Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 258(3): 54, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515637

RESUMEN

MAIN CONCLUSION: Santalum album (E,E)-α-farnesene synthase catalyzes FPP into (E,E)-α-farnesene. Overexpression of the SaAFS gene positively improved cold stress tolerance through JA biosynthesis and signaling pathways in Arabidopsis. Volatile terpenoids are released from plants that suffer negative effects following exposure to various biotic and abiotic stresses. Recent studies revealed that (E,E)-α-farnesene synthase (AFS) plays a significant role in a plant's defence against biotic attack. However, little is known about whether AFS contributes to plant resistance to cold stress. In this study, a SaAFS gene was isolated from Indian sandalwood (Santalum album L.) and functionally characterized. The SaAFS protein mainly converts farnesyl diphosphate to (E,E)-α-farnesene. SaAFS was clustered into the AFS clade from angiosperms, suggesting a highly conserved enzyme. SaAFS displayed a significant response to cold stress and methyl jasmonate. SaAFS overexpression (OE) in Arabidopsis enhanced cold tolerance by increasing proline content, reducing malondialdehyde content, electrolyte leakage, and accumulating reactive oxygen species. Transcriptomic analysis revealed that upregulated genes related to stress response and JA biosynthesis and signaling were detected in SaAFS-OE lines compared with wild type plants that were exposed to cold stress. Endogenous JA and jasmonoyl-isoleucine content increased significantly in SaAFS-OE lines exposed to cold stress. Collectively considered, these results suggest that the SaAFS gene is a positive regulator during cold stress tolerance via JA biosynthesis and signaling pathways.


Asunto(s)
Arabidopsis , Aceites Volátiles , Santalum , Arabidopsis/metabolismo , Santalum/genética , Santalum/metabolismo , Ciclopentanos/metabolismo , Aceites Volátiles/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
2.
Gene ; 851: 146762, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35933050

RESUMEN

The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a ß-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, ß-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo , Aceites Volátiles/metabolismo , Clorofila , Clonación Molecular
3.
J Plant Physiol ; 280: 153866, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399836

RESUMEN

Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.


Asunto(s)
MicroARNs , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Plantones/metabolismo , ARN Mensajero/metabolismo , Sesquiterpenos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
4.
J Agric Food Chem ; 70(26): 8024-8031, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35729733

RESUMEN

Santalene, a major component of the sandalwood essential oil, is a typical representative of sesquiterpenes and has important applications in medicine, food, flavors, and other fields. Due to the limited supply of natural sandalwood resources, there is a growing interest in engineering microbial cell factories for the mass production of santalene. In the present study, Komagataella phaffii (also known as Pichia pastoris) was established as a cell factory for high-level production of α-santalene for the first time. The metabolic fluxes were rewired toward α-santalene biosynthesis through the optimization of promoters to drive the expression of the α-santalene synthase (SAS) gene, overexpression of the key mevalonate pathway genes (i.e., tHMG1, IDI1, and ERG20), and multi-copy integration of the SAS expression cassette. In combination with medium optimization and bioprocess engineering, the optimal strain (STE-9) was able to produce α-santalene with a titer as high as 829.8 ± 70.6 mg/L, 4.4 ± 0.3 g/L, and 21.5 ± 1.6 g/L in a shake flask, batch fermenter, and fed-batch fermenter, respectively. These represented the highest production of α-santalene ever reported, highlighting the advantages of K. phaffii cell factories for the production of terpenoids and other natural products.


Asunto(s)
Santalum , Sesquiterpenos , Ingeniería Metabólica , Sesquiterpenos Policíclicos , Saccharomycetales , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo
5.
PLoS One ; 17(4): e0252173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482775

