio-adsorbents, which can effectively and economically address the remediation of dyes with simultaneous microbial decontamination from polluted wastewater streams.


Asunto(s)
Contaminantes Ambientales , Saccharum , Molibdeno/química , Celulosa/química , Escherichia coli , Descontaminación , Saccharum/química , Colorantes
10.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380698

RESUMEN

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Asunto(s)
Saccharum , Saccharum/química , Catecol Oxidasa/química , Simulación del Acoplamiento Molecular , Ácido Ascórbico , Azúcares , Ácido Cítrico
11.
Compr Rev Food Sci Food Saf ; 23(2): e13307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369931

RESUMEN

Sugarcane (Saccharum sp.) plants are grown in warmer climates throughout the world and processed to produce sugar as well as other useful byproducts such as molasses and bagasse. Sugarcane is rich in (poly)phenols, but there has been no attempt to critically evaluate the published information based on the use of suitable methodologies. The objective of this review is to evaluate the quantitative and qualitative (poly)phenolic profiles of individual parts of the sugarcane plant and its multiple industrial products, which will help develop new processes and uses for sugarcane (poly)phenols. The quantitative analysis involves the examination of extraction, concentration, and analytical techniques used in each study for each plant part and product. The qualitative analysis indicates the identification of various (poly)phenols throughout the sugarcane processing chain, using only compounds elucidated through robust analytical methodologies such as mass spectrometry or nuclear magnetic resonance. In conclusion, sugarcane (poly)phenols are predominantly flavonoids and phenolic acids. The main flavonoids, derivatives of apigenin, luteolin, and tricin, with a substantial proportion of C-glycosides, are consistently found across all phases of sugarcane processing. The principal phenolic acids reported throughout the process include chlorogenic acids, as well as ferulic and caffeic acids mostly observed after hydrolysis. The derivation of precise quantitative information across publications is impeded by inconsistencies in analytical methodologies. The presence of multiple (poly)phenols with potential benefits for industrial applications and for health suggests sugarcane could be a useful provider of valuable compounds for future use in research and industrial processes.


Asunto(s)
Saccharum , Saccharum/química , Flavonoides/química , Fenoles/análisis , Hidroxibenzoatos
12.
Environ Res ; 246: 118150, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218518

RESUMEN

Improving anaerobic digestion of sugarcane vinasse - a high-strength wastewater from ethanol distillation - is a subject of great interest, in view of the reduction of the pollutants and recovery of methane and valuable metabolites as byproducts. Through metatranscriptomic analysis, this study evaluated the active microbiome and metabolic pathways in a continuous acidogenic reactor: Stage 1S (control): 100% sucrose-based substrate (SBS); Stage 2SV (acclimation): 50% SBS and 50% vinasse; Stage 3V: 100% vinasse. Metatranscriptome obtained from each Stage was subjected to taxonomic and functional annotations. Under SBS feeding, pH dropped to pH 2.7 and biohydrogen production was observed. As vinasse was added, pH increased to 4.1-4.5, resulting in community structure and metabolite changes. In Stage 3V, biohydrogen production ceased, and propionate and acetate prevailed among the volatile fatty acids. Release of homoacetogenesis enzymes by Clostridium ljungdahlii and of uptake hydrogenase (EC 1.12.99.6) by Pectinatus frisingensis were linked to hydrogen consumption in Stages 2SV and 3V. Metabolic pathways of vinasse compounds, such as carbohydrates, malate, oxalate, glycerol, sulfate and phenol, were investigated in detail. In pyruvate metabolism, gene transcripts of oadA (oxaloacetate decarboxylase) and mdh (malate dehydrogenase), were upregulated in Stage 3V, being mostly attributed to P. frisingensis. Acetate formation from vinasse degradation was mainly attributed to Megasphaera and Clostridium, and propionate formation to P. frisingensis. Glycerol removal from vinasse exceeded 99%, and gene transcripts encoding for glpF (glycerol uptake facilitator protein), glpK (glycerol kinase) and glpABC (glycerol-3-phosphate dehydrogenase) were expressed mostly by Pectinatus and Prevotella. mRNA profiling showed that active bacteria and gene expression greatly changed when vinasse replaced sucrose, and Pectinatus was the main active bacterium degrading the searched compounds from vinasse. The identification of the main metabolic routes and the associated microorganisms achieved in this work contributes with valuable information to support further optimization of fermentation towards the desired metabolites.


