Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.873
Filtrar
1.
Genes (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674370

RESUMEN

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Asunto(s)
Lactobacillus plantarum , Ratones Endogámicos BALB C , Probióticos , Salmonella typhimurium , Transcriptoma , Animales , Probióticos/farmacología , Probióticos/administración & dosificación , Ratones , Lactobacillus acidophilus , Metaboloma , Metabolómica/métodos , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonelosis Animal/genética , Salmonelosis Animal/metabolismo , Femenino , Microbioma Gastrointestinal/efectos de los fármacos
2.
Poult Sci ; 103(5): 103569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447310

RESUMEN

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Asunto(s)
Pollos , Quitosano , Protección Cruzada , Nanopartículas , Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Salmonella enteritidis , Salmonella typhimurium , Animales , Pollos/inmunología , Salmonella enteritidis/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/prevención & control , Salmonelosis Animal/inmunología , Quitosano/administración & dosificación , Quitosano/farmacología , Vacunas contra la Salmonella/inmunología , Vacunas contra la Salmonella/administración & dosificación , Nanopartículas/administración & dosificación , Salmonella typhimurium/inmunología , Administración Oral , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
3.
Sci Rep ; 13(1): 595, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631563

RESUMEN

Salmonella spp. is one of the major foodborne pathogens responsible for causing economic losses to the poultry industry and bringing consequences for public health as well. Both the pathogen survival ability in the intestinal environment during inflammation as well as their relationship with the host immune system, play a key role during infections in poultry. The objective of this study was to quantify the presence of the macrophages and CD4+/CD8+ cells populations using the immunohistochemistry technique, in commercial lineages of chickens experimentally infected by wild-type and mutant strains of Salmonella Enteritidis and Salmonella Typhimurium lacking ttrA and pduA genes. Salmonella Enteritidis ∆ttrA∆pduA triggered a higher percentage of the stained area than the wild-type, with exception of light laying hens. Salmonella Typhimurium wild-type strain and Salmonella Typhimurium ∆ttrA∆pduA infections lead to a similar pattern in which, at 1 and 14 dpi, the caecal tonsils and ileum of birds showed a more expressive stained area compared to 3 and 7 dpi. In all lineages studied, prominent infiltration of macrophages in comparison with CD4+ and CD8+ cells was observed. Overall, animals infected by the mutant strain displayed a positively stained area higher than the wild-type. Deletions in both ttrA and pduA genes resulted in a more intense infiltration of macrophages and CD4+ and CD8+ cells in the host birds, suggesting no pathogen attenuation, even in different strains of Salmonella.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella enterica , Animales , Femenino , Inmunidad Celular , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología , Salmonella enterica/genética , Salmonella enteritidis/genética , Salmonelosis Animal/inmunología , Salmonella typhimurium/genética , Serogrupo
4.
PLoS One ; 16(11): e0260280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34843525

RESUMEN

Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 µg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.


Asunto(s)
Proteínas Aviares/inmunología , Antígenos CD4/inmunología , Pollos/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Salmonella enteritidis/inmunología , Animales , Pollos/microbiología , Interacciones Huésped-Patógeno , Inmunidad , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enteritidis/fisiología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/microbiología
5.
PLoS Pathog ; 17(10): e1010004, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695149

RESUMEN

While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Hígado/inmunología , Salmonelosis Animal/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Salmonella typhimurium/inmunología
6.
Int Immunopharmacol ; 101(Pt A): 108185, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607234

