Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(6): 1536-1548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38226779

RESUMEN

Salvianolic acids (SA), such as rosmarinic acid (RA), danshensu (DSS), and their derivative salvianolic acid B (SAB), etc. widely existed in Lamiaceae and Boraginaceae families, are of interest due to medicinal properties in the pharmaceutical industries. Hundreds of studies in past decades described that 4-coumaroyl-CoA and 4-hydroxyphenyllactic acid (4-HPL) are common substrates to biosynthesize SA with participation of rosmarinic acid synthase (RAS) and cytochrome P450 98A (CYP98A) subfamily enzymes in different plants. However, in our recent study, several acyl donors and acceptors included DSS as well as their ester-forming products all were determined in SA-rich plants, which indicated that previous recognition to SA biosynthesis is insufficient. Here, we used Salvia miltiorrhiza, a representative important medicinal plant rich in SA, to elucidate the diversity of SA biosynthesis. Various acyl donors as well as acceptors are catalysed by SmRAS to form precursors of RA and two SmCYP98A family members, SmCYP98A14 and SmCYP98A75, are responsible for different positions' meta-hydroxylation of these precursors. SmCYP98A75 preferentially catalyses C-3' hydroxylation, and SmCYP98A14 preferentially catalyses C-3 hydroxylation in RA generation. In addition, relative to C-3' hydroxylation of the acyl acceptor moiety in RA biosynthesis, SmCYP98A75 has been verified as the first enzyme that participates in DSS formation. Furthermore, SmCYP98A enzymes knockout resulted in the decrease and overexpression leaded to dramatic increase of SA accumlation. Our study provides new insights into SA biosynthesis diversity in SA-abundant species and versatility of CYP98A enzymes catalytic preference in meta-hydroxylation reactions. Moreover, CYP98A enzymes are ideal metabolic engineering targets to elevate SA content.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Salvia miltiorrhiza , Hidroxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/enzimología , Polifenoles/metabolismo , Polifenoles/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Alquenos
2.
Biochem Biophys Res Commun ; 582: 125-130, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710827

RESUMEN

CYP76AH1 is the key enzyme in the biosynthesis pathway of tanshinones in Salvia miltiorrhiza, which are famous natural products with activities against various heart diseases and others. CYP76AH1 is a membrane-associated typical plant class II cytochrome P450 enzyme and its catalytic mechanism has not to be clearly elucidated. Structural determination of eukaryotic P450 enzymes is extremely challenging. Recently, we solved the crystal structures of CYP76AH1 and CYP76AH1 in complex with its natural substrate miltiradiene. The structure of CYP76AH1 complexed with miltiradiene is the first plant cytochrome P450 structure in complex with natural substrate. The studies revealed a unique array pattern of amino acid residues, which may play an important role in orienting and stabilizing the substrate for catalysis. This work would provide structural insights into CYP76AH1 and related P450s and the basis to efficiently improve tanshinone production by synthetic biology techniques.


Asunto(s)
Abietanos/biosíntesis , Sistema Enzimático del Citocromo P-450/química , Diterpenos/química , Proteínas de Plantas/química , Salvia miltiorrhiza/química , Abietanos/genética , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salvia miltiorrhiza/enzimología , Metabolismo Secundario/genética , Especificidad por Sustrato
3.
Int J Biol Macromol ; 189: 455-463, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34419551

