Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Lab Anal ; 35(9): e23928, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34329518

RESUMEN

BACKGROUND: Serum creatinine is a widely used biomarker for evaluating renal function. Sarcosine oxidase enzymatic (SOE) analysis is currently the most widely used method for the detection of creatinine. This method was negatively interfered with by calcium dobesilate, causing pseudo-reduced results. The aim of this study was to explore a new method to alleviate the negative interference of this drug on creatinine detection. METHOD: We formulated eight drug concentrations and 12 creatinine concentrations from serum. The SOE method, the new method, and the Jaffe method were used for detection in five systems. Creatinine biases were analyzed under the conditions with or without the interference of calcium dobesilate, at consistent or inconsistent creatinine concentrations. Creatinine concentrations were also analyzed at three medical decision levels (MDLs). RESULTS: Calcium dobesilate had negative interference in creatinine SOE analysis. With the increase in calcium dobesilate concentrations, the negative bias increases. The new BG method showed an anti-negative interference effect. In the Roche system, the BG method reduced the negative bias from -71.11% to -16.7%. In the Abbott system, bias was reduced from -45.15% to -2.74%. In the Beckman system, the bias was reduced from -65.36% to -7.58%. In the Siemens system, the bias was reduced from -58.62% to -7.58%. In the Mindray system, the bias was reduced from -36.29% to -6.84%. CONCLUSION: The new method alleviated the negative interference of calcium dobesilate in creatinine SOE detection. The negative bias could be reduced from -60% or -70% to less than -20%.


Asunto(s)
Biomarcadores/sangre , Dobesilato de Calcio/farmacología , Pruebas Enzimáticas Clínicas/métodos , Creatinina/sangre , Enfermedades Renales/diagnóstico , Sarcosina-Oxidasa/efectos de los fármacos , Artefactos , Análisis Químico de la Sangre , Hemostáticos/farmacología , Humanos , Enfermedades Renales/sangre , Pruebas de Función Renal , Sarcosina-Oxidasa/sangre
2.
Medicine (Baltimore) ; 94(23): e905, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26061311

RESUMEN

The vasoprotective drug calcium dobesilate is known to interfere with creatinine (Cr) quantifications in sarcosine oxidase enzymatic (SOE) assays. The aim of this study was to investigate this interference in 8 different commercially available assays and to determine its clinical significance. In in vitro experiments, interference was evaluated at 3 Cr levels. For this, Cr was quantified by SOE assays in pooled serum supplemented with calcium dobesilate at final concentrations of 0, 2, 4, 8, 16, 32, and 64 µg/mL. Percent bias was calculated relative to the drug-free specimen. For in vivo analyses, changes in serum concentrations of Cr, cystatin C (CysC; a renal function marker), and calcium dobesilate were monitored in healthy participants of group I before and after oral calcium dobesilate administration. In addition, variations in interference were also examined among different SOE assays using serum obtained from healthy participants of group II. Lastly, Cr levels from the 10 patients treated with calcium dobesilate were measured using 4 SOE assays and liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) for comparison. Our in vitro analyses indicated that the presence of 8 µg/mL calcium dobesilate resulted in a -4.4% to -36.3% reduction in Cr serum concentration compared to drug-free serum for 8 SOE assays examined. In vivo, Cr values decreased relative to the baseline level with increasing drug concentration, with the lowest Cr levels obtained at 2 or 3 hours after drug administration in participants of group I. The observed Cr concentrations for participants in group II were reduced by -28.5% to -3.1% and -60.5% to -11.6% at 0 and 2 hours after administration related to baseline levels. The Cr values of 10 patients measured by Roche, Beckman, Maker, and Merit Choice SOE assays showed an average deviation of -20.0%, -22.4%, -14.2%, and -29.6%, respectively, compared to values obtained by LC-IDMS/MS. These results revealed a clinically significant negative interference with calcium dobesilate in all sarcosine oxidase-based Cr assays, but the degree of interference varied greatly among the assays examined. Thus, extra care should be taken in evaluating Cr quantification obtained by SOE assays in patients undergoing calcium dobesilate therapy.


Asunto(s)
Dobesilato de Calcio/farmacología , Pruebas Enzimáticas Clínicas , Creatinina/sangre , Sarcosina-Oxidasa/sangre , Sarcosina-Oxidasa/efectos de los fármacos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Biochemistry ; 45(31): 9454-62, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16878980

RESUMEN

Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstable complex with FAD (K(d) = 100 muM), similar to that observed with wild-type apoMSOX where the complex is formed as an intermediate during covalent flavin attachment. In situ reconstitution of sarcosine oxidase activity is achieved by assaying apoCys315Ala in the presence of FAD or 8-nor-8-chloroFAD, an analogue with an approximately 55 mV higher reduction potential. After correction for an estimated 65% reconstitutable apoprotein, the specific activity of apoCys315Ala in the presence of excess FAD or 8-nor-8-chloroFAD is 14% or 80%, respectively, of that observed with wild-type MSOX. Unlike oxidized flavin, apoCys315Ala exhibits a high affinity for reduced flavin, as judged by results obtained with reduced 5-deazaFAD (5-deazaFADH(2)) where the estimated binding stoichiometry is unaffected by dialysis. The Cys315Ala.5-deazaFADH(2) complex is also air-stable but is readily oxidized by sarcosine imine, a reaction accompanied by release of weakly bound oxidized 5-deazaFAD. The dramatic difference in the binding affinity of apoCys315Ala for oxidized and reduced flavin indicates that the protein environment must induce a sizable increase in the reduction potential of noncovalently bound flavin (DeltaE(m) approximately 120 mV). The covalent flavin linkage prevents loss of weakly bound oxidized FAD and also modulates the flavin reduction potential in conjunction with the protein environment.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Cisteína/química , Flavina-Adenina Dinucleótido/química , Sarcosina-Oxidasa/química , Apoproteínas/química , Apoproteínas/genética , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/genética , Catálisis , Cisteína/genética , Flavina-Adenina Dinucleótido/análogos & derivados , Flavina-Adenina Dinucleótido/farmacología , Mutación , Sarcosina-Oxidasa/efectos de los fármacos , Sarcosina-Oxidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA