Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.081
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 330, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730049

RESUMEN

A more optimized culture medium used in vitro to mimic the bacterial composition of original oral flora as similar as possible remains difficult at present, and the goal of this study is to develop a novel oral biofilm medium to restore the original oral microbiome. Firstly, we conducted a systematic literature review by searching PubMed and summarized the current reported culture media in vitro. Seven culture media were found. We used mixed saliva as the origin of oral species to compare the effects of the above media in culturing oral multispecies biofilms. Results indicated that among the seven media brain heart infusion containing 1% sucrose (BHIs) medium, PG medium, artificial saliva (AS) medium, and SHI medium could obviously gain large oral biofilm in vitro. The nutrients contained in different culture media may be suitable for the growth of different oral bacteria; therefore, we optimized several novel media accordingly. Notably, results of crystal violet staining showed that the biofilm cultured in our modified artificial saliva (MAS) medium had the highest amount of biofilm biomass. 16S rRNA gene sequencing showed that the operational taxonomic units (OTUs) and Shannon index of biofilm cultured in MAS medium were also the highest among all the tested media. More importantly, the 16S rRNA gene sequencing analysis indicated that the biofilm cultured in MAS medium was closer to the original saliva species. Besides, biofilm cultured by MAS was denser and produced more exopolysaccharides. MAS supported stable biofilm formation on different substrata. In conclusion, this study demonstrated a novel MAS medium that could culture oral biofilm in vitro closer to the original oral microbiome, showing a good application prospect. KEY POINTS: • We compare the effects of different media in culturing oral biofilms • A novel modified artificial saliva (MAS) medium was obtained in our study • The MAS medium could culture biofilm that was closer to oral microbiome.


Asunto(s)
Bacterias , Biopelículas , Medios de Cultivo , Microbiota , Boca , ARN Ribosómico 16S , Saliva , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Boca/microbiología , Humanos , ARN Ribosómico 16S/genética , Saliva/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Saliva Artificial
2.
BMC Oral Health ; 24(1): 501, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725023

RESUMEN

BACKGROUND: Releasing of metal ions might implicate in allergic reaction as a negative subsequent of the corrosion of Stainless Steel (SS304) orthodontic wires. The aim of this study was to evaluate the corrosion resistance of zinc-coated (Zn-coated) SS orthodontic wires. METHODS: Zinc coating was applied on SS wires by PVD method. Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization tests and Tafel analysis methods were used to predict the corrosion behavior of Zn-coated and uncoated SS wires in both neutral and acidic environments. RESULTS: The values of Ecorr ,icorr and Rct ,which were the electrochemical corrosion characteristics, reported better corrosion behavior of Zn-coated SS wires against uncoated ones in both artificial saliva and fluoride-containing environments. Experimental results of the Tafel plot analyses were consistent with that of electrochemical impedance spectroscopy analyses for both biological solutions. CONCLUSION: Applying Zn coating on bare SS orthodontic wire by PVD method might increase the corrosion resistance of the underlying stainless-steel substrate.


Asunto(s)
Espectroscopía Dieléctrica , Ensayo de Materiales , Alambres para Ortodoncia , Saliva Artificial , Acero Inoxidable , Zinc , Corrosión , Acero Inoxidable/química , Zinc/química , Saliva Artificial/química , Aleaciones Dentales/química , Materiales Biocompatibles Revestidos/química , Fluoruros/química , Concentración de Iones de Hidrógeno , Humanos , Propiedades de Superficie , Potenciometría
3.
Am J Dent ; 37(2): 66-70, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38704848

