Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 998
Filtrar
1.
Genet Sel Evol ; 56(1): 38, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750427

RESUMEN

BACKGROUND: The accuracy of genomic prediction is partly determined by the size of the reference population. In Atlantic salmon breeding programs, four parallel populations often exist, thus offering the opportunity to increase the size of the reference set by combining these populations. By allowing a reduction in the number of records per population, multi-population prediction can potentially reduce cost and welfare issues related to the recording of traits, particularly for diseases. In this study, we evaluated the accuracy of multi- and across-population prediction of breeding values for resistance to amoebic gill disease (AGD) using all single nucleotide polymorphisms (SNPs) on a 55K chip or a selected subset of SNPs based on the signs of allele substitution effect estimates across populations, using both linear and nonlinear genomic prediction (GP) models in Atlantic salmon populations. In addition, we investigated genetic distance, genetic correlation estimated based on genomic relationships, and persistency of linkage disequilibrium (LD) phase across these populations. RESULTS: The genetic distance between populations ranged from 0.03 to 0.07, while the genetic correlation ranged from 0.19 to 0.99. Nonetheless, compared to within-population prediction, there was limited or no impact of combining populations for multi-population prediction across the various models used or when using the selected subset of SNPs. The estimates of across-population prediction accuracy were low and to some extent proportional to the genetic correlation estimates. The persistency of LD phase between adjacent markers across populations using all SNP data ranged from 0.51 to 0.65, indicating that LD is poorly conserved across the studied populations. CONCLUSIONS: Our results show that a high genetic correlation and a high genetic relationship between populations do not guarantee a higher prediction accuracy from multi-population genomic prediction in Atlantic salmon.


Asunto(s)
Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Salmo salar , Animales , Salmo salar/genética , Genómica/métodos , Enfermedades de los Peces/genética , Genética de Población/métodos , Modelos Genéticos , Cruzamiento/métodos , Genoma , Resistencia a la Enfermedad/genética
2.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705547

RESUMEN

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Asunto(s)
Empalme Alternativo , Copépodos , Enfermedades de los Peces , Moritella , Salmo salar , Animales , Salmo salar/inmunología , Salmo salar/genética , Copépodos/fisiología , Enfermedades de los Peces/inmunología , Moritella/inmunología , Moritella/genética , Transcriptoma , Infestaciones Ectoparasitarias/veterinaria , Infestaciones Ectoparasitarias/inmunología , Infestaciones Ectoparasitarias/genética
3.
PLoS One ; 19(4): e0302388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648207

RESUMEN

The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.


Asunto(s)
Hígado , Salmo salar , Animales , Hígado/metabolismo , Salmo salar/genética , Salmo salar/crecimiento & desarrollo , Salmo salar/metabolismo , Fotoperiodo , Metilación de ADN , Genoma , Transcriptoma , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Agua de Mar , Metabolismo de los Lípidos/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
4.
Endocrinology ; 165(4)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38298132

RESUMEN

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Asunto(s)
Receptores de HFE , Salmo salar , Masculino , Animales , Ratones , Receptores de HFE/genética , Receptores de HFE/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Pez Cebra/genética , Maduración Sexual/genética , Hormona Folículo Estimulante/metabolismo , Testículo/metabolismo
5.
Front Immunol ; 15: 1359552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420125

RESUMEN

Piscine red blood cells (RBC) are nucleated and have been characterized as mediators of immune responses in addition to their role in gas exchange. Salmonid RBC are major target cells of Piscine orthoreovirus-1 (PRV-1), the etiological agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). PRV-1 replicates in RBC ex vivo, but no viral amplification has been possible in available A. salmon cell lines. To compare RBC basal transcripts and transcriptional responses to PRV-1 in the early phase of infection with non-susceptible cells, we exposed A. salmon RBC, Atlantic salmon kidney cells (ASK) and Salmon head kidney cells (SHK-1) to PRV-1 for 24 h. The RNA-seq analysis of RBC supported their previous characterization as pluripotent cells, as they expressed a wide repertoire of genes encoding pattern recognition receptors (PRRs), cytokine receptors, and genes implicated in antiviral activities. The comparison of RBC to ASK and SHK-1 revealed immune cell features exclusively expressed in RBC, such as genes involved in chemotactic activity in response to inflammation. Differential expression analysis of RBC exposed to PRV-1 showed 46 significantly induced genes (≥ 2-fold upregulation) linked to the antiviral response pathway, including RNA-specific PRRs and interferon (IFN) response factors. In SHK-1, PRV induced a more potent or faster antiviral response (213 genes induced). ASK cells showed a differential response pattern (12 genes induced, 18 suppressed) less characterized by the dsRNA-induced antiviral pathway. Despite these differences, the RIG-I-like receptor 3 (RLR3) in the family of cytosolic dsRNA receptors was significantly induced in all PRV-1 exposed cells. IFN regulatory factor 1 (IRF1) was significantly induced in RBC only, in contrast to IRF3/IRF7 induced in SHK-1. Differences in IRF expression and activity may potentially affect viral propagation.


