Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 723
Filtrar
1.
Parasit Vectors ; 17(1): 207, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720339

RESUMEN

BACKGROUND: Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS: We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS: Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS: Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.


Asunto(s)
Variación Genética , Interacciones Huésped-Parásitos , Schistosoma japonicum , Animales , Schistosoma japonicum/genética , Interacciones Huésped-Parásitos/genética , Evolución Molecular , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética , Selección Genética , Schistosoma haematobium/genética , Schistosoma mansoni/genética , Evolución Biológica , Esquistosomiasis Japónica/parasitología
2.
Parasit Vectors ; 17(1): 147, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515113

RESUMEN

BACKGROUND: The elimination of schistosomiasis remains a challenging task, with current measures primarily focused on the monitoring and control of Oncomelania hupensis (O. hupensis) snail, the sole intermediate host of Schistosome japonicum. Given the emerging, re-emerging, and persistent habitats of snails, understanding their genetic diversity might be essential for their successful monitoring and control. The aims of this study were to analyze the genetic diversity of Oncomelania hupensis robertsoni (O. h. robertsoni) using microsatellite DNA markers; and validate the applicability of previously identified microsatellite loci for O. hupensis in hilly regions. METHODS: A total of 17 populations of O. h. robertsoni from Yunnan Province in China were selected for analysis of genetic diversity using six microsatellite DNA polymorphic loci (P82, P84, T4-22, T5-11, T5-13, and T6-27). RESULTS: The number of alleles among populations ranged from 0 to 19, with an average of 5. The average ranges of expected (He) and observed (Ho) heterozygosity within populations were 0.506 to 0.761 and 0.443 to 0.792, respectively. The average fixation index within the population ranged from - 0.801 to 0.211. The average polymorphic information content (PIC) within the population ranged from 0.411 to 0.757, appearing to be polymorphic for all loci (all PIC > 0.5), except for P28 and P48. A total of 68 loci showed significant deviations from Hardy-Weinberg equilibrium (P < 0.05), and pairwise Fst values ranged from 0.051 to 0.379. The analysis of molecular variance indicated that 88% of the variation occurred within snail populations, whereas 12% occurred among snail populations. Phylogenetic trees and principal coordinate analysis revealed two distinct clusters within the snail population, corresponding to "Yunnan North" and "Yunnan South". CONCLUSIONS: O. h. robertsoni exhibited a relatively high level of genetic differentiation, with variation chiefly existing within snail populations. All snail in this region could be separated into two clusters. The microsatellite loci P82 and P84 might not be suitable for classification studies of O. hupensis in hilly regions. These findings provided important information for the monitoring and control of snail, and for further genetic diversity studies on snail populations.


Asunto(s)
Gastrópodos , Schistosoma japonicum , Animales , Schistosoma japonicum/genética , Filogenia , China/epidemiología , Repeticiones de Microsatélite , ADN , Variación Genética
3.
Parasit Vectors ; 17(1): 114, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449022

RESUMEN

BACKGROUND: Schistosomiasis, a neglected tropical disease, remains an important public health problem. Although there are various methods for diagnosing schistosomiasis, many limitations still exist. Early diagnosis and treatment of schistosomiasis can significantly improve survival and prognosis of patients. METHODOLOGY: Circulating cell-free (cf)DNA has been widely used in the diagnosis of various diseases. In our study, we evaluated the diagnostic value of circulating cfDNA for schistosomiasis caused by Schistosoma japonicum. We focused on the tandem sequences and mitochondrial genes of S. japonicum to identify highly sensitive and specific targets for diagnosis of Schistosomiasis japonica. RESULTS: Through data screening and analysis, we ultimately identified four specific tandem sequences (TD-1, TD-2, TD-3. and TD-4) and six mitochondrial genes (COX1(1), COX1(2), CYTB, ATP6, COX3, and ND5). We designed specific primers to detect the amount of circulating cfDNA in S. japonicum-infected mouse and chronic schistosomiasis patients. Our results showed that the number of tandem sequences was significantly higher than that of the mitochondrial genes. A S. japonicum infection model in mice suggested that infection of S. japonicum can be diagnosed by detecting circulating cfDNA as early as the first week. We measured the expression levels of circulating cfDNA (TD-1, TD-2, and TD-3) at different time points and found that TD-3 expression was significantly higher than that of TD-1 or TD-2. We also infected mice with different quantities of cercariae (20 s and 80 s). The level of cfDNA (TD-3) in the 80 s infection group was significantly higher than in the 20 s infection group. Additionally, cfDNA (TD-3) levels increased after egg deposition. Meanwhile, we tested 42 patients with chronic Schistosomiasis japonica and circulating cfDNA (TD-3) was detected in nine patients. CONCLUSIONS: We have screened highly sensitive targets for the diagnosis of Schistosomiasis japonica, and the detection of circulating cfDNA is a rapid and effective method for the diagnosis of Schistosomiasis japonica. The levels of cfDNA is correlated with cercariae infection severity. Early detection and diagnosis of schistosomiasis is crucial for patient treatment and improving prognosis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Schistosoma japonicum , Esquistosomiasis Japónica , Humanos , Animales , Ratones , Esquistosomiasis Japónica/diagnóstico , Biomarcadores , Schistosoma japonicum/genética , Cercarias
4.
Parasit Vectors ; 17(1): 116, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454463