RESUMEN

PURPOSE: To evaluate the effect of different finishing and polishing systems on the surface roughness of a resin composite subjected to simulated saliva-, acid-, and enzyme-induced degradation. METHODS: 160 specimens (n= 40) were fabricated with Filtek Z350 XT nanofilled composite and analyzed for average surface roughness (Ra). The specimens were finished and polished using: AD - Al2O3-impreginated rubberized discs (medium, fine, and superfine grit, Sof-Lex); SD - silicon carbide and Al2O3-impregnated rubberized discs (coarse, medium and fine grit, Jiffy,); MB - 12- and 30-multiblade burs. The control group (CT) (n= 40) comprised specimens with a Mylar-strip-created surface. Specimens from each group were immersed in 1 mL of one of the degradation methods (n= 10): artificial saliva (ArS: pH 6.75), cariogenic challenge (CaC: pH 4.3), erosive challenge (ErC: 0.05M citric acid, pH 2.3) or enzymatic challenge (EzC: artificial saliva with 700 µg/mL of albumin, pH 6.75). The immersion period simulated a time frame of 180 days. Ra measurements were also performed at the post-polishing and post-degradation time points. The data were evaluated by three-way ANOVA for repeated measures and the Tukey tests. RESULTS: There was significant interaction between the finishing/polishing system and the degradation method (P= 0.001). AD presented the greatest smoothness, followed by SD. After degradation, CT, AD and SD groups became significantly rougher, but not the MB group, which presented no difference in roughness before or after degradation. CT and AD groups showed greater roughness in CaC, ErC and EzC than in ArS. The SD group showed no difference in roughness when the specimens were polished with CaC, EzC or ArS, but those treated with ErC had greater roughness. In the MB group, the lower roughness values were found after using CaC and EzC, while the higher values were found using ErC or ArS. CLINICAL SIGNIFICANCE: As far as degradation resistance of nanofilled composite to hydrolysis, bacterial and dietary acids and enzymatic reactions is concerned, restorations that had been finished and polished with Al2O3-impregnated discs had the smoothest surfaces.


Asunto(s)
Óxido de Aluminio , Resinas Compuestas , Pulido Dental , Saliva Artificial , Compuestos de Silicona , Propiedades de Superficie , Resinas Compuestas/química , Pulido Dental/métodos , Humanos , Saliva Artificial/química , Concentración de Iones de Hidrógeno , Óxido de Aluminio/química , Compuestos de Silicona/química , Compuestos Inorgánicos de Carbono/química , Ensayo de Materiales , Nanocompuestos/química , Ácido Cítrico/química , Saliva/enzimología , Saliva/metabolismo , Saliva/química , Erosión de los Dientes , Goma/química , Materiales Dentales/química
4.
Folia Med (Plovdiv) ; 66(1): 104-113, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38426472

RESUMEN

INTRODUCTION: The worldwide application of digital technology has presented dentistry with transformative opportunities. The concept of digital dentures, incorporating computer-aided design (CAD) and computer-aided manufacturing (CAM) techniques, holds the promise of improved precision, customization, and overall patient satisfaction. However, the shift from traditional dentures to their digital counterparts should not be taken lightly, as the intricate interplay between oral physiology, patient comfort, and long-term durability requires thorough examination.


Asunto(s)
Bases para Dentadura , Inmersión , Humanos , Saliva Artificial , Diseño Asistido por Computadora , Impresión Tridimensional
5.
Clin Oral Investig ; 28(3): 185, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429372

RESUMEN

OBJECTIVE: To compare four commercially available Essix-type retainers in terms of longevity, wear characteristics, stiffness and their range of rigidity. MATERIALS AND METHODS: An in vitro study was conducted at Queen Mary University of London. Four groups of thermoplastic materials were included: Duran (PETG), Essix C + (Polypropylene), Vivera and Zendura (Polyurethane). A working typodont was fabricated to evaluate surface wear characteristics using a wear machine with a customized jig. Retainers were measured for tensile test, and water absorption was measured at five different time points up to 6 months after initial immersion in two different physical states and two different solutions. Hydrolytic degradation was also evaluated using FTIR spectroscopy. RESULTS: Essix C + was the most flexible retainer with Vivera the stiffest material. Zendura and Essix C + had the most surface wear (413 µm ± 80 and 652 µm ± 12, respectively) with absorption rates of up to 15 wt% in artificial saliva occurring with Zendura. Only Essix C + displayed signs of degradation following water absorption. CONCLUSIONS: All materials had characteristic levels of flexibility and were susceptible to water absorption. Duran 1.5 mm performed similarly to Vivera in relation to stiffness and wear properties. While Zendura and Vivera have similar chemical structures, they exhibited differences concerning wear resistance and water absorption. Further clinical research evaluating the clinical relevance of these laboratory findings is required. CLINICAL RELEVANCE: Characteristic patterns of wear and rigidity of four commercially available Essix-type retainers were observed. This information should help in the tailoring of retainer material on a case-by-case basis considering treatment-related factors and patient characteristics including parafunctional habits.