RESUMEN

East Indian Sandalwood (Santalum album L.) is highly valued for its heartwood and its oil. There have been no efforts to comparative study of high and low oil yielding genetically identical sandalwood trees grown in similar climatic condition. Thus we intend to study a genome wide transcriptome analysis to identify the corresponding genes involved in high oil biosynthesis in S. album. In this study, 15 years old S. album (SaSHc and SaSLc) genotypes were targeted for analysis to understand the contribution of genetic background on high oil biosynthesis in S. album. A total of 28,959187 and 25,598869 raw PE reads were generated by the Illumina sequencing. 2.12 million and 1.811 million coding sequences were obtained in respective accessions. Based on the GO terms, functional classification of the CDS 21262, & 18113 were assigned into 26 functional groups of three GO categories; (4,168; 3,641) for biological process (5,758;4,971) cellular component and (5,108;4,441) for molecular functions. Total 41,900 and 36,571 genes were functionally annotated and KEGG pathways of the DEGs resulted 213 metabolic pathways. In this, 14 pathways were involved in secondary metabolites biosynthesis pathway in S. album. Among 237 cytochrome families, nine groups of cytochromes were participated in high oil biosynthesis. 16,665 differentially expressed genes were commonly detected in both the accessions (SaHc and SaSLc). The results showed that 784 genes were upregulated and 339 genes were downregulated in SaHc whilst 635 upregulated 299 downregulated in SaSLc S. album. RNA-Seq results were further validated by quantitative RT-PCR. Maximum Blast hits were found to be against Vitis vinifera. From this study, we have identified additional number of cytochrome family in high oil yielding sandalwood accessions (SaHc). The accessibility of a RNA-Seq for high oil yielding sandalwood accessions will have broader associations for the conservation and selection of superior elite samples/populations for further genetic improvement program.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Adolescente , Citocromos/metabolismo , Perfilación de la Expresión Génica , Humanos , Aceites Volátiles/metabolismo , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo
6.
Genes (Basel) ; 12(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922119

RESUMEN

Sandalwood (Santalum album L.) heartwood-derived essential oil contains a high content of sesquiterpenoids that are economically highly valued and widely used in the fragrance industry. Sesquiterpenoids are biosynthesized via the mevalonate acid and methylerythritol phosphate (MEP) pathways, which are also the sources of precursors for photosynthetic pigments. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a secondary rate-limiting enzyme in the MEP pathway. In this paper, the 1416-bp open reading frame of SaDXR and its 897-bp promoter region, which contains putative conserved cis-elements involved in stress responsiveness (HSE and TC-rich repeats), hormone signaling (abscisic acid, gibberellin and salicylic acid) and light responsiveness, were cloned from 7-year-old S. album trees. A bioinformatics analysis suggested that SaDXR encodes a functional and conserved DXR protein. SaDXR was widely expressed in multiple tissues, including roots, twigs, stem sapwood, leaves, flowers, fruit and stem heartwood, displaying significantly higher levels in tissues with photosynthetic pigments, like twigs, leaves and flowers. SaDXR mRNA expression increased in etiolated seedlings exposed to light, and the content of chlorophylls and carotenoids was enhanced in all 35S::SaDXR transgenic Arabidopsis thaliana lines, consistent with the SaDXR expression level. SaDXR was also stimulated by MeJA and H2O2 in seedling roots. α-Santalol content decreased in response to fosmidomycin, a DXR inhibitor. These results suggest that SaDXR plays an important role in the biosynthesis of photosynthetic pigments, shifting the flux to sandalwood-specific sesquiterpenoids.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Santalum/genética , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Clonación Molecular/métodos , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Complejos Multienzimáticos/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Ácido Salicílico/metabolismo , Santalum/metabolismo , Homología de Secuencia de Aminoácido
7.
Sci Rep ; 11(1): 1082, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441887