Asunto(s)
Microbiota , Saccharum , Fermentación , Saccharum/química , Saccharum/metabolismo , Propionatos/metabolismo , Glicerol/metabolismo , Sacarosa/metabolismo , Acetatos/metabolismo , Bacterias , Reactores Biológicos/microbiología
13.
Int J Biol Macromol ; 259(Pt 2): 129235, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211916

RESUMEN

Three green non-enzymatic catalysis pretreatments (NECPs) including autohydrolysis, subcritical CO2-assisted seawater autohydrolysis, and inorganic salt catalysis were utilized to simultaneously produce xylo-oligosaccharides (XOS), glucose, and cellulolytic enzyme lignin (CEL) from sugarcane bagasse (SCB). The yield of XOS in all three NECPs was over 50 % with a competitive glucose yield of enzymatic hydrolysis. And the effects of different pretreatments on the chemical structure and composition of CEL samples were also investigated. The pretreatments significantly increased the thermal stability, yield, and purity of the CEL samples. Moreover, the net yield of lignin was 58.3 % with lignin purity was 98.9 % in the autohydrolysis system. Furthermore, there was a decrease in the molecular weight of CEL samples as the pretreatment intensity increased. And the original lignin structural units sustained less damage during the NECPs, due to the cleavage of the ß-O-4 bonds dominating lignin degradation. Meanwhile, these pretreatments increased the phenolic-OH in CEL samples, making the lignin more reactive, and enhancing its subsequent modification and utilization. Collectively, the described techniques have demonstrated practical significance for the coproduction of XOS and glucose, and lignin, providing a promising strategy for full utilization of biomass.


Asunto(s)
Lignina , Saccharum , Lignina/química , Celulosa/química , Glucosa/metabolismo , Biomasa , Saccharum/química , Oligosacáridos/química , Hidrólisis
14.
Environ Sci Pollut Res Int ; 31(3): 4067-4079, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097830

RESUMEN

Brazil is a major producer of sugarcane bioethanol, which has raised concerns about its environmental impact. The industrial process for obtaining ethanol generates a by-product with a high pollution potential called vinasse. If vinasse reaches watercourses, it may affect the biological communities, such as the aquatic macroinvertebrates, which include species sensitive to environmental contamination. Thus, this study evaluated the ecotoxicological effects of sugarcane vinasse on tropical benthic macroinvertebrates (Allonais inaequalis, Chironomus sancticaroli, Strandesia trispinosa, and Hyalella meinerti). The study was divided into three phases. First, acute toxicity tests were carried out with the four species. The species A. inaequalis (average LC50 = 0.460% confidence interval, CI 0.380-0.540%) was more sensitive to vinasse than C. sancticaroli (LC50 0.721%, CI 0.565-0.878%), H. meinerti (EC50 0.781%, CI 0.637-0.925%), and S. trispinosa (EC50 1.283%, CI 1.045-1.522%). In the second phase, the consequences of chronic exposure to vinasse were assessed in the two more sensitive species. Impairments in reproduction and population growth rates for A. inaequalis and on the development, metamorphosis, and body growth of C. sancticaroli larvae occurred. Finally, the bioaccumulation of metals after chronic exposure was determined in the third phase. Vinasse provoked decreases in the body residue of the essential metals Zn and Mn and the accumulation of Cd, Pb, and Cr with the potential for biomagnification throughout the food webs. Low concentrations of vinasse (below 1%) provoked lethal and sublethal effects on benthic organisms, with several cascade effects on aquatic environments, given the ecological importance of this group in freshwater and terrestrial ecosystems.