Asunto(s)
Longevidad , Polipropilenos , Humanos , Poliuretanos , Saliva Artificial , Agua
6.
Food Res Int ; 182: 114156, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519183

RESUMEN

Food texture perception is dynamic, influenced by food properties and oral processing. Using the Repeatable Dual Extrusion Cell (RDEC), the oral processing dynamics of surimi gel with different corn starch concentrations (0-15%) in the presence of 1 ml artificial saliva or water were studied. The force-time curve showed increased peak forces with higher corn starch concentrations, peaking significantly at 10%, then decreasing at 15%. Salivary amylase played a crucial role in gel sample degradation, especially in samples with 5% starch, with a work value depletion ratio of 0.535 for sample with 1 ml water (SGW-5) and 0.406 for sample with 1 ml saliva (SGS-5). SEM analysis confirmed the formation of a continuous starch network with reduced intermolecular spaces in SGS-5. The starch-iodine complex showed decreasing order with increasing starch concentration, and SGS-5 exhibited the highest degradation rate (61.61 ± 0.92%). Mathematical modeling revealed that initial decay rates (k1) in gel sample decreased with increasing starch concentration, and samples with starch and artificial saliva had higher initial degradation rates. These findings highlight the intricate interplay between saliva and starch in the surimi gel matrix under continuous compressive motions by RDEC apparatus, providing insights for formulating food products with tailored textures properties.


Asunto(s)
Saliva , Almidón , Almidón/química , Saliva Artificial , Saliva/metabolismo , Geles/química , Agua
7.
Artículo en Inglés | MEDLINE | ID: mdl-38452631

RESUMEN

This study aimed to prove the validity of a mixture of chemicals, including salts, small organic molecules, mucin, and α-amylase, as saliva surrogate ("artificial saliva") for assessing leakage of methacrylate monomers and other constituents from dental materials. To achieve this, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA), diurethane dimethacrylate (UDMA), bisphenol A glycerolate dimethacrylate (BisGMA), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), bisphenol A (BPA), and five homologues of ethoxylated bisphenol A dimethacrylate (BisEMA EO2-6) in unstimulated and artificial saliva, and compared their concentrations in the two saliva media following either spiking with a mixture of the compounds or incubation of test specimens of printed biomaterials. Test specimens were immersed in unstimulated/artificial saliva, incubated at 37 °C for 24 h, and saliva aliquots were extracted with methanol and subsequently analyzed by LC-MS/MS. The method was validated with regard to matrix effects, linearity, selectivity, lower limits of quantification (LLOQ), precision, bias and combined measurement uncertainty (u'). The performance characteristics of the method were comparable for unstimulated and artificial saliva samples. The combined u' for individual chemicals at a concentration of 10 × LLOQ were within the range of 5.3-14 % for unstimulated saliva and 6.9-16 % for artificial saliva, except for the BisEMA homologues. Combined u' for the latter were 27-74 % in unstimulated saliva, and 27-79 % in artificial saliva. There was no detectable release of BPA from the test specimens, and the TPO concentrations were mainly below the LLOQ. TEGDMA and UDMA were detected in the highest quantities, and at comparable concentrations in the unstimulated and artificial saliva. For all BisEMA homologues, the release was higher in unstimulated saliva than in artificial saliva. The study showed that the artificial saliva model can be a suitable replacement for native saliva, but might underestimate leakage of more lipophilic methacrylates.


Asunto(s)
Compuestos de Bencidrilo , Resinas Compuestas , Fenoles , Saliva , Humanos , Saliva/química , Cromatografía Liquida , Resinas Compuestas/análisis , Resinas Compuestas/química , Saliva Artificial/análisis , Espectrometría de Masas en Tándem , Metacrilatos/química , Ácidos Polimetacrílicos/química , Polietilenglicoles/química , Ensayo de Materiales
8.
Dent Mater J ; 43(2): 269-275, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38417859

RESUMEN

We aimed to improve the biocompatibility and osteoinductive potential of Ti implants using a simulated intraoral hydroxyapatite (HAp) coating. We devised a novel surface treatment for aggressive induction of osteoblast adhesion and bone regeneration on the implant surface. A thin α-tricalcium phosphate (α-TCP) film was deposited on the implant surface using a pulsed Er:YAG laser. The coating was converted to HAp through artificial saliva immersion, which was confirmed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM showed needle-like HAp crystals on the Ti disks and sandblasted implant surfaces after immersion in artificial saliva for 96 h. Microcomputed tomography and histological evaluation 4 and 8 weeks after implantation into beagle dog mandibles showed that the HAp-coated implant was biocompatible and exhibited superior osteoinduction compared to that of sandblasted implants. Coating the implant surface with HAp using an Er:YAG laser has potential as a new method of the implant-surface debridement.