RESUMEN

Salvia miltiorrhiza Bunge, belonging to Lamiaceae family, is one of the most important Chinese medicinal herbs. The dried roots, also called Danshen in Chinese, are usually used in the formula of Chinese traditional medicine due to the bioactive constituents known as phenolic acids and tanshinones, which are a group of abietane nor-diterpenoid quinone natural products. Cytochrome P450 enzymes (CYPs) usually play crucial roles in terpenoids synthesis, especially in hydroxylation processes. Up to now, several important P450 enzymes, such as CYP76AH1, CYP76AH3, CYP76AK1, CYP71D373, and CYP71D375, have been functionally characterized in the tanshinones biosynthetic pathway. Nevertheless, the tanshinones biosynthesis is a so complex network that more P450 enzymes should be identified and characterized. Here, we report two novel P450 enzymes CYP76AK2 and CYP76AK3 that are involved in tanshinones biosynthetic pathway. These two P450 enzymes were highly homologous to previously reported CYP76AK1 and showed the same expression profile as CYP76AK1. Also, CYP76AK2 and CYP76AK3 could be stimulated by MeJA and SA, resulting in increased expression. We used a triple-target CRISPR/Cas9 system to generate targeted mutagenesis of CYP76AK2 and CYP76AK3 in S. miltiorrhiza. The content of five major tanshinones was significantly reduced in both cyp76ak2 and cyp76ak3 mutants, indicating that the two enzymes might be involved in the biosynthesis of tanshinones. This study would provide a foundation for the catalytic function identification of CYP76AK2 and CYP76AK3, and further enrich the understanding of the network of tanshinones secondary metabolism synthesis as well.


Asunto(s)
Abietanos/biosíntesis , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/genética , Mutagénesis/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Cromosomas de las Plantas/genética , Secuencia Conservada , Sistema Enzimático del Citocromo P-450/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Vectores Genéticos/metabolismo , Mutación/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química
4.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805926

RESUMEN

Salvia miltiorrhiza Bunge has been widely used in the treatment of cardiovascular and cerebrovascular diseases, due to the pharmacological action of its active components such as the tanshinones. Plasma membrane (PM) H+-ATPase plays key roles in numerous physiological processes in plants. However, little is known about the PM H+-ATPase gene family in S. miltiorrhiza (Sm). Here, nine PM H+-ATPase isoforms were identified and named SmPHA1-SmPHA9. Phylogenetic tree analysis showed that the genetic distance of SmPHAs was relatively far in the S. miltiorrhiza PM H+-ATPase family. Moreover, the transmembrane structures were rich in SmPHA protein. In addition, SmPHA4 was found to be highly expressed in roots and flowers. HPLC revealed that accumulation of dihydrotanshinone (DT), cryptotanshinone (CT), and tanshinone I (TI) was significantly reduced in the SmPHA4-OE lines but was increased in the SmPHA4-RNAi lines, ranging from 2.54 to 3.52, 3.77 to 6.33, and 0.35 to 0.74 mg/g, respectively, suggesting that SmPHA4 is a candidate regulator of tanshinone metabolites. Moreover, qRT-PCR confirmed that the expression of tanshinone biosynthetic-related key enzymes was also upregulated in the SmPHA4-RNAi lines. In summary, this study highlighted PM H+-ATPase function and provided new insights into regulatory candidate genes for modulating secondary metabolism biosynthesis in S. miltiorrhiza.


Asunto(s)
Abietanos/biosíntesis , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Salvia miltiorrhiza/enzimología , Membrana Celular/metabolismo , Biología Computacional , Flores , Regulación de la Expresión Génica de las Plantas , Medicina Tradicional China , Fenantrenos/química , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas , Isoformas de Proteínas , ATPasas de Translocación de Protón/genética , Factores de Transcripción/metabolismo , Transgenes
5.
Nat Commun ; 12(1): 685, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514704

RESUMEN

Tanshinones are the bioactive nor-diterpenoid constituents of the Chinese medicinal herb Danshen (Salvia miltiorrhiza). These groups of chemicals have the characteristic furan D-ring, which differentiates them from the phenolic abietane-type diterpenoids frequently found in the Lamiaceae family. However, how the 14,16-epoxy is formed has not been elucidated. Here, we report an improved genome assembly of Danshen using a highly homozygous genotype. We identify a cytochrome P450 (CYP71D) tandem gene array through gene expansion analysis. We show that CYP71D373 and CYP71D375 catalyze hydroxylation at carbon-16 (C16) and 14,16-ether (hetero)cyclization to form the D-ring, whereas CYP71D411 catalyzes upstream hydroxylation at C20. In addition, we discover a large biosynthetic gene cluster associated with tanshinone production. Collinearity analysis indicates a more specific origin of tanshinones in Salvia genus. It illustrates the evolutionary origin of abietane-type diterpenoids and those with a furan D-ring in Lamiaceae.