RESUMEN

BACKGROUND: Schistosomiasis is a disease primarily caused by eggs laid by pathogens called schistosomes. Among the schistosome species infecting humans, Schistosoma japonicum possesses the largest fecundity; each adult female produces an average of 3500 eggs per day. The lack of proper culture conditions supporting continuous oviposition in vitro has precluded detailed investigation of mechanisms regulating sexual maturation and egg production in Schistosoma japonicum. METHODS: We optimized in vitro culture conditions by replacing reagents that are part of the classical ABC169 medium. Fast Blue BB staining and 4',6-diamidino-2-phenylindole (DAPI) labeling were applied to observe the sexual development status of the females. In vitro RNA interference (RNAi) technology was used to validate the capability of the modified medium. The detection of male ß-alanyl-tryptamine (BATT) was conducted using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Both m-AB169 (1640) and AB169 (1640) media are capable of facilitating the sexual development of paired virgin female S. japonicum, as well as sustaining the mature reproductive organs and egg production of adult S. japonicum for at least 22 days in vitro. M-AB169 (1640) provided a more stable condition for supporting the sexual maturity of female S. japonicum, as evidenced by the consistent initiation of egg production compared with AB169 (1640). Through a comparative analysis of S. japonicum and S. mansoni in diverse media, we demonstrated that these closely related species display distinct demands for their sexual development and egg production, suggesting a potential influence of nutritional factors on the observed variations in host ranges among different schistosome species. Importantly, we successfully identified the presence of the pheromone ß-alanyl-tryptamine (BATT) in S. japonicum, previously identified in S. mansoni, highlighting its conserved role in schistosome reproductive development. Through the employment of double-stranded RNA (dsRNA) treatment to silence two genes that are involved in either the male (gli1, glioma-associated oncogene homolog 1) or female (vf1, vitellogenic factor 1) side in male-induced female reproductive development of S. mansoni, we confirmed that the combination of m-AB169 (1640) and RNAi technology has the capacity to facilitate in vitro studies of S. japonicum's reproductive and oviposition processes. CONCLUSIONS: We developed a novel medium, m-AB169 (1640), that not only maintains the mature reproductive organs and continuous oviposition of adult female Schistosoma japonicum for up to 22 days but also supports the reproductive development and subsequent egg-laying of virgin females after pairing with male worms. This study provides a valuable in vitro platform for functional studies of the mechanisms underlying the fascinating biology of the female sexual development and egg production of S. japonicum, which may accelerate the development of new strategies targeting schistosome egg production.


Asunto(s)
Schistosoma japonicum , Schistosomatidae , Humanos , Animales , Masculino , Femenino , Schistosoma japonicum/genética , Oviposición , Reproducción , Genitales Femeninos , Triptaminas
5.
Microbiol Spectr ; 12(4): e0373523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441977