Asunto(s)
Implantes Dentales , Láseres de Estado Sólido , Perros , Animales , Durapatita/farmacología , Durapatita/química , Saliva Artificial , Microtomografía por Rayos X , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Titanio/farmacología , Titanio/química , Microscopía Electrónica de Rastreo , Propiedades de Superficie
9.
Clin Oral Investig ; 28(2): 132, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308668

RESUMEN

OBJECTIVES: This study aimed at comparing the microtensile bond strength (MTBS) and interfacial adaptation of a modern self-curing and a light-curing restorative bulk-fill composite to a conventional composite applied with the layering technique. METHODS: Forty-eight occlusal cavities were divided in three main groups (16/group) based on tested materials: (i) STELA, bulk-fill self-curing restorative (STELA, SDI Ltd.); (ii) 3 M-BULK, bulk-fill composite (Filtek One Bulk-Fill, 3 M Oral Care); and (iii) 3 M-CTR, a conventional composite (Filtek Supreme XTE, 3 M Oral Care). These were used in combination with their adhesives in self-etch (SE) or etch-and-rinse (ER) mode. Specimens stored in artificial saliva (24 h or 12 months) were evaluated for MTBS and fractography. The interfacial analysis was performed through confocal microscopy. ANOVA and Fisher's LSD post hoc tests were performed with a level of significance of 5%. RESULTS: All the tested materials applied in ER mode presented (24 h) greater bond strength than in SE mode. Although all materials showed a significant drop in the bond strength after prolonged storage, STELA showed the highest bonding performance and interfaces with few gaps. 3 M-BULK had the lowest bond strength and an interface with several voids and gaps. CONCLUSIONS: All materials were affected by interface degradation and bonding reduction over prolonged aging. However, their use in combination with adhesives applied in ER mode may offer greater immediate bonding performance. CLINICAL RELEVANCE: The use of restorative light-curing bulk-fill composites may generate gaps at the bonding interface and voids. STELA may represent a suitable alternative to avoid such issues.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Saliva Artificial , Cementos de Resina/química , Resinas Compuestas/química , Ensayo de Materiales
10.
J Dent ; 142: 104861, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278316

RESUMEN

OBJECTIVE: Secondary caries is a primary cause of early restoration failure. While primary dental caries has been extensively researched, our knowledge about the impact of secondary caries on dental restorations is relatively limited. In this study, we examined how different clinically relevant microbially-influenced environments impact the degradation of nano-filled (FIL) and micro-hybrid (AEL) dental composites. METHODS: Material strength of two commercial dental composites was measured following incubation in aqueous media containing: i) cariogenic (Streptococcus mutans) and non-cariogenic bacteria (Streptococcus sanguinis) grown on sucrose or glucose, ii) abiotic mixtures of artificial saliva and sucrose and glucose fermentation products (volatile fatty acids and ethanol) in proportions known to be produced by these microorganisms, and iii) abiotic mixtures of artificial saliva and esterase, a common oral extracellular enzyme. RESULTS: Nano-filled FIL composite strength decreased in all three types of incubations, while micro-hybrid AEL composite strength only decreased significantly in biotic incubations. The strength of both composites was statistically significantly decreased in all biotic incubations containing both cariogenic and non-cariogenic bacteria beyond that induced by either abiotic mixtures of fermentation products or esterase alone. Finally, there were no statistically significant differences in composite strength decrease among the tested biotic conditions. CONCLUSIONS: The results show that conditions created during the growth of both cariogenic and non-cariogenic oral Streptococci substantially reduce commercial composite strength, and this effect warrants further study to identify the mechanism(s). CLINICAL SIGNIFICANCE: Dental biofilms of oral Streptococci bacteria significantly affect the mechanical strength of dental restorations.


Asunto(s)
Caries Dental , Humanos , Caries Dental/microbiología , Saliva Artificial/farmacología , Streptococcus , Streptococcus mutans , Materiales Dentales/farmacología , Biopelículas , Esterasas/farmacología , Sacarosa/farmacología , Glucosa
11.
J Dent ; 142: 104860, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281618

RESUMEN

INTRODUCTION: This study create a dental composite by hybirding polyhedral oligo-sesquioxide nano monomers and bioactive glass BG 45S5. METHODS: Make an experimental composite resin material with a 60 % filler content overall by substituting 20 % of the filler with BG 45S5. The experimental resins are grouped and named P0, P2, P4, P6 and P8 based on the reactive nanomonomer methacrylic acid-based multifaceted oligomeric sesquisiloxane (POSS) added by 2 %-8 % in the resin matrix portion of each group. Utilize a universal testing machine to analyze and compare the mechanical properties of these, then perform Fourier infrared spectrum analysis, double bond conversion analysis, and scanning electron microscope analysis. Based on this, after soaking the experimental materials artificial saliva solution or lactic acid solution for a while, the pH changes of the solution, the release of Ca2+ and PO43- ions, and the precipitation of apatite on the resin material's surface were tested and analyzed. Cell viability tests were used to assess sample cell viability and quantify the cytotoxicity of biological cells. The independent sample t-test was used to examine the group comparisons, and a difference was considered statistically significant at P<0.05. RESULTS: Outstanding mechanical and the double bond conversion are demonstrated by the nanocomposites when the POSS concentration hits 4 wt%. Agglomeration will cause the performance to deteriorate if the concentration beyond this threshold. In the P4 group, the double bond conversion, CS, and FS rose by a large margin, respectively, in comparison to the blank control group P0. Thankfully, the data demonstrate that adding POSS increases adhesive ability when compared to the blank group P0, however, there is no discernible difference between the other experimental groups. The acid neutralization capacity of the P4 group is essentially the same as that of the control group (P0). Ca2+ and PO43- ions are released in significant amounts following treatment with lactic acid solution, although this tendency is clearly less pronounced in artificial saliva. SEM and EDX data indicate that when the experimental resin is soaked in lactic acid solution and artificial saliva, apatite precipitation will happen on its surface. The results of the cell viability test indicated that there was no statistically significant difference between the experimental groups, and the viability of the cells increased after 24hours and 48 hours. CONCLUSIONS: POSS was included into the composite resin along with 20% bioactive glass as a filler. When the proportion of POSS is less than 4%, the indices of composite resin materials rise in a dose-dependent way. When this value is surpassed, performance begins to deteriorate. The inclusion of POSS has no influence on the biological activity of the composites, which means that the hybrid composite resin is capable of acid neutralization, ion release, and apatite precipitation. CLINICAL SIGNIFICANCE: The experimental composite resin can be used as an intelligent material in clinical treatment. It has the clinical application potential of preventing demineralization of tooth hard tissue, promoting remineralization, and improving edge sealing through apatite precipitation.


Asunto(s)
Cementos Dentales , Vidrio , Saliva Artificial , Ensayo de Materiales , Vidrio/química , Resinas Compuestas/química , Materiales Dentales , Ácido Láctico , Apatitas , Iones , Propiedades de Superficie
12.
J Mech Behav Biomed Mater ; 152: 106390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277909

RESUMEN

The primary objective of this in vitro study was to investigate the erosive potential of enamel under the use of clear aligners (CA), by simulating in vivo conditions experienced by patients who do not remove their CA during the consumption of acidic beverages. In addition, the difference in erosion protection conferred by artificial and human saliva was also evaluated. Sound-extracted human premolars (n = 20) had half of their surfaces protected with acid-resistant nail polish and were randomly distributed into two experimental groups (n = 10): teeth immersed in human saliva or artificial saliva. All teeth had half of their lingual surfaces enclosed by a CA device. The erosive challenges consisted of individual immersion of each sample in citrus acid three times a day, intermediated by immersion in human saliva or artificial saliva for 2 h, during ten days of the erosive protocol. The enamel mineral content was analyzed by high-resolution microtomography. The differential mineral concentration profiles were obtained by subtracting the profile of the mineral concentration of the exposed area and enamel under the CA area from the respective sound area (control). In addition, enamel wear and enamel volume loss were measured. Scanning electron microscopy (SEM) was also performed to analyze the enamel surface. Data were analyzed by two-way ANOVA, followed by the Student-Newman-Keuls test. The enamel wear was higher in teeth immersed in artificial saliva, when compared to human saliva (p < 0.001). The volume loss of the exposed enamel area was lower for tooth immersed in human saliva than in artificial saliva (p < 0.001), during the acid challenge protocol. The use of CA during acid challenges promoted wear and mineral loss of dental enamel, being these changes more pronounced on the enamel surface under the CA. These results open a new path for the development of further studies adopting clinical protocols that promote more accurate responses in the clinical practice during orthodontic treatment.