Asunto(s)
Abietanos/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimología , Abietanos/química , Ciclización , Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/química , Genes de Plantas/genética , Genoma de Planta , Familia de Multigenes/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/genética
6.
ACS Synth Biol ; 9(7): 1763-1770, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32551504

RESUMEN

Cytochrome P450s (CYPs) are important enzymes in the secondary metabolism of plants and have been recognized as key players in bioengineering and synthetic biology. Previously reported CYP76AH1 and CYP76AH3, having greater than 80% sequence homology, played a continuous catalytic role in the biosynthesis of tanshinones in Salvia miltiorrhiza. Homology modeling indicates that four sites might be responsible for differences in catalytic activity between the two enzymes. A series of modeling-based mutational variants of CYP76AH1 were designed to integrate the functions of the two CYPs. The mutant CYP76AH1D301E,V479F, which integrated the functions of CYP76AH1 and CYP76AH3, was found to efficiently catalyze C11 and C12 hydroxylation and C7 oxidation of miltiradiene substrates. Integration and utilization of CYP76AH1D301E,V479F by synthetic biology methods allowed the robust production of 11-hydroxy ferruginol, sugiol, and 11-hydroxy sugiol in yeast. The functionally integrated CYP gene after active site modifications improves catalytic efficiency by reducing the transfer of intermediate metabolites between component proteins. This provides a synthetic biology reference for improving the catalytic efficiencies of systems that produce plant natural products in microorganisms.


Asunto(s)
Abietanos/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Abietanos/síntesis química , Catálisis , Dominio Catalítico/genética , Sistema Enzimático del Citocromo P-450/química , Diterpenos/síntesis química , Ingeniería Metabólica/métodos , Ingeniería de Proteínas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Sintética/métodos
7.
Gene ; 756: 144920, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32593720

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play essential roles in myriad regulatory processes, including secondary metabolism. In this study with Salvia miltiorrhiza, we isolated and characterized SmbHLH53, which encodes a bHLH family member. Expression of this gene was significantly induced by wounding and multiple hormones, including methyl jasmonic acid; transcript levels were highest in the leaves and roots. Phylogenetic analysis indicated that SmbHLH53 clusters withAtbHLH17 and AtbHLH13, two negative regulators of jasmonate (JA) responses, and is localized in the nucleus and cell membrane. Yeast two-hybrid and bimolecular fluorescent complementation assays indicated that SmbHLH53 forms a homodimer as well as a heterodimer with SmbHLH37. It also interacts with both SmJAZs1/3/8 and SmMYC2, the core members of the JA signal pathway. Unexpectedly, we noted that overexpression of SmbHLH53 did not significantly influence the concentrations of rosmarinic acid and salvianolic acid B in transgenic plants. Results from yeast one-hybrid assays showed that SmbHLH53 binds to the promoters of SmTAT1, SmPAL1, and Sm4CL9, the key genes for enzymes in the pathway for phenolic acid synthesis. Assays of transient transcriptional activity demonstrated that SmbHLH53 represses the promoter of SmTAT1 while activating the promoter of Sm4CL9. Thus, the present work revealed that SmbHLH53 may play dual roles in regulating the genes for enzymes in the pathway for Sal B biosynthesis.


Asunto(s)
Benzofuranos/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Transducción de Señal , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/análisis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Vías Biosintéticas , Núcleo Celular/química , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas , Multimerización de Proteína , Salvia miltiorrhiza/enzimología , Metabolismo Secundario
8.
Chem Biodivers ; 17(7): e2000219, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32352210

RESUMEN

(-)-5-Epieremophilene, an epimer of the versatile sesquiterpene (+)-valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1-3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (-)-5-epieremophilene production with yields of 42.4-76.0 mg/L in shake-flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1-FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (-)-5-epieremophilene were achieved. Biological assay indicated that (-)-5-epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50 =1.25 µg/cm2 ), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (-)-5-epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.