RESUMEN

Typically, the killed form of microorganisms in combination with alum does not produce strong cellular immune responses. A recent investigation has indicated the role of dopamine D2 receptor antagonists like metoclopramide in reducing the polarization of immune responses toward Th2 immunity. This study was performed to evaluate the effects of a combination of alum and metoclopramide on the induction of cellular and humoral immunity in response to a heat-killed preparation ofSalmonella typhimurium(HKST). Wistar rats were immunized with the HKST vaccine alone or in combination with alum, metoclopramide, or the alum-metoclopramide mixture twice with a two-week interval. Fourteen days after the last vaccination, immune responses against S. typhimurium and the protective potential of the vaccines were assessed. The combination of alum and metoclopramide as an adjuvant augmented the potential of the HKST vaccine to enhance lymphocyte proliferation, delayed-type hypersensitivity reaction, and antibody titer. These results were concurrent with the polarization of immune response towards the Th1 response and improving protective immunity against S. typhimurium. Overall, the combination of alum and metoclopramide as an adjuvant synergistically enhanced cellular and humoral immunity after immunization with the HKST vaccine.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Compuestos de Alumbre/uso terapéutico , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Metoclopramida/uso terapéutico , Salmonella typhimurium/inmunología , Vacunas Tifoides-Paratifoides/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/efectos adversos , Animales , Sinergismo Farmacológico , Hipersensibilidad Tardía/inmunología , Masculino , Metoclopramida/administración & dosificación , Ratas , Ratas Wistar , Salmonelosis Animal/inmunología , Salmonelosis Animal/prevención & control , Vacunas de Productos Inactivados/uso terapéutico
7.
Science ; 373(6561): eabf9232, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34529485

RESUMEN

Vitamin A and its derivative retinol are essential for the development of intestinal adaptive immunity. Retinoic acid (RA)­producing myeloid cells are central to this process, but how myeloid cells acquire retinol for conversion to RA is unknown. Here, we show that serum amyloid A (SAA) proteins­retinol-binding proteins induced in intestinal epithelial cells by the microbiota­deliver retinol to myeloid cells. We identify low-density lipoprotein (LDL) receptor­related protein 1 (LRP1) as an SAA receptor that endocytoses SAA-retinol complexes and promotes retinol acquisition by RA-producing intestinal myeloid cells. Consequently, SAA and LRP1 are essential for vitamin A­dependent immunity, including B and T cell homing to the intestine and immunoglobulin A production. Our findings identify a key mechanism by which vitamin A promotes intestinal immunity.


Asunto(s)
Inmunidad Adaptativa , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Células Mieloides/metabolismo , Proteína Amiloide A Sérica/metabolismo , Vitamina A/metabolismo , Animales , Linfocitos B/inmunología , Antígeno CD11c/análisis , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Endocitosis , Eliminación de Gen , Humanos , Inmunoglobulina A/biosíntesis , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Unión Proteica , Proteínas de Unión al Retinol/metabolismo , Salmonelosis Animal/inmunología , Salmonella typhimurium , Proteína Amiloide A Sérica/genética , Células Th17/inmunología
8.
Infect Immun ; 89(11): e0027321, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34370511

RESUMEN

Nutritional immunity involves cellular and physiological responses to invading pathogens, such as limiting iron, increasing exposure to bactericidal copper, and altering zinc to restrict the growth of pathogens. Here, we examine infection of bone marrow-derived macrophages from 129S6/SvEvTac mice by Salmonella enterica serovar Typhimurium. The 129S6/SvEvTac mice possess a functional Slc11a1 (Nramp-1), a phagosomal transporter of divalent cations that plays an important role in modulating metal availability to the pathogen. We carried out global RNA sequencing upon treatment with live or heat-killed Salmonella at 2 h and 18 h postinfection and observed widespread changes in metal transport, metal-dependent genes, and metal homeostasis genes, suggesting significant remodeling of iron, copper, and zinc availability by host cells. Changes in host cell gene expression suggest infection increases cytosolic zinc while simultaneously limiting zinc within the phagosome. Using a genetically encoded sensor, we demonstrate that cytosolic labile zinc increases 45-fold at 12 h postinfection. Further, manipulation of zinc in the medium alters bacterial clearance and replication, with zinc depletion inhibiting both processes. Comparing the transcriptomic changes to published data on infection of C57BL/6 macrophages revealed notable differences in metal regulation and the global immune response. Our results reveal that 129S6 macrophages represent a distinct model system compared to C57BL/6 macrophages. Further, our results indicate that manipulation of zinc at the host-pathogen interface is more nuanced than that of iron or copper. The 129S6 macrophages leverage intricate means of manipulating zinc availability and distribution to limit the pathogen's access to zinc, while simultaneously ensuring sufficient zinc to support the immune response.