Asunto(s)
Saccharum , Bioacumulación , Saccharum/química , Ecosistema , Contaminación Ambiental , Metales
15.
Int J Biol Macromol ; 258(Pt 1): 128888, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141701

RESUMEN

The microwave assisted pretreatment on sugarcane leaf (SCL) biomass for delignification was studied to enhance cellulose digestibility. In this work, microwave assisted with additives were used to delignification SCL for maximize sugar yield recovery. Single factorial and Central composite design (CCD) were employed to optimize the microwave assisted pretreatment conditions for improve delignification efficiency and the sugar yield recovery. The optimized pretreatment conditions were determined to be 4 min pre-treatment time, 500 W microwave power, 1.0 M Na2CO3 and 10 % biomass loading condition produce maximum reducing sugar yield (601 mg g-1) and glucose sugar yield (231 mg g-1) were achieved during saccharification. Pretreated biomass produced reducing sugar and glucose yields that were 4.5 and 4.1 times higher than those of untreated (native) SCL-N biomass, respectively. Additionally, the recyclability study of black liquor, obtained from optimized conditioned treatment of SCL-MSC (Microwave-assisted sodium carbonate pretreated SCL) resulted in considerable saccharification yield up to three pretreatment cycles. The 1H NMR and 13C NMR spectra studies illustrate that aromatic units present in SCL fractionated lignin samples. The variations of structure features and chemical compositions of the raw and pretreated SCL biomass were analyzed by SEM, XRD and XPS analysis. Overall, SCL-MSC pretreatment condition significantly delignification of SCL and led to the maximum sugar production optimized strategies pretreatment conditions was produced maximum amount of sugar, which is great potential for bio-refinery product development.


Asunto(s)
Lignina , Saccharum , Lignina/química , Saccharum/química , Microondas , Hidrólisis , Carbohidratos , Glucosa , Biomasa
16.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958924

RESUMEN

Lignin has emerged as a promising eco-friendly multifunctional ingredient for cosmetic applications, due to its ability to protect against ultraviolet radiation and its antioxidant and antimicrobial properties. However, its typical dark color and low water solubility limit its application in cosmetics. This study presents a simple process for obtaining light-colored lignin (LCLig) from sugarcane bagasse (SCB) alkaline black liquor, involving an oxidation treatment with hydrogen peroxide, followed by precipitation with sulfuric acid. The physico-chemical characterization, antioxidant and emulsifying potential of LCLig, and determination of its safety and stability in an oil-in-water emulsion were performed. A high-purity lignin (81.6%) with improved water solubility was obtained, as a result of the balance between the total aromatic phenolic units and the carboxylic acids. In addition, the antioxidant and emulsifying capacities of the obtained LCLig were demonstrated. The color reduction treatment did not compromise the safety of lignin for topical cosmetic applications. The emulsion was stable in terms of organoleptic properties (color, pH, and viscosity) and antioxidant activity over 3 months at 4, 25, and 40 °C.


Asunto(s)
Cosméticos , Saccharum , Lignina/química , Celulosa/química , Saccharum/química , Antioxidantes/farmacología , Emulsiones , Rayos Ultravioleta , Belleza , Agua
17.
Int J Biol Macromol ; 253(Pt 7): 127464, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37852399

RESUMEN

Sugarcane bagasse (SCB) and sugarcane bagasse ash (SCB-ash) are major agricultural residues from sugar processing industries in Thailand. In this study, SCB-derived activated carbon (SCBAC) with the optimum surface area of 489 m2/g was prepared by steam activation at 900 °C for 1 h. Hybrid granular activated carbons (GACs) were successfully developed by mixing SCBAC with bio-based polymers, alginate and gelatin, at the weight ratio of 3:1 for methylene blue (MB) adsorption. SCB-ash, which was additionally mixed in the GACs, could significantly increase compressive strength of the GACs, but decrease their surface areas and MB adsorption efficiencies. An existence of gelatin up to 30 wt% in the polymer matrix of the GACs showed a slight increase in swelling degree and iodine number, but could not enhance bead strength and MB adsorption efficiency due to its relatively lower bulk density and specific surface area. Maximum MB adsorption capacities of the GACs were found at 290-403 mg/g under this study's experimental condition. MB adsorption efficiencies at above 90 % with no deformation of all of the selected SCB hybrid GACs were finally confirmed after seven consecutive adsorption-desorption cycles using a simple regeneration with ethanol.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Celulosa/química , Polímeros , Azul de Metileno/química , Carbón Orgánico/química , Gelatina , Adsorción , Saccharum/química , Alginatos , Cinética , Contaminantes Químicos del Agua/química
18.
Molecules ; 28(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836653