Asunto(s)
Escherichia coli/metabolismo , Insecticidas/metabolismo , Ingeniería Metabólica , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Escherichia coli/química , Conducta Alimentaria/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Lepidópteros/efectos de los fármacos , Estructura Molecular , Salvia miltiorrhiza/enzimología , Sesquiterpenos/química , Sesquiterpenos/farmacología
9.
Gene ; 742: 144603, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198126

RESUMEN

Adverse environmental conditions, such as salinity, cold, drought, heavy metals, and pathogens affect the yield and quality of Salvia miltiorrhiza, a well-known medicinal plant used for the treatment of cardiovascular and cerebrovascular diseases. Superoxide dismutase (SOD), a key enzyme of antioxidant system in plants, plays a vital role in protecting plants against various biotic and abiotic stresses via scavenging the reactive oxygen species produced by organisms. However, little is known about the SOD gene family in S. miltiorrhiza. In this study, eight SOD genes, including three Cu/Zn-SODs, two Fe-SODs and three Mn-SODs, were identified in the S. miltiorrhiza genome. Their gene structures, promoters, protein features, phylogenetic relationships, and expression profiles were comprehensively investigated. Gene structure analysis implied that most SmSODs have different introns/exons distrbution patterns. Many cis-elements related to different stress responses or plant hormones were found in the promoter of each SmSOD. Expression profile analysis indicated that SmSODs exhibited diverse responses to cold, salt, drought, heavy metal, and plant hormones. Additionally, 31 types of TFs regulating SmSODs were predicted and analyzed. These findings provided valuable information for further researches on the functions and applications of SmSODs in S. miltiorrhiza growth and adaptation to stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Superóxido Dismutasa/genética , Aclimatación/genética , Sequías , Exones/genética , Perfilación de la Expresión Génica , Intrones/genética , Filogenia , Fitomejoramiento , Proteínas de Plantas/metabolismo , Salinidad , Salvia miltiorrhiza/enzimología , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 44(10): 2038-2045, 2019 May.
Artículo en Chino | MEDLINE | ID: mdl-31355558

RESUMEN

The family of flavonoid 3-O-glucosyltransferase catalyzes the modification of anthocyanin from unstable-structure to stable-structure. In this study,based on homology cloning and transcriptome library,we isolated the full-length c DNA of UDP-glucose: flavonoid 3-O-glucosyltransferase( named SmUF3GT) from the flower tissues of S. miltiorrhiza. This gene was consisted of 1 353 bp open reading frames( ORF) encoding 450 amino acids. And the SmUF3GT protein was performed for the bioinformatic analysis. Our results showed that the protein was preliminary localized in the Golgi and peroxisome of cytosol,as well as plasma membrane and cell nuclear.QRT-PCR analyses indicated that SmUF3GT expressed differently in all tissues and organs but roots of S. miltiorrhiza and S. miltiorrhiza f.alba. During floral development,the expression of SmUF3GT showed a trend of rising fist and then down in purple-flower Danshen,whereas decreasing sharply fist and then slowly in white-flower Danshen. The present study provides basic information for further research on the network of synthesis and accumulation of flavonoids in S.miltiorrhiza.


Asunto(s)
Glucosiltransferasas/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Clonación Molecular , Flores/enzimología , Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Salvia miltiorrhiza/enzimología
11.
Biochemistry ; 57(25): 3473-3479, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29787239

RESUMEN

Plants from the widespread Lamiaceae family produce many labdane-related diterpenoids, a number of which serve medicinal roles, and whose biosynthesis is initiated by class II diterpene cyclases (DTCs). These enzymes utilize a general acid-base catalyzed cyclo-isomerization reaction to produce various stereoisomers of the eponymous labdaenyl carbocation intermediate, which can then undergo rearrangement and/or the addition of water prior to terminating deprotonation. Identification of the pair of residues that cooperatively serve as the catalytic base in the DTCs that produce ent-copalyl diphosphate (CPP) required for gibberellin phytohormone biosynthesis in all vascular plants has led to insight into the addition of water as well as rearrangement. Lamiaceae plants generally contain an additional DTC that produces the enantiomeric normal CPP, as well as others that yield hydroxylated products derived from the addition of water. Here the catalytic base in these DTCs was investigated. Notably, changing two adjacent residues that seem to serve as the catalytic base in the normal CPP synthase from Salvia miltiorrhiza (SmCPS) to the residues found in the closely related perigrinol diphosphate synthase from Marrubium vulgare (MvPPS), which produces a partially rearranged and hydroxylated product derived from the distinct syn stereoisomer of labdaenyl+, altered the product outcome in an unexpected fashion. Specifically, the relevant SmCPS:H315N/T316V double mutant produces terpentedienyl diphosphate, which is derived from complete substituent rearrangement of syn rather than normal labdaenyl+. Accordingly, alteration of the residues that normally serve as the catalytic base surprisingly can impact stereocontrol.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Vías Biosintéticas , Diterpenos/metabolismo , Lamiaceae/enzimología , Proteínas de Plantas/metabolismo , Diterpenos/química , Lamiaceae/química , Lamiaceae/metabolismo , Modelos Moleculares , Reguladores del Crecimiento de las Plantas/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/metabolismo , Estereoisomerismo , Especificidad por Sustrato
12.
Molecules ; 23(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29747474