Asunto(s)
Macrófagos/inmunología , Metales/metabolismo , Salmonelosis Animal/inmunología , Animales , Proteínas del Sistema Complemento/inmunología , Femenino , Expresión Génica , Interacciones Huésped-Patógeno , Ratones , Ratones Endogámicos C57BL , Salmonella typhimurium , Zinc/metabolismo
9.
Science ; 373(6558)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446580

RESUMEN

The immune system has evolved in the face of microbial exposure. How maternal infection experienced at distinct developmental stages shapes the offspring immune system remains poorly understood. Here, we show that during pregnancy, maternally restricted infection can have permanent and tissue-specific impacts on offspring immunity. Mechanistically, maternal interleukin-6 produced in response to infection can directly impose epigenetic changes on fetal intestinal epithelial stem cells, leading to long-lasting impacts on intestinal immune homeostasis. As a result, offspring of previously infected dams develop enhanced protective immunity to gut infection and increased inflammation in the context of colitis. Thus, maternal infection can be coopted by the fetus to promote long-term, tissue-specific fitness, a phenomenon that may come at the cost of predisposition to inflammatory disorders.


Asunto(s)
Colitis/inmunología , Inmunidad , Interleucina-6/inmunología , Intestinos/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Células Th17/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunología , Animales , Candidiasis/inmunología , Cromatina/metabolismo , Epigénesis Genética , Epigenoma , Femenino , Desarrollo Fetal , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Interleucina-6/sangre , Interleucina-6/farmacología , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Mucosa Intestinal/inmunología , Intestinos/embriología , Intestinos/microbiología , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal , Salmonelosis Animal/inmunología , Células Madre/inmunología , Células Madre/fisiología , Subgrupos de Linfocitos T/inmunología
10.
PLoS Pathog ; 17(8): e1009719, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34352037

RESUMEN

Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host's response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella's SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella's invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella's restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.


Asunto(s)
Bacterias/crecimiento & desarrollo , Ayuno , Gastroenteritis/prevención & control , Inflamación/prevención & control , Intestinos/inmunología , FN-kappa B/antagonistas & inhibidores , Salmonelosis Animal/inmunología , Salmonella typhimurium/fisiología , Animales , Bacterias/inmunología , Bacterias/metabolismo , Femenino , Gastroenteritis/inmunología , Gastroenteritis/microbiología , Microbioma Gastrointestinal , Inflamación/inmunología , Inflamación/microbiología , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Salmonelosis Animal/complicaciones , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología
11.
Emerg Microbes Infect ; 10(1): 1849-1861, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34461813

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a food-borne bacterium that causes acute gastroenteritis in humans and typhoid fever in mice. Salmonella pathogenicity island II (SPI-2) is an important virulence gene cluster responsible for Salmonella survival and replication within host cells, leading to systemic infection. Previous studies have suggested that SPI-2 function to modulate host vesicle trafficking and immune response to promote systemic infection. However, the molecular mechanism and the host responses triggered by SPI-2 remain largely unknown. To assess the roles of SPI-2, we used a differential proteomic approach to analyse host proteins levels during systemic infections in mice. Our results showed that infection by WT S. Typhimurium triggered the reprogramming of host cell metabolism and inflammatory response. Salmonella systemic infection induces an up-regulation of glycolytic process and a repression of the tricarboxylic acid (TCA) cycle. WT-infected tissues prefer to produce adenosine 5'-triphosphate (ATP) through aerobic glycolysis rather than relying on oxidative phosphorylation to generate energy. Moreover, our data also revealed that infected macrophages may undergo both M1 and M2 polarization. In addition, our results further suggest that SPI-2 is involved in altering actin cytoskeleton to facilitate the Salmonella-containing vacuole (SCV) biogenesis and perhaps even the release of bacteria later in the infection process. Results from our study provide valuable insights into the roles of SPI-2 during systemic Salmonella infection and will guide future studies to dissect the molecular mechanisms of how SPI-2 functions in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Ciclo del Ácido Cítrico/fisiología , Glucólisis/fisiología , Macrófagos/inmunología , Proteínas de la Membrana/genética , Salmonelosis Animal/patología , Salmonella typhimurium/patogenicidad , Citoesqueleto de Actina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Bacterianas/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Hígado/inmunología , Hígado/metabolismo , Hígado/microbiología , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Mapeo de Interacción de Proteínas , Proteómica , Salmonelosis Animal/inmunología , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Bazo/inmunología , Bazo/metabolismo , Bazo/microbiología , Virulencia/genética
12.
Vet Res ; 52(1): 109, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404469