RESUMEN

Sandalwood (Santalum album L.) is famous for its unique fragrance derived from the essential oil of heartwood, whose major components are santalols. To understand the mechanism underlying the biosynthesis of santalols, in this study, we cloned two related genes involved in the mevalonate pathway in S. album coding for acetyl-CoA C-acetyl transferase (AACT) and 3-hydroxy-3-methyglutary-CoA synthase (HMGS). These genes were characterized and functionally analyzed, and their expression profiles were also assessed. An AACT gene designated as SaAACT (GenBank accession No. MH018694) and a HMGS gene designated as SaHMGS (GenBank accession No. MH018695) were successfully cloned from S. album. The deduced SaAACT and SaHMGS proteins contain 415 and 470 amino acids, and the corresponding size of their open-reading frames is 1538 bp and 1807 bp, respectively. Phylogenetic trees showed that the SaAACT protein had the closest relationship with AACT from Hevea brasiliensis and the SaHMGS proteins had the highest homology with HMGS from Siraitia grosvenorii. Functional complementation of SaAACT and SaHMGS in a mutant yeast strain deficient in these proteins confirmed that SaAACT and SaHMGS cDNA encodes functional SaAACT and SaHMGS that mediate mevalonate biosynthesis in yeast. Tissue-specific expression analysis revealed that both genes were constitutively expressed in all examined tissues (roots, sapwood, heartwood, young leaves, mature leaves and shoots) of S. album, both genes showing highest expression in roots. After S. album seedlings were treated with 100 µM methyl jasmonate, the expression levels of SaAACT and SaHMGS genes increased, suggesting that these genes were responsive to this elicitor. These studies provide insight that would allow further analysis of the role of genes related to the sandalwood mevalonate pathway in the regulation of biosynthesis of sandalwood terpenoids and a deeper understanding of the molecular mechanism of santalol biosynthesis.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/genética , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas de Plantas/genética , Santalum/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Clonación Molecular , Hidroximetilglutaril-CoA Sintasa/metabolismo , Proteínas de Plantas/metabolismo , Santalum/metabolismo
8.
Chem Biodivers ; 15(12): e1800405, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30362637

RESUMEN

This study aimed to determine the antimicrobial activity of 247 essential oil combinations against the reference strains of wound pathogens. Essential oil combinations were investigated for antimicrobial activity against five pathogens. The minimum inhibitory concentration (MIC) assay was used and the fractional inhibitory concentration index (ΣFIC) calculated to determine interactions between selected oils. Twenty-six combinations displayed broad-spectrum antimicrobial activity against all five reference strains and several displayed synergy against more than one pathogen. The combination of Santalum austrocaledonicum (sandalwood) with Commiphora myrrha (myrrh) displayed noteworthy antimicrobial activity against all five reference strains and synergy against four (MIC values 0.03-1.00 mg/ml and ΣFIC values 0.19-1.00 mg/ml) pathogens. No antagonism was observed. Santalum spp. and Vetiveria zizanioides essential oils contributed the most to antimicrobial activity in combination. Essential oil combinations are presented as a viable option in wound therapy.


Asunto(s)
Antiinfecciosos/química , Aceites Volátiles/química , Antiinfecciosos/farmacología , Chrysopogon/química , Chrysopogon/metabolismo , Commiphora/química , Commiphora/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Santalum/química , Santalum/metabolismo , Staphylococcus aureus/efectos de los fármacos
9.
PLoS One ; 13(8): e0202649, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30130375

RESUMEN

This paper presents a method for predicting the total nitrogen content in sandalwood using digital image processing. The goal of this study is to provide a real-time, efficient, and highly automated nutritional diagnosis system for producers by analyzing images obtained in forests. Using images acquired from field servers, which were installed in six forest farms of different cities located in northern Hainan Province, we propose a new segmentation algorithm and define a new indicator named "growth status" (GS), which includes two varieties: GSMER (the ratio of sandalwood pixels to the minimum enclosing rectangle pixels) and GSMCC (the ratio of sandalwood pixels to minimum circumscribed circle pixels). We used the error-in-variable model by considering the errors that exist in independent variables. After comparison and analysis, the obtained results show that (1) The b and L channels in the Lab color system have complementary advantages. By combining this system with the Otsu method, median filtering and a morphological operation, sandalwood can be separated from the background. (2) The fitting degree of the models improves after adding the GS indicator and shows that GSMCC performs better than GSMER. (3) After using the error-in-variable model to estimate the parameters, the accuracy and precision of the model improved compared to the results obtained using the least squares method. The optimal model for predicting the total nitrogen content is [Formula: see text]. This study demonstrates the use of Internet of Things technology in forestry and provides guidance for the nutritional diagnosis of the important sandalwood tree species.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Nitrógeno/química , Hojas de la Planta/química , Santalum/química , Algoritmos , Agricultura Forestal , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Santalum/metabolismo , Santalum/ultraestructura , Árboles
10.
Tree Physiol ; 38(3): 311-319, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633414