RESUMEN

Schistosomiasis japonica is one of the neglected tropical diseases characterized by chronic hepatic, intestinal granulomatous inflammation and fibrosis, as well as dysbiosis of intestinal microbiome. Previously, the probiotic Bacillus amyloliquefaciens has been shown to alleviate the pathological injuries in mice infected with Schistosoma japonicum by improving the disturbance of the intestinal microbiota. However, the underlying mechanisms involved in this process remain unclear. In this study, metagenomics sequencing and functional analysis were employed to investigate the differential changes in taxonomic composition and functional genes of the intestinal microbiome in S. japonicum-infected mice treated with B. amyloliquefaciens. The results revealed that intervention with B. amyloliquefaciens altered the taxonomic composition of the intestinal microbiota at the species level in infected mice and significantly increased the abundance of beneficial bacteria. Moreover, the abundance of predicted genes in the intestinal microbiome was also significantly changed, and the abundance of xfp/xpk and genes translated to urease was significantly restored. Further analysis showed that Limosilactobacillus reuteri was positively correlated with several KEGG Orthology (KO) genes and metabolic reactions, which might play important roles in alleviating the pathological symptoms caused by S. japonicum infection, indicating that it has the potential to function as another effective therapeutic agent for schistosomiasis. These data suggested that treatment of murine schistosomiasis japonica by B. amyloliquefaciens might be induced by alterations in the taxonomic composition and functional gene of the intestinal microbiome in mice. We hope this study will provide adjuvant strategies and methods for the early prevention and treatment of schistosomiasis japonica. IMPORTANCE: Targeted interventions of probiotics on gut microbiome were used to explore the mechanism of alleviating schistosomiasis japonica. Through metagenomic analysis, there were significant changes in the composition of gut microbiota in mice infected with Schistosoma japonicum and significant increase in the abundance of beneficial bacteria after the intervention of Bacillus amyloliquefaciens. At the same time, the abundance of functional genes was found to change significantly. The abundance of genes related to urease metabolism and xfp/xpk related to D-erythrose 4-phosphate production was significantly restored, highlighting the importance of Limosilactobacillus reuteri in the recovery and abundance of predicted genes of the gut microbiome. These results indicated potential regulatory mechanism between the gene function of gut microbiome and host immune response. Our research lays the foundation for elucidating the regulatory mechanism of probiotic intervention in alleviating schistosomiasis japonica, and provides potential adjuvant treatment strategies for early prevention and treatment of schistosomiasis japonica.


Asunto(s)
Bacillus amyloliquefaciens , Microbioma Gastrointestinal , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Ratones , Esquistosomiasis Japónica/tratamiento farmacológico , Ureasa , Schistosoma japonicum/genética , Bacterias/genética
6.
Infect Dis Poverty ; 13(1): 19, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414088

RESUMEN

BACKGROUND: Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China, the Philippines and Indonesia. Oncomelania hupensis (Gastropoda: Pomatiopsidae) is the unique intermediate host of S. japonicum. A complete genome sequence of O. hupensis will enable the fundamental understanding of snail biology as well as its co-evolution with the S. japonicum parasite. Assembling a high-quality reference genome of O. hupehensis will provide data for further research on the snail biology and controlling the spread of S. japonicum. METHODS: The draft genome was de novo assembly using the long-read sequencing technology (PacBio Sequel II) and corrected with Illumina sequencing data. Then, using Hi-C sequencing data, the genome was assembled at the chromosomal level. CAFE was used to do analysis of contraction and expansion of the gene family and CodeML module in PAML was used for positive selection analysis in protein coding sequences. RESULTS: A total length of 1.46 Gb high-quality O. hupensis genome with 17 unique full-length chromosomes (2n = 34) of the individual including a contig N50 of 1.35 Mb and a scaffold N50 of 75.08 Mb. Additionally, 95.03% of these contig sequences were anchored in 17 chromosomes. After scanning the assembled genome, a total of 30,604 protein-coding genes were predicted. Among them, 86.67% were functionally annotated. Further phylogenetic analysis revealed that O. hupensis was separated from a common ancestor of Pomacea canaliculata and Bellamya purificata approximately 170 million years ago. Comparing the genome of O. hupensis with its most recent common ancestor, it showed 266 significantly expanded and 58 significantly contracted gene families (P < 0.05). Functional enrichment of the expanded gene families indicated that they were mainly involved with intracellular, DNA-mediated transposition, DNA integration and transposase activity. CONCLUSIONS: Integrated use of multiple sequencing technologies, we have successfully constructed the genome at the chromosomal-level of O. hupensis. These data will not only provide the compressive genomic information, but also benefit future work on population genetics of this snail as well as evolutional studies between S. japonicum and the snail host.


Asunto(s)
Gastrópodos , Schistosoma japonicum , Animales , Humanos , Schistosoma japonicum/genética , Filogenia , Gastrópodos/genética , Cromosomas/genética , ADN , China
7.
PLoS Pathog ; 20(1): e1011949, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38285715

RESUMEN

Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite's developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S. japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385, which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.


Asunto(s)
Parásitos , ARN Largo no Codificante , Schistosoma japonicum , Esquistosomiasis , Animales , Masculino , Femenino , Schistosoma japonicum/genética , ARN Largo no Codificante/genética , ARN sin Sentido/genética , Esquistosomiasis/parasitología , Parásitos/genética , Mamíferos
8.
Sci Rep ; 14(1): 2347, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281987

RESUMEN

Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.


Asunto(s)
MicroARNs , Schistosoma japonicum , Animales , Masculino , Femenino , Schistosoma japonicum/genética , MicroARNs/genética , Estadios del Ciclo de Vida/genética , ARN de Helminto/genética
9.
Parasit Vectors ; 16(1): 453, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093363

RESUMEN

Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.