RESUMEN

Salmonella enterica serotype Enteritidis (SE) is a zoonotic pathogen which causes foodborne diseases in humans as well as severe disease symptoms in young chickens. More insight in innate and adaptive immune responses of chickens to SE infection is needed to understand elimination of SE. Seven-day-old broiler chickens were experimentally challenged with SE and numbers and responsiveness of innate and adaptive immune cells as well as antibody titers were assessed. SE was observed in the ileum and spleen of SE-infected chickens at 7 days post-infection (dpi). At 1 dpi numbers of intraepithelial cytotoxic CD8+ T cells were significantly increased alongside numerically increased intraepithelial IL-2Rα+ and 20E5+ natural killer (NK) cells at 1 and 3 dpi. At both time points, activation of intraepithelial and splenic NK cells was significantly enhanced. At 7 dpi in the spleen, presence of macrophages and expression of activation markers on dendritic cells were significantly increased. At 21 dpi, SE-induced proliferation of splenic CD4+ and CD8+ T cells was observed and SE-specific antibodies were detected in sera of all SE-infected chickens. In conclusion, SE results in enhanced numbers and activation of innate cells and we hypothesized that in concert with subsequent specific T cell and antibody responses, reduction of SE is achieved. A better understanding of innate and adaptive immune responses important in the elimination of SE will aid in developing immune-modulation strategies, which may increase resistance to SE in young broiler chickens.


Asunto(s)
Inmunidad Adaptativa , Pollos , Inmunidad Innata , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Salmonella enteritidis/fisiología , Animales , Femenino , Masculino , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología
13.
Infect Immun ; 89(10): e0008721, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34310885

RESUMEN

Salmonella Typhimurium is a common cause of foodborne gastroenteritis and a less frequent but important cause of invasive disease, especially in developing countries. In our previous work, we showed that a live-attenuated S. Typhimurium vaccine (CVD 1921) was safe and immunogenic in rhesus macaques, although shed for an unacceptably long period (10 days) postimmunization. Consequently, we engineered a new strain, CVD 1926, which was shown to be safe and immunogenic in mice, as well as less reactogenic in mice and human cell-derived organoids than CVD 1921. In this study, we assessed the reactogenicity and efficacy of CVD 1926 in rhesus macaques. Animals were given two doses of either CVD 1926 or saline perorally. The vaccine was well-tolerated, with shedding in stool limited to a mean of 5 days. All CVD 1926-immunized animals had both a serological and a T cell response to vaccination. At 4 weeks postimmunization, animals were challenged with wild-type S. Typhimurium I77. Unvaccinated (saline) animals had severe diarrhea, with two animals succumbing to infection. Animals receiving CVD 1926 were largely protected, with only one animal having moderate diarrhea. Vaccine efficacy in this gastroenteritis model was 80%. S. Typhimurium vaccine strain CVD 1926 was safe and effective in rhesus macaques and shed for a shorter period than other previously tested live-attenuated vaccine strains. This strain could be combined with other live-attenuated Salmonella vaccine strains to create a pan-Salmonella vaccine.


Asunto(s)
Gastroenteritis/inmunología , Inmunogenicidad Vacunal/inmunología , Macaca mulatta/inmunología , Salmonelosis Animal/inmunología , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Administración Oral , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Leucocitos Mononucleares/inmunología , Vacunación/métodos
14.
Sci Rep ; 11(1): 10910, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035347