RESUMEN

Salvia miltiorrhiza is a well-known traditional Chinese herb which is used to treat heart disease. Salvia castanea is a substitute product for S. miltiorrhiza in the medicinal field. Previous study has shown that phosphate (Pi) deficiency could promote the accumulation of secondary metabolism in herbs, and it has also developed a strategy for saving Pi resources and increasing the yield of active substances in herbs. In the present study, the hairy roots of S. miltiorrhiza and S. castanea were used to identify the Pi deficiency response mechanisms of these two Salvia species. The results showed that Pi deficiency increased the accumulation of specifically secondary metabolites, such as phenolic acids and tanshinones, which were caused by promoting the expression levels of key enzyme genes. In addition, Pi deficiency promoted the antioxidant activity in these two Salvia species. The data demonstrated that Pi deficiency increased the quality of the medicinal material in the plant. The hairy roots of S. castanea were more adaptive to Pi deficiency than those of S. miltiorrhiza in terms of biomass, secondary metabolism, and antioxidant activity. The results of this study provide insights into breeding herbs that are better adapted to Pi deficiency, which could increase the yield of active ingredients in herbs and save Pi resources.


Asunto(s)
Adaptación Fisiológica , Antioxidantes/metabolismo , Fosfatos/deficiencia , Raíces de Plantas/fisiología , Salvia miltiorrhiza/fisiología , Salvia/fisiología , Metabolismo Secundario , Benzotiazoles/química , Biomasa , Compuestos de Bifenilo/química , Depuradores de Radicales Libres/química , Regulación de la Expresión Génica de las Plantas , Metaboloma , Modelos Biológicos , Picratos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salvia/enzimología , Salvia/genética , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Ácidos Sulfónicos/química
13.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3901-3905, 2017 Oct.
Artículo en Chino | MEDLINE | ID: mdl-29243425

RESUMEN

Protein complexes are involved in the synthesis of multiple secondary metabolites in plants, and their separation is essential to elucidate plant secondary metabolism and improve in vitro catalytic efficiency. In this study, the transgenic hairy roots of CYP76AH1, a key enzyme of tanshinone synthesis pathway, was constructed and the transgenic hairy roots of Danshen overexpressing CYP76AH1 protein were screened by Western blotting and used as a tissue culture material for the subsequent extraction of protein complex in tanshinone synthesis pathway. By optimizing the type and concentration of the detergent in the protein extraction buffer, the buffer containing 0.5% Triton X-100 was selected as the best extraction buffer, and a relatively large amount of soluble CYP76AH1 protein was isolated. This study lays the foundation for the further separation and purification of protein complexes interacting with CYP76AH1, and provides the idea for deep analysis of tanshinone metabolic pathway.