Asunto(s)
Biomphalaria , Schistosoma japonicum , Esquistosomiasis , Animales , Humanos , Schistosoma japonicum/genética , Esquistosomiasis/parasitología , Biomphalaria/parasitología , Bulinus , Schistosoma mansoni
10.
Parasite ; 30: 59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084940

RESUMEN

Schistosoma japonicum is one of the major infectious agents of human schistosomiasis, mainly endemic in China and the Philippines. We have previously reported the finding of two schistosome isolates, each with a different cercarial emergence pattern adapted to their different hosts. However, there are currently no whole-genome sequencing studies to investigate the underlining genetics of the adaptive traits. We sampled schistosomes in 2013 and 2020 from a hilly area Shitai (ST) and a marshland area Hexian (HX) of Anhui, China. Ten to 15 male or female adult worms from each site/year were sent for whole genome sequencing. Genetics were analyzed, and selection signals along genomes were detected. Gene enrichment analysis was performed for the genome regions under selection. The results revealed considerable genetic differentiation between the two isolates. The genome "windows" affected by natural selection were fewer in ST (64 windows containing 78 genes) than in HX (318 windows containing 276 genes). Twelve significantly enriched genes were identified in ST, but none in HX. These genes were mainly related to specific DNA binding and intercellular signaling transduction. Some functional region changes identified along the genome of the hilly schistosome may be related to its unique late afternoon cercarial emergence.


Title: Différence génétique entre deux isolats de Schistosoma japonicum présentant des schémas contrastés d'émergence de cercaires, révélés par séquençage du génome entier. Abstract: Schistosoma japonicum est l'un des principaux agents infectieux de la schistosomiase humaine, principalement endémique en Chine et aux Philippines. Nous avons précédemment rapporté la découverte de deux isolats de schistosomes, chacun présentant un schéma différent d'émergence de cercaires, adapté à leurs différents hôtes. Cependant, il n'existe actuellement aucune étude de séquençage du génome entier pour comprendre la génétique sous-jacente aux traits adaptatifs. Nous avons échantillonné des schistosomes en 2013 et 2020 dans une zone de collines de Shitai (ST) et une zone marécageuse de Hexian (HX) de l'Anhui, en Chine. Dix à 15 vers adultes mâles ou femelles de chaque site/année ont été envoyés pour séquençage du génome entier. La génétique a été analysée et des signaux de sélection le long des génomes ont été détectés. Une analyse d'enrichissement génétique a été réalisée pour les régions du génome sélectionnées. Les résultats ont révélé une différenciation génétique considérable entre deux isolats. Les « fenêtres ¼ du génome affectées par la sélection naturelle étaient moins nombreuses dans ST (64 fenêtres contenant 78 gènes) que dans HX (318 fenêtres contenant 276 gènes). Douze gènes significativement enrichis ont été identifiés dans ST mais aucun dans HX. Ces gènes étaient principalement liés à la liaison spécifique à l'ADN et à la transduction de la signalisation intercellulaire. Certains changements de régions fonctionnelles identifiés le long du génome du schistosome des collines peuvent être liés à son émergence cercarienne exceptionnelle en fin d'après-midi.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Masculino , Femenino , Humanos , Schistosoma japonicum/genética , Esquistosomiasis Japónica/epidemiología , Fenotipo , Cercarias/genética , China/epidemiología , Secuenciación Completa del Genoma
11.
Vet Res ; 54(1): 116, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049816

RESUMEN

Schistosomiasis is a neglected tropical disease that affects humans and animals in tropical and subtropical regions worldwide. Schistosome eggs are responsible for the pathogenesis and transmission of schistosomiasis, thus reducing egg production is vital for prevention and control of schistosomiasis. However, the mechanisms underlying schistosome reproduction remain unclear. Annexin proteins (ANXs) are involved in the physiological and pathological functions of schistosomes, but the specific regulatory mechanisms and roles of ANX A13 in the development of Schistosoma japonicum and host-parasite interactions remain poorly understood. Therefore, in this study, the expression profiles of SjANX A13 at different life cycle stages of S. japonicum were assessed using quantitative PCR. In addition, the expression profiles of the homolog in S. mansoni were analyzed in reference to public datasets. The results of RNA interference showed that knockdown of SjANX A13 significantly affected the development and egg production of female worms in vivo. The results of an immune protection assay showed that recombinant SjANX A13 increased production of immunoglobulin G-specific antibodies. Finally, co-culture of S. japonicum exosomes with LX-2 cells using a transwell system demonstrated that SjANX A13 is involved in host-parasite interactions via exosomes. Collectively, these results will help to clarify the roles of SjANX A13 in the development of S. japonicum and host-parasite interactions as a potential vaccine candidate.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis , Humanos , Femenino , Animales , Schistosoma japonicum/genética , Esquistosomiasis/veterinaria , Inmunoglobulina G , Reproducción , Anexinas/metabolismo
12.
Cell Commun Signal ; 21(1): 366, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129877