RESUMEN

Salmonella serotype (ser.) Enteritidis infection in broilers is a main foodborne illness that substantially threatens food security. This study aimed to examine the effects of a novel polysaccharide isolated from alfalfa (APS) on the intestinal microbiome and systemic health of S. ser. Enteritidis-infected broilers. The results indicated that broilers receiving the APS-supplemented diet had the improved (P < 0.05) growth performance and gut health than those fed no APS-supplemented diet. Supplementation with APS enhanced (P < 0.05) the richness of gut beneficial microbes such as Bacteroidetes, Barnesiella, Parabacteroides, Butyricimonas, and Prevotellaceae, while decreased (P < 0.05) the abundance of facultative anaerobic bacteria including Proteobacteria, Actinobacteria, Ruminococcaceae, Lachnospiraceae, and Burkholderiaceae in the S. ser. Enteritidis-infected broilers. The Bacteroides and Odoribacter were identified as the two core microbes across all treatments and combined with their syntrophic microbes formed the hub in co-occurrence networks linking microbiome structure to performance of broilers. Taken together, dietary APS supplementation improved the systemic health of broilers by reshaping the intestinal microbiome regardless of whether S. ser. Enteritidis infection was present. Therefore, APS can be employed as a potential functional additives to inhibit the S. ser. Enteritidis and enhance the food safety in poultry farming.


Asunto(s)
Bacterias/clasificación , Pollos/microbiología , Medicago sativa/metabolismo , Polisacáridos/administración & dosificación , Salmonelosis Animal/dietoterapia , Salmonella enteritidis/crecimiento & desarrollo , Alimentación Animal , Animales , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Pollos/inmunología , Citocinas/metabolismo , Alimentos Funcionales , Microbioma Gastrointestinal/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Polisacáridos/farmacología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonella enteritidis/efectos de los fármacos , Análisis de Secuencia de ADN , Resultado del Tratamiento
15.
Infect Immun ; 89(8): e0073620, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031125

RESUMEN

Long-term survival and the persistence of bacteria in the host suggest either host unresponsiveness or induction of an immunological tolerant response to the pathogen. The role of the host immunological response to persistent colonization of Salmonella Enteritidis (SE) in chickens remains poorly understood. In the current study, we performed a cecal tonsil transcriptome analysis in a model of SE persistent infection in 2-week-old chickens to comprehensively examine the dynamics of host immunological responses in the chicken gastrointestinal tract. Our results revealed overall host tolerogenic adaptive immune regulation in a major gut-associated lymphoid tissue, the cecal tonsil, during SE infection. Specifically, we observed consistent downregulation of the metallothionein 4 gene at all four postinfection time points (3, 7, 14, and 21 days postinfection [dpi]), which suggested potential pathogen-associated manipulation of the host zinc regulation as well as a possible immune modulatory effect. Furthermore, delayed activation in the B cell receptor signaling pathway and failure to sustain its active state during the lag phase of infection were further supported by an insignificant production of both intestinal and circulatory antibodies. Tug-of-war for interleukin 2 (IL-2) regulation between effector T cells and regulatory T cells appears to have consequences for upregulation in the transducer of ERBB2 (TOB) pathway, a negative regulator of T cell proliferation. In conclusion, this work highlights the overall host tolerogenic immune response that promotes persistent colonization by SE in young layer chicks.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Tolerancia Inmunológica , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonella enteritidis/inmunología , Inmunidad Adaptativa , Animales , Biomarcadores , Pollos , Perfilación de la Expresión Génica , Inmunomodulación , Enfermedades de las Aves de Corral/genética , Salmonelosis Animal/genética
16.
J Therm Biol ; 98: 102945, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34016362

RESUMEN

High ambient temperature has potential influence on oxidative stress, or systemic inflammation affecting poultry production and immune status of chickens. Heat stress (HS) induces intestinal inflammation and increases susceptibility of harmful pathogens, such as Salmonella and Escherichia coli. Intestinal inflammation is a common result of body immune dysfunction. Therefore, we designed an experiment to analyze the effects of 35 ± 2 °C HS on salmonella infection in chickens through regulation of the immune responses. 40 broiler chickens were randomly divided into 4 groups: control group, heat stress (HS) group, salmonella typhimurium (ST) group and model group (heat stress + salmonella typhimurium, HS + ST). Birds in HS and model group were treated with 35 ± 2 °C heat stress 6 h a day and for 14 continuous days. Then, ST and model group birds were orally administrated with 1 mL ST inoculum (109 cfu/mL). Chickens were sacrificed at the 4th day after ST administration and ileum tissues were measured. We observed that heat stress decreased ileum TNF-α and IL-1ß protein expressions. Concomitantly heat stress decreased NLRP3 and Caspase-1 protein levels. The protein expressions of p-NF-κB-p65 and p-IκB-α in ileum. Heat stress also inhibited IFN-α, p-IRF3 and p-TBK1, showing a deficiency in the HS + ST group birds. Together, the present data suggested that heat stress suppressed intestinal immune activity in chickens infected by salmonella typhimurium, as observed by the decrease of immune cytokines levels, which regulated by NF-κB-NLRP3 signaling pathway.