RESUMEN

The development of heartwood (HW) and the associated accumulation of secondary metabolites, which are also known as 'specialized metabolites' or 'extractives', is an important feature of tree biology. Heartwood development can affect tree health with broader implications for forest health. Heartwood development also defines a variety of wood quality traits that are important in the forest industry such as durability and colour of wood products. In the bioproducts industry, HW provides a source of high-value small molecules such as fragrances and antimicrobials. The HW properties of decay resistance in living trees, durability and colour of wood products, and small molecule bioproducts are largely defined by secondary metabolites, the biosynthesis of which appears to be activated during the onset of HW formation. Traditionally, it is thought that HW formation involves a spike in the activity of secondary metabolism in parenchyma cells in a transition zone between sapwood and HW, followed by programmed cell-death. The resulting HW tissue is thought to consist entirely of dead cells. Here, we discuss a variation of existing models of HW formation, based on the recent discovery of HW-specific transcriptome signatures of terpenoid biosynthesis in sandalwood (Santalum album L.) that invokes the activity of living cells in HW.


Asunto(s)
Genómica , Santalum/genética , Santalum/metabolismo , Metabolismo Secundario , Terpenos/metabolismo , Transcriptoma , Madera/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Chromatogr A ; 1495: 64-75, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28343686

RESUMEN

In the fields of essential oils and fragrances, samples often consist of mixtures of compounds with similar structural and physical characteristics (e.g. mono- and sesquiterpenoids), whose correct identification closely depends on the synergic combination of chromatographic and mass spectral data. This sample complexity means that new GC stationary phases with different selectivities are continually being investigated. Ionic liquids (ILs) are of great interest as GC stationary phases in this field because of their selectivity (significantly different than that of currently phases) and their high temperature stability. A first generation of IL GC columns was found to be competitive when applied to these field, in terms of selectivity and efficiency, compared to conventional columns (polydimethylsiloxane, (e.g. OV-1), methyl-polysiloxane 5%-phenyl (e.g. SE-52), 7%-cyanopropyl, 7%-phenyl polysiloxane (e.g. OV-1701), and polyethylen glycol (e.g. PEG-20M). However, these columns showed significant activity towards polar or active analytes, which primarily affected their quantitative performance. A new generation of highly-inactive columns coated with three of the most widely-used ionic liquid GC stationary phases has recently been introduced; these phases are SLB-IL60i (1,12-di(tripropylphosphonium) dodecane bis(trifluoromethylsulfonyl) imide [NTf2], SLB-IL76i (tri-(tripropylphosphonium-hexanamido)-triethylamine [NTf2]), and SLB-IL111i (1,5-di (2,3-dimethyllimidazolium) pentane [NTf2]). This study carefully tested the new inert IL columns, in view of their routine application in the fragrance and essential oil fields. They were found to have unusually high selectivity, comparable to that of first-generation IL columns, while their inertness and efficiency were competitive with those of currently-used conventional columns. The IL column performance of first and second generations was compared, through the quali-quantitative analysis of components in a group of different complexity samples; these included the Grob test, a standard mixture of "suspected" skin allergens, and the essential oils of chamomile and sandalwood.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Líquidos Iónicos/química , Aceites Volátiles/análisis , Alérgenos/análisis , Farnesol/análisis , Aceites Volátiles/química , Extractos Vegetales/química , Sesquiterpenos Policíclicos , Santalum/química , Santalum/metabolismo , Sesquiterpenos/análisis , Estereoisomerismo
12.
Sci Rep ; 7: 42165, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169358

RESUMEN

Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0-48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Santalum/genética , Transcriptoma , Antioxidantes/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Frío , Perfilación de la Expresión Génica , Malondialdehído/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Aceites de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Prolina/metabolismo , Santalum/crecimiento & desarrollo , Santalum/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal , Terpenos/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
13.
Methods Enzymol ; 576: 47-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27480682

RESUMEN

Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols.