RESUMEN

BACKGROUND: Macrophages and neutrophils are rapidly recruited around Schistosome eggs to form granulomas. Extracellular traps (ETs) of macrophages and neutrophils are part of the pathogen clearance armamentarium of leukocytes. Schistosome eggs possess the ability to resist attack by the host's immune cells and survive by employing various immune evasion mechanisms, including the release of extracellular vesicles (EVs). However, the specific mechanisms by which Schistosome egg-derived EVs (E-EVs) evade the immune response and resist attack from macrophage and neutrophil ETs remain poorly understood. In this study, we aimed to investigate the association between E-EVs and macrophage/neutrophil ETs. METHODS: EVs were isolated from the culture supernatant of S. japonicum eggs and treated macrophages and neutrophils with E-EVs and Sja-miR-71a. The formation of ETs was then observed. Additionally, we infected mice with S. japonicum, administered HBAAV2/9-Sja-miR-71a, and the formation of macrophage ETs (METs) and neutrophil ETs (NETs) in the livers was measured. Sema4D-knockout mice, RNA sequencing, and trans-well assay were used to clarify Sja-miR-71a in E-EVs inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. RESULTS: Our findings revealed that E-EVs were internalized by macrophages and neutrophils, leading to the inhibition of METs and NETs formation. The highly expressed Sja-miR-71a in E-EVs targeted Sema4D, resulting in the up-regulation of IL-10 and subsequent inhibition of METs and NETs formation. Sema4D knockout up-regulated IL-10 expression and inhibited the formation of METs and NETs. Furthermore, we further demonstrated that Sja-miR-71a inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. CONCLUSIONS: In summary, our findings provide new insights into the immune evasion abilities of Schistosome eggs by demonstrating their ability to inhibit the formation of METs and NETs through the secretion of EVs. This study enhances our understanding of the host-pathogen interaction and may have implications for the development of novel therapeutic approaches. Video Abstract.


Asunto(s)
Trampas Extracelulares , Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Ratones , Animales , Schistosoma japonicum/genética , Interleucina-10 , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Neutrófilos , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos
13.
Parasit Vectors ; 16(1): 184, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280619

RESUMEN

BACKGROUND: Schistosomiasis is a serious but neglected parasitic disease in humans that may lead to liver fibrosis and death. Activated hepatic stellate cells (HSCs) are the principal effectors that promote the accumulation of extracellular matrix (ECM) proteins during hepatic fibrosis. Aberrant microRNA-29 expression is involved in the development of fibrotic diseases. However, less is known about the role of miR-29 in Schistosoma japonicum (S. japonicum)-induced hepatic fibrosis. METHODS: The levels of microRNA-29a-3p (miR-29a-3p) and Roundabout homolog 1 (Robo1) were examined in liver tissues during S. japonicum infection. The possible involvement of the miR-29a-3p-Robo1 signaling pathway was determined. We used MIR29A conditional knock-in mice and mice injected with an miR-29a-3p agomir to investigate the role of miR-29a-3p in schistosomiasis-induced hepatic fibrosis. The functional contributions of miR-29a-3p-Robo1 signaling in liver fibrosis and HSC activation were investigated using primary mouse HSCs and the human HSC cell line LX-2. RESULTS: MiR-29a-3p was downregulated in humans and mice with schistosome-induced fibrosis, and Robo1 was upregulated in liver tissues. The miR-29a-3p targeted Robo1 and negatively regulated its expression. Additionally, the expression level of miR-29a-3p in schistosomiasis patients was highly correlated with the portal vein and spleen thickness diameter, which represent the severity of fibrosis. Furthermore, we demonstrated that efficient and sustained elevation of miR-29a-3p reversed schistosome-induced hepatic fibrosis. Notably, we showed that miR-29a-3p targeted Robo1 in HSCs to prevent the activation of HSCs during infection. CONCLUSIONS: Our results provide experimental and clinical evidence that the miR-29a-3p-Robo1 signaling pathway in HSCs plays an important role in the development of hepatic fibrosis. Therefore, our study highlights the potential of miR-29a-3p as a therapeutic intervention for schistosomiasis and other fibrotic diseases.