Asunto(s)
Aparatos Ortodóncicos Removibles , Erosión de los Dientes , Humanos , Saliva Artificial , Saliva , Minerales
13.
Int J Biol Macromol ; 259(Pt 2): 129301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211919

RESUMEN

Whey protein isolate (WPI) and chitosan were used to fabricate WPI/chitosan composite particles at temperatures of 75 °C (WPI/chitosan-75) and 95 °C (WPI/chitosan-95). The morphologic structure, surface properties, and the resulting tribological characteristics of the particles were investigated. The composite particles showed larger particle size than pure WPI particles (WPI-75) (~ 509 nm), with WPI/chitosan-95 the largest (932 nm). WPI/chitosan-75 showed complete core-shell structure from microstructure results. The dispersion of WPI/chitosan-75 exhibited higher surface hydrophobicity but lower viscosity compared to WPI/chitosan-95. Tribological analysis revealed that WPI/chitosan composite particles showed dramatically lower friction coefficient (µ) than pure WPI particles at sliding speed <10 mm/s and WPI/chitosan-75 demonstrated superior lubrication effects. With the presence of artificial saliva, the µ of WPI-75 was greatly lowered at sliding speed <16 mm/s, while the values of WPI/chitosan-75 only showed a slight decrease at sliding speed <1 mm/s. Chitosan might have played the similar role as artificial saliva in lubricating on the hydrophobic surface. Moreover, the incorporation of 0.5 % WPI/chitosan-75 in the low-fat (5 %) oil-in-water emulsion led to even lower µ than full-fat (20 %) emulsion at sliding speed <10 mm/s. Hence, WPI/chitosan-75 exhibited promising potential as a fat replacement and biolubricant.


Asunto(s)
Quitosano , Proteína de Suero de Leche/química , Emulsiones/química , Saliva Artificial , Interacciones Hidrofóbicas e Hidrofílicas
14.
J Prosthodont ; 33(2): 164-170, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36779671

RESUMEN

PURPOSE: To investigate the retentive behavior of the Locator legacy and Novaloc attachment systems with different retention inserts both within and across systems under cyclic load. MATERIALS AND METHODS: Three retention inserts of each system (green, yellow, and white for Novaloc; green, orange, and red inserts for extended range for legacy Locator) were tested on abutments of both systems with a sample number of 10 per force and 10,000 cycles of insertion and removal. The loading was applied in the axial direction of the abutments, which were placed in artificial saliva. The retention force was measured in each cycle. The results were compared with the manufacturer's specifications and evaluated for a simulated period of use of 10 years. Characteristic time constants were determined, and subsequently, the two systems were compared regarding their wear behavior. RESULTS: The manufacturer's specifications could only be confirmed for the green Novaloc retention insert on a Novaloc abutment (t-test: p = 0.50); for all other inserts, the baseline exceeded the manufacturer's specifications by 30%-75% (Novaloc; t-test: p < 0.001) and 75%-550% (Locator; t-test: p < 0.001). After 10,000 cycles performed, the manufacturer's specifications were confirmed on a Novaloc abutment for the white Novaloc retention insert (t-test: p = 0.86) and on a Locator abutment for the green Novaloc retention insert (t-test: p = 0.32). Both systems lost retention force during the experiment. Overall, Novaloc inserts on both abutments showed less wear (decrease to 56%-85% of initial force) and a slower decrease in retention force compared to Locator inserts (decrease to 6%-31% of initial force). CONCLUSIONS: In both systems, wear leads to a varying loss of retention; therefore, regular checks with possible replacement of the inserts are necessary in clinical use. Novaloc attachments seem to be more resistant to the loss of retention than Locator attachments. A cross-combination may be clinically useful in some cases.


Asunto(s)
Implantes Dentales , Retención de Dentadura , Retención de Dentadura/métodos , Prótesis de Recubrimiento , Prótesis Dental de Soporte Implantado , Análisis del Estrés Dental , Saliva Artificial
15.
Am J Forensic Med Pathol ; 45(1): 10-14, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589602

RESUMEN

ABSTRACT: Spit hoods are used by law enforcement, officers in correctional facilities, and medical personnel during the restraint of agitated subjects that are actively spitting to prevent the transmission of droplet-transmitted pathogens. We could find no studies reporting on the time course of normal breathing to clear saliva from such a saturated spit hood. We purchased samples of 3 popular spit hood models and applied a section over the output of a pneumatic test system. We used a digital anemometer, digital manometer, and an inline controllable fan for back pressure and flow. The pressure was 3 mm Hg to match quiet breathing. The tested area was saturated with artificial saliva, and air pressure was applied while we recorded the pressure and airflow. Within 5 seconds, the spit hoods all cleared sufficient artificial saliva to allow 1 m/s of airflow, which exceeds that of an N95 mask with similar pressure. Commonly used spit hoods offer very low resistance to breathing even after being initially saturated with artificial saliva. Our results do not support the hypothesis that a saliva-filled spit hood might contribute to death.


Asunto(s)
Saliva , Ventilación , Humanos , Saliva Artificial , Movimientos del Aire
16.
Int J Dent Hyg ; 22(2): 458-464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37661658

RESUMEN

OBJECTIVES: To simulate the abrasive potential of an interdental brush when applied with toothpastes and prophylactic gels/solutions in a novel laboratory brushing simulation set-up. METHODS: A brushing device was customized to treat dentin samples mimicking a simplified interdental space with an interdental brush (ISO 2). The brushing, that is, 7200 strokes for 1 h, was performed with artificial saliva (control), a povidone-iodine solution, and slurries of chlorhexidine and fluoride gels as well as three toothpastes with different RDA values ranging from 29 to 100, respectively. The loss of dentin was profilometrically assessed and compared with ANOVA and Fishers LSD. RESULTS: While artificial saliva as control, the solution and the gel slurries showed no measurable dentin loss, toothpastes resulted in a measurable linear surface damage with respect to the actual intrinsic RDA values and ranged from 12.6 to 26.5 µm (p < 0.001). CONCLUSIONS: Any interdental cleaning product should be tailored and carefully instructed. Any over- and misuse should be avoided, which applies especially to the use of interdental brushes in combination with abrasive toothpastes.


Asunto(s)
Abrasión de los Dientes , Erosión de los Dientes , Humanos , Pastas de Dientes/uso terapéutico , Abrasión de los Dientes/etiología , Abrasión de los Dientes/prevención & control , Saliva Artificial , Dentina , Cepillado Dental , Geles
17.
Orthod Craniofac Res ; 27(3): 447-454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38153199

RESUMEN

OBJECTIVES: This study aimed to compare the surface roughness and friction of different orthodontic archwires after exposure to salbutamol sulphate inhalation, an anti-asthmatic medication. METHODS: Orthodontic archwires (stainless-steel [StSt], nickel-titanium [NiTi], beta-titanium [ß-Ti], and copper-NiTi [Cu-NiTi]) were equally divided into two groups. The exposed groups were subjected to 20 mg salbutamol sulphate for 21 days and kept in artificial saliva. The control groups were only kept in artificial saliva. Surface changes were visualized using scanning electron microscopy (SEM). The average surface roughness (Ra) was evaluated using atomic force microscopy (AFM), and friction resistance forces were assessed using a universal testing machine. Statistical analyses were performed using t-tests and ANOVA followed by post hoc tests. RESULTS: Salbutamol sulphate did not change the surface roughness of StSt and NiTi archwires (p > .05). However, the change in the surfaces of ß-Ti and Cu-NiTi archwires was significant (p < .001). The frictional forces of exposed StSt, NiTi, and Cu-NiTi archwires did not change (p > .05). However, the frictional forces of ß-Ti archwires increased significantly after exposure to salbutamol sulphate (p = .021). Brushing with fluoride after exposure to salbutamol sulphate increased the frictional forces of ß-Ti only (p = .002). CONCLUSIONS: Salbutamol sulphate inhalation significantly affected the surface texture of ß-Ti and Cu-NiTi orthodontic archwires and increased the friction of ß-Ti archwires. These deteriorating effects were not detected on the surface of StSt and NiTi archwires. Therefore, we suggest that ß-Ti and copper titanium archwires should be used cautiously in individuals under salbutamol sulphate inhalation treatment.


Asunto(s)
Albuterol , Cobre , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Níquel , Alambres para Ortodoncia , Propiedades de Superficie , Titanio , Albuterol/administración & dosificación , Níquel/química , Cobre/química , Titanio/química , Humanos , Antiasmáticos/administración & dosificación , Acero Inoxidable/química , Fricción/efectos de los fármacos , Administración por Inhalación , Ensayo de Materiales , Saliva Artificial/química , Aleaciones Dentales/química
18.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040656

RESUMEN

AIM: This study aims to incorporate alginate microparticles containing berberine and fluconazole into two different types of pharmaceutical formulations, to subsequently evaluate the antifungal activity against Candida albicans. METHODS AND RESULTS: Alginate microparticles containing BBR (berberine) and FLU (fluconazole) were produced by the spray-drying technique, characterized and incorporated in two pharmaceutical formulations, a vaginal cream and artificial saliva. Broth microdilution, checkerboard, time-kill curve, and scanning electron microscopy were carried out to determine the antifungal effects of BBR and FLU against C. albicans. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of free BBR were 125 µg ml-1. Synergism between BBR and FLU was demonstrated by a fractional inhibitory concentration index (FICI) = 0.0762. The time-kill curve for the combination BBR + FLU showed a more pronounced decrease in fungal growth in comparison to free drugs, and an antibiofilm effect of BBR occurred in the formation and preformed biofilm. CONCLUSION: Alginate microparticles containing BBR and FLU were obtained and incorporated in a vaginal cream and artificial saliva. Both formulations showed good stability, antifungal effects, and organoleptic characteristics, which suggest that BBR-FLU microparticles in formulations have potential as antifungal therapy.