Asunto(s)
Familia 7 del Citocromo P450/genética , Raíces de Plantas/enzimología , Salvia miltiorrhiza/enzimología , Abietanos/biosíntesis , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Salvia miltiorrhiza/genética
14.
Zhongguo Zhong Yao Za Zhi ; 42(2): 205-212, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-28948721

RESUMEN

Sucrose non-fermenting 1-related protein kinase 2(SnRK2) plays a key role in abiotic stress signaling in plants. In this study, we cloned a SmSnRK2.4 gene belonging to subclass I of SnRK2 from Salvia miltiorrhiza by screening its transcriptome database. The SmSnRK2.4 gene contains 8 introns and 9 exons, with a 1 068 bp open reading frame encoding a polypeptide of 355 amino acids, the predicted molecular mass of which is 40.63 kDa. Prokaryotic expression of SmSnRK2.4 protein using pMAL-c2X as the expression vector displayed that the recombinant protein of SmSnRK2.4 gene in E. coli was consistent with the predicted size. A 3 000 bp promoter sequence of SmSnRK2.4 contained some stress-responsive elements and hormone-responsive elements. Quantitative real-time PCR analysis revealed that the expression of SmSnRK2.4 in root was much higher than that in stem and leaf, SmSnRK2.4 was strongly induced by PEG stress, weakly induced by ABA stress. This research provided a basis for further study of the SmSnRK2.4 gene playing the role in accumulate mechanism of secondary metabolites in S. miltiorrhiza under drought.


Asunto(s)
Proteínas de Plantas/genética , Proteínas Quinasas/genética , Salvia miltiorrhiza/enzimología , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Salvia miltiorrhiza/genética
15.
J Exp Bot ; 68(9): 2299-2308, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398557

RESUMEN

Highly oxidized tanshinones are pharmacological ingredients extracted from the medicinal model plant Salvia miltiorrhiza and are mainly used to treat cardiovascular diseases. Previous studies have confirmed that cytochrome P450 mono-oxygenases (CYP450s) have a key function in the biosynthesis of tanshinones; however, no solid evidence links oxidation to the 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily. Here, we identified 132 members of the DOXB and DOXC subfamilies of 2OGD by scanning the 2OG-FeII Oxy domain using a genome-wide strategy in S. miltiorrhiza. The DOXC class was phylogenetically divided into twelve clades. Combining phylogenetic relationships, differential expression and co-expression from various organs and tissues revealed that two 2OGDs were directly related to flavonoid metabolism, and that 13 2OGDs from different clades were predicted to be involved in tanshinone biosynthesis. Based on this insight into tanshinone production, we experimentally detected significant decreases in miltirone, cryptotanshinone, and tanshinone IIA (0.16-, 0.56-, and 0.56-fold, respectively) in 2OGD5 RNAi transgenic lines relative to the control lines using a metabonomics analysis. 2OGD5 was found to play a crucial role in the downstream biosynthesis of tanshinones following the hydroxylation of CYPs. Our results highlight the evolution and diversification of 2OGD superfamily members and suggest that they contribute to the complexity of tanshinone metabolites.


Asunto(s)
Abietanos/metabolismo , Dioxigenasas/genética , Ácidos Cetoglutáricos/metabolismo , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Secuencia de Aminoácidos , Dioxigenasas/química , Dioxigenasas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/metabolismo
16.
Sci Rep ; 7: 44622, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28304398

RESUMEN

Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially expressed in plant tissues and eight of them were predominantly expressed in phloem and xylem, indicating that some SmPPOs are functionally redundant, whereas the others are associated with different physiological processes. Expression patterns of eighteen SmPPOs were significantly altered under MeJA treatment, and twelve were yeast extract and Ag+-responsive, suggesting the majority of SmPPOs are stress-responsive. Analysis of high-throughput small RNA sequences and degradome data showed that miR1444-mediated regulation of PPOs existing in P. trichocarpa is absent from S. miltiorrhiza. Instead, a subset of SmPPOs was posttranscriptionally regulated by a novel miRNA, termed Smi-miR12112. It indicates the specificity and significance of miRNA-mediated regulation of PPOs. The results shed light on the regulation of SmPPO expression and suggest the complexity of SmPPO-associated phenolic acid biosynthesis and metabolism.