Asunto(s)
Genes de Plantas , Genómica/métodos , Ingeniería Metabólica/métodos , Aceites de Plantas/metabolismo , Santalum/enzimología , Santalum/genética , Sesquiterpenos/metabolismo , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Metaboloma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos Policíclicos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Santalum/metabolismo , Biología Sintética/métodos , Transcriptoma
14.
Plant J ; 86(4): 289-99, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26991058

RESUMEN

Tropical sandalwood (Santalum album) produces one of the world's most highly prized fragrances, which is extracted from mature heartwood. However, in some places such as southern India, natural populations of this slow-growing tree are threatened by over-exploitation. Sandalwood oil contains four major and fragrance-defining sesquiterpenols: (Z)-α-santalol, (Z)-ß-santalol, (Z)-epi-ß-santalol and (Z)-α-exo-bergamotol. The first committed step in their biosynthesis is catalyzed by a multi-product santalene/bergamotene synthase. Sandalwood cytochromes P450 of the CYP76F sub-family were recently shown to hydroxylate santalenes and bergamotene; however, these enzymes produced mostly (E)-santalols and (E)-α-exo-bergamotol. We hypothesized that different santalene/bergamotene hydroxylases evolved in S. album to stereo-selectively produce (E)- or (Z)-sesquiterpenols, and that genes encoding (Z)-specific P450s contribute to sandalwood oil formation if co-expressed in the heartwood with upstream genes of sesquiterpene biosynthesis. This hypothesis was validated by the discovery of a heartwood-specific transcriptome signature for sesquiterpenoid biosynthesis, including highly expressed SaCYP736A167 transcripts. We characterized SaCYP736A167 as a multi-substrate P450, which stereo-selectively produces (Z)-α-santalol, (Z)-ß-santalol, (Z)-epi-ß-santalol and (Z)-α-exo-bergamotol, matching authentic sandalwood oil. This work completes the discovery of the biosynthetic enzymes of key components of sandalwood fragrance, and highlights the evolutionary diversification of stereo-selective P450s in sesquiterpenoid biosynthesis. Bioengineering of microbial systems using SaCYP736A167, combined with santalene/bergamotene synthase, has potential for development of alternative industrial production systems for sandalwood oil fragrances.


Asunto(s)
Vías Biosintéticas , Aceites de Plantas/metabolismo , Santalum/metabolismo , Sesquiterpenos/metabolismo , Transcriptoma , Sistema Enzimático del Citocromo P-450/metabolismo , Genes de Plantas , Filogenia , Aceites de Plantas/química , Sesquiterpenos Policíclicos , Santalum/enzimología , Santalum/genética , Sesquiterpenos/química
15.
Sci Rep ; 5: 10095, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25976282

RESUMEN

Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, ß-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.


Asunto(s)
Aceites de Plantas/metabolismo , Santalum/enzimología , Santalum/genética , Sesquiterpenos/metabolismo , Secuencia de Bases , Clonación Molecular , ADN de Plantas/genética , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Santalum/metabolismo , Análisis de Secuencia de ADN , Transcriptoma/genética
16.
PLoS One ; 8(9): e75053, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324844

RESUMEN

Sandalwood oil is one of the world's most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, ß-, and epi-ß-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, ß-, and epi-ß-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Aceites de Plantas/metabolismo , Santalum/metabolismo , Sesquiterpenos/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , ADN Complementario/genética , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Isoenzimas , Cinética , Filogenia , Aceites de Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos Policíclicos , Santalum/clasificación , Santalum/genética , Sesquiterpenos/química , Especificidad por Sustrato , Levaduras/genética , Levaduras/metabolismo
17.
Gene ; 527(2): 642-8, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23860319

RESUMEN

Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-ß-santalene, ß-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis.