Asunto(s)
MicroARNs , Schistosoma japonicum , Esquistosomiasis , Humanos , Ratones , Animales , Schistosoma japonicum/genética , Schistosoma japonicum/metabolismo , Células Estrelladas Hepáticas/metabolismo , Proteínas del Tejido Nervioso , MicroARNs/genética , MicroARNs/metabolismo , Receptores Inmunológicos , Cirrosis Hepática/genética , Cirrosis Hepática/prevención & control , Esquistosomiasis/patología
14.
Front Cell Infect Microbiol ; 13: 1136056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936776

RESUMEN

Background: Schistosomiasis, the second most neglected tropical disease defined by the WHO, is a significant zoonotic parasitic disease infecting approximately 250 million people globally. This debilitating disease has seriously threatened public health, while only one drug, praziquantel, is used to control it. Because of this, it highlights the significance of identifying more satisfactory target genes for drug development. Protein translocation into the endoplasmic reticulum (ER) is vital to the subsequent localization of secretory and transmembrane proteins. The signal peptidase complex (SPC) is an essential component of the translocation machinery and functions to cleave the signal peptide sequence (SP) of secretory and membrane proteins entering the ER. Inhibiting the expression of SPC can lead to the abolishment or weaker cleavage of the signal peptide, and the accumulation of uncleaved protein in the ER would affect the survival of organisms. Despite the evident importance of SPC, in vivo studies exploring its function have yet to be reported in S. japonicum. Methods: The S. japonicum SPC consists of four proteins: SPC12, SPC18, SPC22 and SPC25. RNA interference was used to investigate the impact of SPC components on schistosome growth and development in vivo. qPCR and in situ hybridization were applied to localize the SPC25 expression. Mayer's carmalum and Fast Blue B staining were used to observe morphological changes in the reproductive organs of dsRNA-treated worms. The effect of inhibitor treatment on the worm's viability and pairing was also examined in vitro. Results: Our results showed that RNAi-SPC delayed the worm's normal development and was even lethal for schistosomula in vivo. Among them, the expression of SPC25 was significantly higher in the developmental stages of the reproductive organs in schistosomes. Moreover, SPC25 possessed high expression in the worm tegument, testes of male worms and the ovaries and vitellarium of female worms. The SPC25 knockdown led to the degeneration of reproductive organs, such as the ovaries and vitellarium of female worms. The SPC25 exhaustion also reduced egg production while reducing the pathological damage of the eggs to the host. Additionally, the SPC-related inhibitor AEBSF or suppressing the expression of SPC25 also impacted cultured worms' pairing and viability in vitro. Conclusions: These data demonstrate that SPC is necessary to maintain the development and reproduction of S. japonicum. This research provides a promising anti-schistosomiasis drug target and discovers a new perspective on preventing worm fecundity and maturation.


Asunto(s)
Schistosoma japonicum , Animales , Masculino , Femenino , Schistosoma japonicum/genética , Proteínas de la Membrana/metabolismo , Praziquantel , Señales de Clasificación de Proteína
15.
Artículo en Chino | MEDLINE | ID: mdl-36974010