Asunto(s)
Berberina , Candidiasis , Humanos , Femenino , Fluconazol/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Berberina/farmacología , Saliva Artificial/farmacología , Saliva Artificial/uso terapéutico , Cremas, Espumas y Geles Vaginales/farmacología , Cremas, Espumas y Geles Vaginales/uso terapéutico , Candidiasis/microbiología , Candida albicans , Pruebas de Sensibilidad Microbiana , Alginatos/farmacología , Sinergismo Farmacológico , Farmacorresistencia Fúngica
19.
BMC Oral Health ; 23(1): 993, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082265

RESUMEN

BACKGROUND: Lactoferrin, a glycoprotein naturally found in breast milk, is known for its bactericidal and antiviral properties, as well as its capacity to modulate the immune system; therefore, pediatricians routinely recommend it as dietary support. The objective of this study was to determine how lactoferrin oral suspension could affect the enamel surface characteristics of primary and permanent teeth. METHODS: This research was conducted on 40 unidentified extracted teeth, including primary and permanent teeth. Experimental teeth were free of cracks or enamel defects, as confirmed by careful examination using a dental operating microscope. The crowns were bisected into 80 specimens and assorted into two groups based on the type of dentition. Group DM included 40 specimens of second deciduous molars, while Group PM contained 40 samples of first premolars. Each of the DM and PM specimens was subsequently split based on the type of dispersion medium into two subgroups: a control subgroup (artificial saliva) and a test subgroup (lactoferrin suspension). The specimens were immersed in lactoferrin suspension for two minutes, then kept in artificial saliva for the rest of the 24 h for 30 successive days. This is a pioneering study about the effect of orally supplemented lactoferrin on teeth; therefore, we examined enamel hardness, ultra-morphology, and mineral contents. RESULTS: Our findings indicated a highly significant decrease (p < 0.01) in the microhardness of the lactoferrin subgroup in Group DM (second deciduous molars) and a significant reduction (p < 0.05) in the microhardness of the lactoferrin subgroup in Group PM (premolars). Calcium weight% was not statistically different (p > 0.05) compared with a significant decline (p < 0.05) in phosphorus weight% in lactoferrin subgroups in both DM and PM groups. The enamel surface of lactoferrin subgroups in both DM and PM groups was demineralized and porous, with the enamel of deciduous teeth being more affected by lactoferrin than permanent teeth. CONCLUSION: Lactoferrin suspension decreased the microhardness of enamel and both calcium and phosphorus weight percentages. Both dentitions exhibited erosions in the enamel surface, with primary teeth being more affected than the permanent teeth.


Asunto(s)
Calcio , Lactoferrina , Humanos , Lactoferrina/farmacología , Saliva Artificial/farmacología , Diente Primario , Esmalte Dental , Fósforo
20.
BMC Oral Health ; 23(1): 966, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053124

RESUMEN

BACKGROUND: The study aimed to evaluate the influence of various beverages; with and without brushing; on the surface mechanical properties of two resin composites. METHODS: A total of 160 disc-shaped specimens were prepared for each of the following dental composites; nanohybrid ormocer (Admira fusion, VOCO GmbH, Cuxhaven, Germany) and nanohybrid resin composite (Grandio, VOCO GmbH, Cuxhaven, Germany). The baseline surface hardness and roughness measurements were carried out after 24 h. The composite samples were randomly distributed into one of the two groups; brushing and non-brushing, which were further divided into one of the four subgroups (n = 10); artificial saliva as control, coffee, red wine, and soft drink. In the non-brushing group, the specimens were immersed in the different beverages for five minutes three times daily for 30 days. The same procedure was done for the brushing group, in addition to brushing the specimens for five seconds. The surface hardness and roughness measurements were repeated after 30 days. One-way ANOVA and independent t-tests were used for statistical analysis. RESULTS: The soft drink had the most deteriorating effect and artificial saliva had the least. The change in surface properties was higher in the brushing subgroups. Grandio exhibited a higher change in surface microhardness while Admira fusion exhibited a higher change in surface roughness. CONCLUSIONS: The surface properties of both dental resin composites were negatively affected by using beverages and brushing.


Asunto(s)
Bebidas , Resinas Compuestas , Humanos , Saliva Artificial , Metacrilatos , Propiedades de Superficie , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...