Asunto(s)
Pollos/inmunología , Trastornos de Estrés por Calor/inmunología , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Salmonella typhimurium , Animales , Proteínas Aviares/inmunología , Pollos/microbiología , Citocinas/inmunología , Trastornos de Estrés por Calor/patología , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Íleon/inmunología , Íleon/patología , FN-kappa B/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Enfermedades de las Aves de Corral/patología , Proteínas Serina-Treonina Quinasas/inmunología , Salmonelosis Animal/patología , Transducción de Señal
17.
PLoS One ; 16(4): e0243417, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861743

RESUMEN

This study investigates the microbiological and immunological basis underlying the efficacy of electron beam-inactivated immune modulators. The underlying hypothesis is that exposure to eBeam-based ionization reactions inactivate microorganisms without modifying their antigenic properties and thereby creating immune modulators. The immunological correlates of protection induced by such eBeam based Salmonella Typhimurium (EBST) immune modulators in dendritic cell (DC) (in vitro) and mice (in vivo) models were assessed. The EBST stimulated innate pro inflammatory response (TNFα) and maturation (MHC-II, CD40, CD80 and CD86) of DC. Immuno-stimulatory potential of EBST was on par with both a commercial Salmonella vaccine, and live Salmonella cells. The EBST cells did not multiply under permissive in vitro and in vivo conditions. However, EBST cells remained metabolically active. EBST immunized mice developed Salmonella-specific CD4+ T-cells that produced the Th1 cytokine IFNγ at a level similar to that induced by the live attenuated vaccine (AroA- ST) formulation. The EBST retained stable immunogenic properties for several months at room temperature, 4°C, and -20°C as well as after lyophilization. Therefore, such eBeam-based immune modulators have potential as vaccine candidates since they offer the safety of a "killed" vaccine, while retaining the immunogenicity of an "attenuated" vaccine. The ability to store eBeam based immune modulators at room temperature without loss of potency is also noteworthy.


Asunto(s)
Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Vacunas Atenuadas/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Citocinas/inmunología , Células Dendríticas/inmunología , Electrones , Femenino , Ratones , Ratones Endogámicos C57BL , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Vacunas de Productos Inactivados/inmunología
18.
PLoS One ; 16(4): e0247938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822791

RESUMEN

Salmonella is a zoonotic pathogen that persists in poultry. Salmonella vaccines that can be delivered in-ovo can be cost-effective and can decrease Salmonella load in poultry. This study evaluates the efficacy of a Salmonella chitosan-nanoparticle (CNP) vaccine, administered in-ovo, in broilers. CNP vaccine was synthesized with Salmonella Enteritidis (SE) outer-membrane-proteins (OMPs) and flagellin proteins. At embryonic-d18, one-hundred-thirty-six eggs were injected with 200µl PBS or 1000µg CNP into the amniotic cavity. At d1-of-age, 132 chicks were allocated in 6 pens/treatment with 11 chicks/pen. At d7, birds were orally challenged with 1×109 CFU/bird SE. At d1, 8h-post-challenge, d14, and d21, serum anti-SE-OMPs IgY were analyzed. At d14 and d21, cloacal swabs and bile anti-SE-OMPs IgA, CD4+/CD8+-T-cell ratios, and ceca SE loads were analyzed. At d21, cecal tonsil IL-1ß, IL-10, and iNOS mRNA were analyzed. Body-weight-gain (BWG) and feed-conversion-ratio (FCR) were recorded weekly. Data were analyzed by Student's t-test at P<0.05. There were no significant differences in BWG or FCR between vaccinated birds compared to control. At d1, CNP-vaccinated birds had 5.62% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 8h-post-challenge, CNP-vaccinated birds had 6.39% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 2wk-post-challenge, CNP-vaccinated birds had 7.34% lower levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 1wk-post-challenge, CNP-vaccinated birds had 15.30% greater levels (P<0.05) of bile anti-SE-OMPs IgA, compared to control. At d14 and d21, CNP-vaccinated birds had 0.62 and 0.85 Log10 CFU/g, decreased SE ceca load (P<0.05), respectively, compared to control. There were no significant differences in CD4+/CD8+-T-cell ratios between vaccinated birds compared to control. There were no significant differences in IL-1ß, IL-10, iNOS mRNA between vaccinated birds compared to control. Findings demonstrate that the in-ovo administration of CNP vaccine can induce an antigen-specific immune response against SE and can decrease SE cecal load in broilers.