RESUMEN

OBJECTIVE: To establish the method for extracting exogenous short DNA fragments of Schistosoma japonicum from urine samples, and to evaluate the efficiency of this method for extraction from urine samples treated with various methods. METHODS: The S. japonicum SjG28 gene fragment was selected as a target sequence, and the 81 bp short DNA fragment was amplified on the target sequence using PCR assay. Following characterization using sequencing, the short DNA fragment was added into the urine samples as an exogenous short DNA fragment. Primers and probes were designed with SjG28 as a target gene, to establish the real-time fluorescent quantitative PCR (qPCR) assay. The sensitivity of this qPCR assay was evaluated with exogenous short DNA fragments that were diluted at a 1:10 dilution ratio as the DNA template, and the specificity of the qPCR assay was evaluated with the genomic DNA of S. mansoni, S. haematobium, Babesia, Ancyiostoma duodenaie, Cionorchis sinensis, and Paragonimus westermani as DNA templates. Exogenous short DNA fragments were added into artificial and healthy volunteers' urine samples, followed by pH adjustment, centrifugation and concentration, and the efficiency of extracting exogenous short DNA fragments from urine samples was compared with the QIAmp Viral RNA Mini Kit (Qiagen kit) and BIOG cfDNA easy kit (BIOG kit). RESULTS: An 81 bp small DNA fragment of S. japonicum was successfully prepared, and the lowest detection limit of the established qPCR assay was 100 copies/µL of the 81 bp small DNA fragment of S. japonicum. If the genomic DNA of S. japonicum, S. mansoni, S. haematobium, Babesia, A. duodenaie, C. sinensis, and P. westermani served as DNA templates, the qPCR assay only detected fluorescent signals with S. japonicum genomic DNA as the DNA template. If the pH values of artificial urine samples were adjusted to 5, 6, 7 and 8, the recovery rates were (49.12 ± 2.09)%, (84.52 ± 4.96)%, (89.38 ± 3.32)% and (87.82 ± 3.90)% for extracting the exogenous short DNA fragment of S. japonicum with the Qiagen kit, and were (2.30 ± 0.07)%, (8.11% ± 0.26)%, (13.35 ± 0.61)% and (20.82 ± 0.68)% with the BIOG kit, respectively (t = 38.702, 26.955, 39.042 and 29.571; all P values < 0.01). If the Qiagen kit was used for extracting the exogenous short DNA fragment from artificial urine samples, the lowest recovery rate was seen from urine samples with a pH value of 5 (all P values < 0.05), and there were no significant differences in the recovery rate from urine samples with pH values of 6, 7 and 8 (all P values > 0.05). Following centrifugation of artificial [(64.30 ± 1.00)% vs. (58.87 ± 0.26)%; t = 12.033, P < 0.05] and healthy volunteers' urine samples [(31 165 ± 1 017) copies/µL vs. (28 471 ± 818) copies/µL; t = 23.164, P < 0.05]. In addition, concentration of artificial urine samples with the 10 kDa Centrifugal Filter and concentration of healthy volunteers' urine samples with the 100 kDa Centrifugal Filter were both effective to increase the recovery of the Qiagen kit for extracting the exogenous short DNA fragment of S. japonicum (both P values < 0.01). CONCLUSIONS: A method for extracting exogenous short DNA fragments of S. japonicum from urine samples has been successfully established, and the Qiagen kit has a high extraction efficiency. Adjustment of urine pH to 6 to 8 and concentration of healthy volunteers' urine samples with the 100 kDa Centrifugal Filter are both effective to increase the efficiency of extracting exogenous short DNA fragments of S. japonicum.


Asunto(s)
Schistosoma japonicum , Animales , Humanos , Schistosoma japonicum/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , ADN
16.
Expert Rev Mol Diagn ; 23(3): 257-265, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36803616

RESUMEN

BACKGROUND: MicroRNAs are involved in gene regulation in several common liver diseases and may play an essential role in activating hepatic stellate cells. The role of these post-transcriptional regulators in schistosomiasis needs to be further studied in populations from endemic areas for a better understanding of the disease, the development of new therapeutic approaches, and the use of biomarkers for the prognosis of schistosomiasis. AREAS COVERED: We performed a systematic review to describe the main human microRNAs identified in non-experimental studies associated with aggravation of the disease in people infected with Schistosoma mansoni (S. mansoni) and Schistosoma japonicum (S. japonicum). Structured searches were carried out in PubMed, Medline, Science Direct, Directory of Open Access Journals, Scielo, Medcarib, and Global Index Medicus databases without time and language restrictions. This is a systematic review following the guidelines of the PRISMA platform. EXPERT OPINION: The miR-146a-5p, miR-150-5p, let-7a-5p, let-7d-5p, miR-92a- 3p, and miR-532-5p are associated with liver fibrosis in schistosomiasis caused by S. japonicum, revealing that these miRNAs that have been shown to be associated with liver fibrosis are good targets for new studies that evaluate their potential as a biomarker or even treating liver fibrosis in schistosomiasis.


Asunto(s)
MicroARNs , Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Humanos , MicroARNs/genética , Esquistosomiasis Japónica/complicaciones , Esquistosomiasis Japónica/genética , Esquistosomiasis/complicaciones , Esquistosomiasis/genética , Cirrosis Hepática/genética , Schistosoma japonicum/genética , Biomarcadores
17.
Acta Trop ; 238: 106793, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509131