Asunto(s)
Catecol Oxidasa/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Familia de Multigenes , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Transcripción Genética , Acetatos/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Clonación Molecular , Secuencia Conservada/genética , Ciclopentanos/farmacología , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Variación Genética , Intrones/genética , MicroARNs/metabolismo , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Salvia miltiorrhiza/efectos de los fármacos , Especificidad de la Especie , Transcripción Genética/efectos de los fármacos
17.
Chin J Nat Med ; 15(12): 917-927, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29329649

RESUMEN

Salvia miltiorrhiza is a medicinal plant widely used in the treatment of cardiovascular and cerebrovascular diseases. Hydrophilic phenolic acids, including rosmarinic acid (RA) and lithospermic acid B (LAB), are its primary medicinal ingredients. However, the biosynthetic pathway of RA and LAB in S. miltiorrhiza is still poorly understood. In the present study, we accomplished the isolation and characterization of a novel S. miltiorrhiza Hydroxyphenylpyruvate reductase (HPPR) gene, SmHPPR, which plays an important role in the biosynthesis of RA. SmHPPR contained a putative catalytic domain and a NAD(P)H-binding motif. The recombinant SmHPPR enzyme exhibited high HPPR activity, converting 4-hydroxyphenylpyruvic acid (pHPP) to 4-hydroxyphenyllactic acid (pHPL), and exhibited the highest affinity for substrate 4-hydroxyphenylpyruvate. SmHPPR expression could be induced by various treatments, including SA, GA3, MeJA and Ag+, and the changes in SmHPPR activity were correlated well with hydrophilic phenolic acid accumulation. SmHPPR was localized in cytoplasm, most likely close to the cytosolic NADPH-dependent hydroxypyruvate reductase active in photorespiration. In addition, the transgenic S. miltiorrhiza hairy roots overexpressing SmHPPR exhibited up to 10-fold increases in the products of hydrophilic phenolic acid pathway. In conclusion, our findings provide a new insight into the synthesis of active pharmaceutical compounds at molecular level.


Asunto(s)
Benzofuranos , Vías Biosintéticas/genética , Cinamatos , Depsidos , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Secuencia de Aminoácidos , Fenilpropionatos/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/análisis , Proteínas Recombinantes/biosíntesis , Salvia miltiorrhiza/química , Salvia miltiorrhiza/metabolismo , Alineación de Secuencia , Ácido Rosmarínico
18.
Appl Biochem Biotechnol ; 181(2): 562-572, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27613617

RESUMEN

In this study, we cloned a full-length cDNA and the genomic DNA sequence of SmCCoAOMT (GenBank ID JQ007585) from Salvia miltiorrhiza. The 744-bp open-reading frame encodes a protein of 247 amino acids that shares 95 % similarity with one in Vitis vinifera. Real-time quantitative PCR analysis revealed that SmCCoAOMT is most highly expressed in the stems and can be induced by methyl jasmonate (MeJA) and XC-1 treatment. To evaluate its function in vivo, we generated RNA interference transgenic plants through Agrobacterium tumefaciens-mediated gene transfer. Compared with untransformed control plants, the transgenics had significantly less lignin and the expression of lignin-biosynthetic genes SmCCR and SmCOMT was depressed. In 90-day-old roots from plants of transgenic line M5, accumulations of rosmarinic acid and salvianolic acid B (Sal B) were greatly reduced by 0.89- and 0.69-fold, respectively. This low-Sal B phenotype was stable in the roots, with the level of accumulation being approximately 43.58 mg g-1 dry weight, which was 52 % of the amount measured in the untransformed control. Our results suggest that SmCCoAOMT is involved in lignin biosynthesis and affects the accumulation of phenolic acids. This study also provides potential guidance for using lignin-related genes to genetically engineer Salvia miltiorrhiza.


Asunto(s)
Acilcoenzima A/química , Acilcoenzima A/metabolismo , Hidroxibenzoatos/metabolismo , Lignina/biosíntesis , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/fisiología , Relación Estructura-Actividad
19.
Plant Cell Rep ; 35(9): 1933-42, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27271760

RESUMEN

KEY MESSAGE: Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hidroxibenzoatos/metabolismo , Fosfatos/deficiencia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Salvia miltiorrhiza/enzimología , Salvia miltiorrhiza/genética , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfatos/farmacología , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Salvia miltiorrhiza/efectos de los fármacos , Salvia miltiorrhiza/metabolismo
20.
Sci Rep ; 6: 23057, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26971881

RESUMEN

Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/enzimología , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Clonación Molecular , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , ADN Complementario/química , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...