Asunto(s)
Santalum/metabolismo , Sesquiterpenos/metabolismo , Secuencia de Bases , Catálisis , Cartilla de ADN , Hibridación de Ácido Nucleico , Sesquiterpenos Policíclicos , Reacción en Cadena de la Polimerasa , Técnica de Sustracción
18.
Tree Physiol ; 33(5): 464-74, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23604744

RESUMEN

Nutrient translocation from a host plant is vital to the growth and survival of its root parasitic plant, but few studies have investigated whether a parasitic plant is also able to transfer nutrients to its host. The role of N2-fixation in nitrogen (N) transfer between 7-month-old Dalbergia odorifera T. Chen nodulated with Bradyrhizobium elkanii DG and its hemiparasite Santalum album Linn. was examined by external (15)N labeling in a pot study. Four paired treatments were used, with (15)N given to either host or hemiparasite and the host either nodulated or grown on combined N. N2-fixation supplied 41-44% of total N in D. odorifera. Biomass, N and (15)N contents were significantly greater in both nodulated D. odorifera and S. album grown with paired nodulated D. odorifera. Significantly higher total plant (15)N recovery was in N donor D. odorifera (68-72%) than in N donor S. album (42-44%), regardless of the nodulation status in D. odorifera. Nitrogen transfer to S. album was significantly greater (27.8-67.8 mg plant(-1)) than to D. odorifera (2.0-8.9 mg plant(-1)) and 2.4-4.5 times greater in the nodulated pair than in the non-nodulated pair. Irrespective of the nodulation status, S. album was always the N-sink plant. The amount of two-way N transfer was increased by the presence of effective nodules, resulting in a greater net N transfer (22.6 mg plant(-1)) from host D. odorifera to hemiparasite S. album. Our results may provide N management strategies for D. odorifera/S. album mixed plantations in the field.


Asunto(s)
Bradyrhizobium/metabolismo , Dalbergia/metabolismo , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Nodulación de la Raíz de la Planta , Santalum/metabolismo , Transporte Biológico , Biomasa , Bradyrhizobium/crecimiento & desarrollo , Dalbergia/crecimiento & desarrollo , Isótopos de Nitrógeno/análisis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Santalum/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/metabolismo
19.
PLoS One ; 7(9): e44830, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984571

RESUMEN

Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS) based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM) induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine), amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose), nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils and provide the basis for pinpointing affected pathways in anxiety-related behavior, which will lead to an improved mechanistic understanding of anxiolytic effect of essential oils.


Asunto(s)
Aceites Volátiles/farmacología , Aerosoles , Animales , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Citrus sinensis/metabolismo , Femenino , Lavandula/metabolismo , Espectrometría de Masas/métodos , Aprendizaje por Laberinto , Metabolómica , Extractos Vegetales/metabolismo , Ratas , Ratas Wistar , Salvia/metabolismo , Santalum/metabolismo , Olfato/efectos de los fármacos
20.
Methods Mol Biol ; 547: 325-35, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19521856

RESUMEN

A bench-top bioreactor allowing continuous extraction of secondary metabolites is designed for Catharanthus roseus L. (G.) Don (periwinkle) and Santalum album L. (sandalwood) plant cell suspensions. Periwinkle cell cultures are exposed to biotic elicitors (Aspergillus niger, crude chitin) and abiotic elicitors (mannitol, methyl jasmonate) to induce alkaloid production. Whereas most of the biotic elicitors are effective when added on day 15 of culture, the abiotic elicitors are effective when added on day 20. The use of trans-cinnamic acid, an inhibitor of phenylalanine ammonia lyase (PAL) activity, results in significant increase in the alkaloid production of periwinkle cell cultures. Exposure of the cells to mannitol-induced osmotic stress produced marked increment in the total alkaloid production. When biotic and abiotic stress treatments are applied sequentially, an additive effect in alkaloid accumulation is observed. Although no essential oils are detected, secondary metabolites in the form of phenolics are produced by the sandalwood cell cultures in the bioreactor environment. The use of morphologic modification such as organ cultures and transformed cultures is believed to be required for both production and storage of essential oil constituents in sandalwood. The present chapter demonstrates that periwinkle and sandalwood cell suspensions could be developed and successfully cultured in a modified air-lift bioreactor. The exploitation of variant cell strains and biotransformation of added precursors can certainly improve the use of periwinkle and sandalwood cell cultures for the bioproduction of desired compounds.


Asunto(s)
Reactores Biológicos , Catharanthus/metabolismo , Santalum/metabolismo , Alcaloides/metabolismo , Catharanthus/citología , Células Cultivadas , Aceites Volátiles/metabolismo , Fenoles/metabolismo , Santalum/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...