RESUMEN

Among the family of sugarcane spirits, those made from juice are diverse and often produced in a traditional way. They must be distinguished from other sugarcane spirits, which are more widely produced and made from other sugarcane derivatives, such as molasses. These alcoholic beverages contribute significantly to the socio-economic development of many countries. However, despite ancestral know-how, there is a lack of contemporary data required to characterize some sugarcane juice spirits (SCJSs) and to overcome the current and future threats that producers will have to face. While preserving their authenticity and specificity, SCJS producers expect to improve and ensure sufficient yield and a superior quality product. Even if the scientific knowledge on these spirits is not comparable, the available data could help identify the critical points to be improved in the making process. This review aims to present the main SCJSs encountered worldwide, defining their specific features through some important aspects with, notably, references to the complex notion of terroir. To continue, we discuss the main steps of the SCJS process from harvesting to aging. Finally, we expose an inventory of SCJS's chemical compositions and of their sensory description that define the specific organoleptic properties of these spirits.


Asunto(s)
Saccharum , Saccharum/química , Bebidas Alcohólicas/análisis , Melaza
19.
Molecules ; 28(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513489

RESUMEN

Lignocellulosic biomasses have a complex and compact structure, requiring physical and/or chemical pretreatments to produce glucose before hydrolysis. Mathematical modeling of enzymatic hydrolysis highlights the interactions between cellulases and cellulose, evaluating the factors contributing to reactor scale-up and conversion rates. Furthermore, this study evaluated the influence of two pretreatments (hydrothermal and organosolv) on the kinetics of enzymatic hydrolysis of sugarcane bagasse. The kinetic parameters of the model were estimated using the Pikaia genetic algorithm with data from the experimental profiles of cellulose, cellobiose, glucose, and xylose. The model considered the phenomenon of non-productive adsorption of cellulase on lignin and inhibition of cellulase by xylose. Moreover, it included the behavior of cellulase adsorption on the substrate throughout hydrolysis and kinetic equations for obtaining xylose from xylanase-catalyzed hydrolysis of xylan. The model for both pretreatments was experimentally validated with bagasse concentration at 10% w/v. The Plackett-Burman design identified 17 kinetic parameters as significant in the behavior of process variables. In this way, the modeling and parameter estimation methodology obtained a good fit from the experimental data and a more comprehensive model.


Asunto(s)
Celulasa , Saccharum , Celulosa/química , Celulasa/metabolismo , Hidrólisis , Saccharum/química , Cinética , Xilosa , Lignina/química , Glucosa
20.
Bioresour Technol ; 386: 129485, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454960

RESUMEN

Green solvents, especially deep eutectic solvents (DESs), are widely applied to pretreat biomass for enhancing its enzymatic hydrolysis. In this work, lactic acid was selected as the hydrogen-bond-donor to prepare Betaine-base DES (Betaine:LA), The DES was utilized to pretreat sugarcane bagasse (SCB) at 160 ℃ for 80 min (severity factor LogR0 = 3.67). The influences of Betaine:LA treatment on the chemical composition, crystal and microstructure structure of cellulose, and cellulase digestion were investigated. The results showed that the lignin (47.1%) and xylan (44.6%) were removed, the cellulase digestibility of Betaine:LA-treated SCB was 4.2 times that of the raw material. This improved efficiency was attributed to the enhanced accessibility of cellulose, the weakened surface area of lignin, the declined hydrophobicity, and the decreased crystallinity of cellulose. Several compelling linear correlations were fitted between enzymatic hydrolysis and these alterations of physicochemical features, comprehensively understanding enzymatic saccharification of Betaine:LA-pretreated SCB.


Asunto(s)
Celulasa , Saccharum , Celulosa/química , Lignina/química , Betaína , Ácido Láctico , Saccharum/química , Hidrólisis , Celulasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...