Asunto(s)
Pollos/inmunología , Nanopartículas/uso terapéutico , Vacunas contra la Salmonella/inmunología , Animales , Quitosano/inmunología , Quitosano/farmacología , Flagelina/inmunología , Nanopartículas/química , Enfermedades de las Aves de Corral/prevención & control , Salmonella/inmunología , Salmonella/patogenicidad , Salmonelosis Animal/inmunología , Salmonella enteritidis/inmunología , Vacunas/administración & dosificación
19.
Vet Immunol Immunopathol ; 232: 110181, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33401108

RESUMEN

Non-typhoidal Salmonella is one of the most common causes of bacterial foodborne disease and consumption of contaminated poultry products, including turkey, is one source of exposure. Minimizing Salmonella colonization of commercial turkeys could decrease the incidence of Salmonella-associated human foodborne illness. Understanding host responses to these bacteria is critical in developing strategies to minimize colonization and reduce food safety risk. In this study, we evaluated bacterial load and blood leukocyte transcriptomic responses of 3-week-old turkeys challenged with the Salmonella enterica serovar Typhimurium (S. Typhimurium) UK1 strain. Turkeys (n = 8/dose) were inoculated by oral gavage with 108 or 1010 colony forming units (CFU) of S. Typhimurium UK1, and fecal shedding and tissue colonization were measured across multiple days post-inoculation (dpi). Fecal shedding was 1-2 log10 higher in the 1010 CFU group than the 108 CFU group, but both doses effectively colonized the crop, spleen, ileum, cecum, colon, bursa of Fabricius and cloaca without causing any detectable clinical signs in either group of birds. Blood leukocytes were isolated from a subset of the birds (n = 3-4/dpi) both pre-inoculation (0 dpi) and 2 dpi with 1010 CFU and their transcriptomic responses assayed by RNA-sequencing (RNA-seq). At 2 dpi, 647 genes had significant differential expression (DE), including large increases in expression of immune genes such as CCAH221, IL4I1, LYZ, IL13RA2, IL22RA2, and ACOD1. IL1ß was predicted as a major regulator of DE in the leukocytes, which was predicted to activate cell migration, phagocytosis and proliferation, and to impact the STAT3 and toll-like receptor pathways. These analyses revealed genes and pathways by which turkey blood leukocytes responded to the pathogen and can provide potential targets for developing intervention strategies or diagnostic assays to mitigate S. Typhimurium colonization in turkeys.


Asunto(s)
Leucocitos/metabolismo , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Salmonella enterica , Pavos , Animales , Leucocitos/inmunología , Masculino , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/genética , Salmonelosis Animal/microbiología , Transcripción Genética
20.
Braz J Microbiol ; 52(1): 419-429, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33150477

RESUMEN

Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited. The hypothesis that higher production of flagellin by certain Salmonella enterica strains could lead to an even more immunogenic and less pathogenic strain for chickens was here investigated. In the present study, a Salmonella Enteritidis mutant strain harbouring deletions in clpP and fliD genes (SE ΔclpPfliD), which lead to overexpression of flagellin, was generated, and its immunogenicity and pathogenicity were comparatively assessed to the wild type in chickens. Our results showed that SE ΔclpPfliD elicited more intense immune responses in the gut during early stages of infection than the wild type did, and that this correlated with earlier intestinal and systemic clearance of the bacterium.


Asunto(s)
Pollos/microbiología , Flagelina/biosíntesis , Flagelina/inmunología , Salmonelosis Animal/microbiología , Salmonella enteritidis/inmunología , Animales , Proteínas Bacterianas/genética , Flagelos/fisiología , Flagelina/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/inmunología , Salmonella enteritidis/genética , Salmonella enteritidis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...