Asunto(s)
Orthoreovirus , Infecciones por Reoviridae , Salmo salar , Animales , Salmo salar/genética , Infecciones por Reoviridae/metabolismo , Inflamación/metabolismo , Eritrocitos/metabolismo , Perfilación de la Expresión Génica , Antivirales/metabolismo
6.
Fish Shellfish Immunol ; 146: 109422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307300

RESUMEN

The intestine is a barrier organ that plays an important role in the immune system of Atlantic salmon. The immune functions are distributed among the diffuse gut lymphoid tissue containing diverse immune cells, and other cell types. Comparison of intestinal transcriptomes with those of other organs and tissues offers an opportunity to elucidate the specific roles of the intestine and its relationship with other parts of the body. In this work, a meta-analysis was performed on a large volume of data obtained using a genome-wide DNA oligonucleotide microarray. The intestine ranks third by the expression level of immune genes after the spleen and head kidney. The activity of antigen presentation and innate antiviral immunity is higher in the intestine than in any other tissue. By comparing transcriptome profiles, intestine shows the greatest similarity with the gill, head kidney, spleen, epidermis, and olfactory rosette (descending order), which emphasizes the integrity of the peripheral mucosal system and its strong connections with the major lymphoid organs. T cells-specific genes dominate among the genes co-expressed in these tissues. The transcription signature of CD8+ (86 genes, r > 0.9) includes a master gene of immune tolerance foxp3 and other negative regulators. Different segments of the intestine were compared in a separate experiment, in which expression gradients along the intestine were found across several functional groups of genes. The expression of luminal and intracellular (lysosome) proteases is markedly higher in pyloric caeca and distal intestine respectively. Steroid metabolism and cytochromes P450 are highly expressed in pyloric caeca and mid intestine while the distal intestine harbors genes related to vitamin and iron metabolism. The expression of genes for antigen presenting proteins and immunoglobulins shows a gradual increase towards the distal intestine.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Transcriptoma , Análisis de Secuencia por Matrices de Oligonucleótidos , Bazo/metabolismo , Intestinos
7.
Epigenetics ; 19(1): 2318517, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38404006

RESUMEN

Supplementation of one-carbon (1C) metabolism micronutrients, which include B-vitamins and methionine, is essential for the healthy growth and development of Atlantic salmon (Salmo salar). However, the recent shift towards non-fish meal diets in salmon aquaculture has led to the need for reassessments of recommended micronutrient levels. Despite the importance of 1C metabolism in growth performance and various cellular regulations, the molecular mechanisms affected by these dietary alterations are less understood. To investigate the molecular effect of 1C nutrients, we analysed gene expression and DNA methylation using two types of omics data: RNA sequencing (RNA-seq) and reduced-representation bisulphite sequencing (RRBS). We collected liver samples at the end of a feeding trial that lasted 220 days through the smoltification stage, where fish were fed three different levels of four key 1C nutrients: methionine, vitamin B6, B9, and B12. Our results indicate that the dosage of 1C nutrients significantly impacts genetic and epigenetic regulations in the liver of Atlantic salmon, particularly in biological pathways related to protein synthesis. The interplay between DNA methylation and gene expression in these pathways may play an important role in the mechanisms underlying growth performance affected by 1C metabolism.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Metilación de ADN , Hígado/metabolismo , Dieta , Vitaminas , Metionina/metabolismo , Expresión Génica
8.
J Fish Dis ; 47(5): e13918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38235825

RESUMEN

Detection of intestinal parasites in fish typically requires autopsy, resulting in the sacrifice of the fish. Here, we describe a non-lethal method for detecting the tapeworm Eubothrium crassum in fish using anal swabs and real-time PCR detection. Two assays were developed to detect cytochrome oxidase I (COI) mitochondrial DNA and 18S ribosomal DNA sequences of E. crassum, respectively. The assays were tested on swab samples from confirmed pathogen free Atlantic salmon (Salmo salar L.) and on samples from farmed Atlantic salmon, where the presence and intensity of parasites had been established through autopsy. The COI assay was shown to be specific to E. crassum, while the 18S assay also amplified the closely related E. salvelini, a species infecting Arctic charr (Salvelinus alpinus L.) in freshwater. The COI assay detected E. crassum in all field samples regardless of parasite load while the 18S assay failed to detect the parasite in two samples. The results thus demonstrates that this non-lethal approach can effectively detect E. crassum and can be a valuable tool in assessing the prevalence of infection in farmed salmon, aiding in treatment decisions and evaluating treatment effectiveness.


Asunto(s)
Cestodos , Infecciones por Cestodos , Enfermedades de los Peces , Salmo salar , Animales , Salmo salar/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/parasitología , Cestodos/genética , Infecciones por Cestodos/diagnóstico , Infecciones por Cestodos/veterinaria , Infecciones por Cestodos/parasitología , Trucha/parasitología
9.
Fish Shellfish Immunol ; 146: 109373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272332

RESUMEN

Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.


Asunto(s)
Proteína HMGB1 , Salmo salar , Animales , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Flagelina/farmacología
10.
Epigenetics ; 19(1): 2305079, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38281164

RESUMEN

An earlier study of ours investigating the effect of dietary lipid levels on the choline requirement of Atlantic salmon showed increasing severity of intestinal steatosis with increasing lipid levels. As choline is involved in epigenetic regulation by being the key methyl donor, pyloric caeca samples from the study were analysed for epigenetic effects of dietary lipid and choline levels. The diets varied in lipid levels between 16% and 28%, and choline levels between 1.9 and 2.3 g/kg. The diets were fed for 8 weeks to Atlantic salmon of 25 g of initial weight. Using reduced representation bisulfite sequencing (RRBS), this study revealed that increasing dietary lipid levels induced methylation differences in genes involved in membrane transport and signalling pathways, and in microRNAs important for the regulation of lipid homoeostasis. Increasing choline levels also affected genes involved in fatty acid biosynthesis and transport, lipolysis, and lipogenesis, as well as important immune genes. Our observations confirmed that choline is involved in epigenetic regulation in Atlantic salmon, as has been reported for higher vertebrates. This study showed the need for the inclusion of biomarkers of epigenetic processes in studies that must be conducted to define optimal choline levels in diets for Atlantic salmon.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Epigénesis Genética , Colina/metabolismo , Metilación de ADN , Dieta , Lípidos , Hígado/metabolismo
11.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38181891

RESUMEN

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Regulación de la Expresión Génica , Riñón Cefálico , Células Endoteliales , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , ARN Nuclear Pequeño , Mamíferos
12.
Gene ; 894: 147984, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37952747

RESUMEN

Atlantic salmon (Salmo salar) are not only the world's most economically important farmed fish in terms of total value, but also a salmonid, which means that they are invaluable for studies of the evolutionary fate of genes following multiple whole-genome duplication (WGD) events. In this study, four paralogues of the molecular chaperone serpinh1 were characterized in Atlantic salmon, as while this gene is considered to be a sensitive biomarker of heat stress in salmonids, mammalian studies have also identified it as being essential for collagen structural assembly and integrity. The four salmon paralogues were cloned and sequenced so that in silico analyses at the nucleotide and deduced amino acid levels could be performed. In addition, qPCR was used to measure: paralogue- and sex-specific constitutive serpinh1 expression across 17 adult tissues; and their expression in the liver and head kidney of male Atlantic salmon as affected by stress phenotype (high vs. low responder), increased temperature, and injection with a multi-valent vaccine. Compared to the other three paralogues, serpinh1a-2 had a unique constitutive expression profile across the 17 tissues. Although stress phenotype had minimal impact on the transcript expression of the four paralogues, injection with a commercial vaccine containing several formalin inactivated bacterins increased the expression of most paralogues (by 1.1 to 4.5-fold) across both tissues. At 20 °C, the expression levels of serpinh1a-1 and serpinh1a-2 were generally lower (by -1.1- to -1.6-fold), and serpinh1b-1 and serpinh1b-2 were 10.2- to 19.0-fold greater, in comparison to salmon held at 12 °C. With recent studies suggesting a putative link between serpinh1 and upper thermal tolerance in salmonids, the current research is a valuable first step in elucidating the potential mechanisms involved. This research: supports the use of serpinh1b-1 and serpinh1b-2 as a biomarkers of heat stress in salmon; and provides evidence of neo- and/or subfunctionalization between the paralogues, and important insights into how multiple genome duplication events can potentially lead to evolutionary divergence.


Asunto(s)
Salmo salar , Vacunas , Animales , Femenino , Masculino , Salmo salar/genética , Genoma , Evolución Biológica , Perfilación de la Expresión Génica , Mamíferos
13.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952850

RESUMEN

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Asunto(s)
Proteína HMGB1 , Salmo salar , Animales , Humanos , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Flagelina/farmacología , Flagelina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Células HeLa , FN-kappa B/metabolismo , Cola (estructura animal) , Citocinas/genética , Citocinas/metabolismo
14.
Mol Ecol ; 33(3): e17229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063470

RESUMEN

Evolution of phenotypic plasticity requires genotype-environment interaction. The discovery of two large-effect loci in the vgll3 and six6 genomic regions associated with the number of years the Atlantic salmon spend feeding at sea before maturation (sea age), provides a unique opportunity to study evolutionary potential of phenotypic plasticity. Using data on 1246 Atlantic salmon caught in the River Surna in Norway, we show that variation in mean sea age among years (smolt cohorts 2013-2018) is influenced by genotype frequencies as well as interaction effects between genotype and year. Genotype-year interactions suggest that genotypes may differ in their response to environmental variation across years, implying genetic variation in phenotypic plasticity. Our results also imply that plasticity in sea age will evolve as an indirect response to selection on mean sea age due to a shared genetic basis. Furthermore, we demonstrate differences between years in the additive and dominance functional genetic effects of vgll3 and six6 on sea age, suggesting that evolutionary responses will vary across environments. Considering the importance of age at maturity for survival and reproduction, genotype-environment interactions likely play an important role in local adaptation and population demography in Atlantic salmon.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Genotipo , Reproducción/genética , Genoma , Adaptación Fisiológica , Factores de Transcripción
15.
Cell Tissue Res ; 395(2): 199-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087072

RESUMEN

Spatial transcriptomics is a technique that provides insight into gene expression profiles in tissue sections while retaining structural information. We have employed this method to study the pathological conditions related to red and melanized focal changes in farmed Atlantic salmon (Salmo salar). Our findings support a model where similar molecular mechanisms are involved in both red and melanized filet discolorations and genes associated with several relevant pathways show distinct expression patterns in both sample types. Interestingly, there appears to be significant cellular heterogeneity in the foci investigated when looking at gene expression patterns. Some of the genes that show differential spatial expression are involved in cellular processes such as hypoxia and immune responses, providing new insight into the nature of muscle melanization in Atlantic salmon.


Asunto(s)
Enfermedades de los Peces , Infecciones por Reoviridae , Salmo salar , Animales , Infecciones por Reoviridae/patología , Salmo salar/genética , Músculo Esquelético/patología , Perfilación de la Expresión Génica , Transcriptoma/genética , Enfermedades de los Peces/patología
16.
Mol Ecol ; 33(2): e16933, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36942798

RESUMEN

In Atlantic salmon, age at maturation is a life history trait governed by a sex-specific trade-off between reproductive success and survival. Following environmental changes across large areas of the Northeast Atlantic, many populations currently display smaller size at age and higher age at maturation. However, whether these changes reflect rapid evolution or plasticity is unknown. Approximately 1500 historical and contemporary salmon from the river Etne in Western Norway, genotyped at 50,000 SNPs, revealed three loci associated with age at maturation. These included vgll3 and six6 which collectively explained 36%-50% of the age at maturation variation in the 1983-1984 period. These two loci also displayed sex-specific epistasis, as the effect of six6 was only detected in males bearing two copies of the late maturation allele for vgll3. Strikingly, despite allelic frequencies at vgll3 remaining unchanged, the combined influence of these genes was nearly absent in all samples from 2013 to 2016, and genome-wide heritability strongly declined between the two time-points. The difference in age at maturation between males and females was upheld in the population despite the loss of effect from the candidate loci, which strongly points towards additional causative mechanisms resolving the sexual conflict. Finally, because admixture with farmed escaped salmon was excluded as the origin of the observed disconnection between gene(s) and maturation age, we conclude that the environmental changes observed in the North Atlantic during the past decades have led to bypassing of the influence of vgll3 and six6 on maturation through growth-driven plasticity.


Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Masculino , Femenino , Animales , Fenotipo , Genotipo , Reproducción/genética , Alelos , Salmo salar/genética
17.
FEBS Open Bio ; 14(1): 23-36, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581908

RESUMEN

Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against ß-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.


Asunto(s)
Quitinasas , Salmo salar , Animales , Salmo salar/genética , Salmo salar/metabolismo , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo , Mucosa Gástrica/metabolismo , Estómago , Quitina/metabolismo
18.
J Fish Biol ; 104(4): 939-949, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37996984

RESUMEN

This study investigated the relationship between the size, condition, year class, family, and sexual maturity of Atlantic salmon (Salmo salar) using data collected in an aquaculture selective breeding programme. Males that were sexually mature at 2 years of age (maiden spawn) have, on average, greater fork length and condition factor (K) at 1 year of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 1 year of age, the odds of sexual maturity at 2 years of age increased by 1.48 or 1.22 times, respectively. Females that were sexually mature at 3 years of age (maiden spawn) have, on average, greater fork length and K at 2 years of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 2 years of age, the odds of sexual maturity at 3 years of age increased by 1.06 or 1.44 times, respectively. The family explained 34.93% of the variation in sexual maturity among 2-year-old males that was not attributable to the average effects of fork length and K at 1 year of age and year class. The proportion of variation in sexual maturity among 3-year-old females explained by the family could not be investigated. These findings suggest that the onset of sexual maturation in Atlantic salmon is conditional on performance (with respect to energy availability) surpassing a threshold, the magnitude of which can vary between families and is determined by a genetic component. This could support the application of genetic selection to promote or inhibit the onset of sexual maturation in farmed stocks.


Asunto(s)
Salmo salar , Maduración Sexual , Humanos , Masculino , Femenino , Animales , Maduración Sexual/genética , Salmo salar/genética , Acuicultura
19.
J Fish Dis ; 47(2): e13880, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37933190

RESUMEN

Lufenuron is a benzoylurea insecticide currently in use to combat sea lice infestation in salmon aquaculture in Chile. With pending approval in Norway, the aim of this work was to study the uptake and toxicity of lufenuron in liver tissue of Atlantic salmon. Juvenile salmon weighing 40 g were given a standard 7-day oral dose, and bioaccumulation and transcriptional responses in the liver were examined 1 day after the end-of-treatment (day 8) and after 1 week of elimination (day 14). Bioaccumulation levels of lufenuron were 29 ± 3 mg/kg at day 8 and 14 ± 1 mg/kg at day 14, indicating relatively rapid clearance. However, residues of lufenuron were still present in the liver after 513 days of depuration. The exposure gave a transient inhibition of transcription in the liver at day 8 (2437 significant DEGs, p-adj < .05), followed by a weaker compensatory response at day 14 (169 significant DEGs). Pathways associated with RNA metabolism such as the sumoylation pathway were most strongly affected at day 8, while the apelin pathway was most profoundly affected at day 14. In conclusion, this study shows that lufenuron easily bioaccumulates and that a standard 7-day oral dose induces a transient inhibition of transcription in liver of salmon.


Asunto(s)
Copépodos , Enfermedades de los Peces , Salmo salar , Animales , Salmo salar/genética , Enfermedades de los Peces/genética , Hígado/metabolismo , Expresión Génica , Copépodos/fisiología
20.
Mol Ecol ; 33(2): e17254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146910

RESUMEN

In Atlantic salmon (Salmo salar), sea age is a major life history trait governed by a sex-specific trade-off between reproductive success and survival. In this issue of Molecular Ecology, Besnier et al. (Molecular Ecology, 2023) found evidence to suggest that the disassociation between sea age and major effect loci, including the previously identified candidate genes vgll3 and six6, may be related to the recently observed trend towards slower growth and later maturation. These results are of importance because they challenge the prevailing view that evolution moves in a slow shuffle, and they provide a pertinent example of how an optimal phenotype can change due to growth-driven plasticity and lead to contemporary molecular and phenotypic evolution.


Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Masculino , Femenino , Animales , Fenotipo , Reproducción/genética , Salmo salar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...