RESUMEN

PURPOSE: The fraction antigen of Schistosoma japonicum (107-121 kDa) eggs can be used for treatment efficacy monitoring, but the methods are laborious. This study analyzed the antigen and its feasibility for infection screening and treatment efficacy monitoring, which is the key to schistosomiasis control. METHODS: The fraction antigens have been analyzed by shotgun mass spectrometry. The recombinant proteins of candidates from the fraction antigens have been prokaryotic expression and purification in large amounts with high purity. The sera have been collected from rabbits and mice models of schistosomiasis infection and treatment. ELISA evaluated the diagnostic value of the candidate proteins. RESULTS: SJCHGC00820 and SJCHGC06900, with higher credibility, were identified through Shotgun mass spectrometry. ELISA results showed that rSj00820 has a diagnostic value for schistosomiasis (positive OD/negative OD P/N=3.6), while rSj06900 showed negative (P/N)<2. In rabbits, the specific serum antibodies for SjHSP90(rSj00820) in the infected animals peaked 6 weeks after infection and gradually decreased after treatment, reaching negative levels at 11 weeks. SjHSP90-ELISA was used to test serum samples from infected mice. The sensitivity and specificity reached >90%, similar to the diagnostic value obtained with soluble egg antigen (SEA) (SEA-ELISA). After treatment, the negative conversion rate reached >80%, significantly superior to SEA-ELISA. CONCLUSIONS: The SjHSP90-ELISA can be used for the immunological diagnosis and treatment efficacy monitoring of schistosomiasis. The study lays a foundation for further developing screening and diagnostic kits.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Conejos , Ratones , Esquistosomiasis Japónica/diagnóstico , Esquistosomiasis Japónica/tratamiento farmacológico , Antígenos Helmínticos , Anticuerpos Antihelmínticos , Esquistosomiasis/diagnóstico , Esquistosomiasis/tratamiento farmacológico , Schistosoma japonicum/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes , Sensibilidad y Especificidad , Resultado del Tratamiento
18.
Mol Ecol Resour ; 23(1): 205-221, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35844053

RESUMEN

Schistosomiasis is a neglected tropical disease of humans caused by blood flukes of the genus Schistosoma, the only dioecious parasitic flatworm. Although aspects of sex determination, differentiation and reproduction have been studied in some Schistosoma species, almost nothing is known for Schistosoma japonicum, the causative agent of schistosomiasis japonica. This mainly reflects the lack of high-quality genomic and transcriptomic resources for this species. As current genomes for S. japonicum are highly fragmented, we assembled and report a chromosome-level reference genome (seven autosomes, the Z-chromosome and partial W-chromosome), achieving a substantially enhanced gene annotation. Utilizing this genome, we discovered that the sex chromosomes of S. japonicum and its congener S. mansoni independently suppressed recombination during evolution, forming five and two evolutionary strata, respectively. By exploring the W-chromosome and sex-specific transcriptomes, we identified 35 W-linked genes and 257 female-preferentially transcribed genes (FTGs) from our chromosomal assembly and uncovered a signature for sex determination and differentiation in S. japonicum. These FTGs clustering within autosomes or the Z-chromosome exhibit a highly dynamic transcription profile during the pairing of female and male schistosomula, thereby representing a critical phase for the maturation of the female worms and suggesting distinct layers of regulatory control of gene transcription at this development stage. Collectively, these data provide a valuable resource for further functional genomic characterization of S. japonicum, shed light on the evolution of sex chromosomes in this highly virulent human blood fluke, and provide a pathway to identify novel targets for development of intervention tools against schistosomiasis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis , Animales , Humanos , Masculino , Femenino , Schistosoma japonicum/genética , Schistosoma japonicum/metabolismo , Esquistosomiasis/genética , Esquistosomiasis/parasitología , Cromosomas/genética , Genómica , Transcriptoma
19.
Parasit Vectors ; 15(1): 413, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345042

RESUMEN

BACKGROUND: Schistosoma japonicum infection is an important public health problem, imposing heavy social and economic burdens in 78 countries worldwide. However, the mechanism of transition from chronic to advanced S. japonicum infection remains largely unknown. Evidences suggested that gut microbiota plays a role in the pathogenesis of S. japonicum infection. However, the composition of the gut microbiota in patients with chronic and advanced S. japonicum infection is not well defined. In this study, we compared the composition of the intestinal flora in patients with chronic and advanced S. japonicum infection. METHODS: The feces of 24 patients with chronic S. japonicum infection and five patients with advanced S. japonicum infection from the same area were collected according to standard procedures, and 16S rRNA sequencing technology was used to analyze the intestinal microbial composition of the two groups of patients. RESULTS: We found that alteration occurs in the gut microbiota between the groups of patients with chronic and advanced S. japonicum infections. Analysis of alpha and beta diversity indicated that the diversity and abundance of intestinal flora in patients with advanced S. japonicum infection were lower than those in patients with chronic S. japonicum infection. Furthermore, Prevotella 9, Subdoligranulum, Ruminococcus torques, Megamonas and Fusicatenibacter seemed to have potential to discriminate different stages of S. japonicum infection and to act as biomarkers for diagnosis. Function prediction analysis revealed that microbiota function in the chronic group was focused on translation and cell growth and death, while that in the advanced group was concentrated on elevating metabolism-related functions. CONCLUSIONS: Our study demonstrated that alteration in gut microbiota in different stages of S. japonicum infection plays a potential role in the pathogenesis of transition from chronic to advanced S. japonicum infection. However, further validation in the clinic is needed, and the underlying mechanism requires further study.


Asunto(s)
Microbioma Gastrointestinal , Schistosoma japonicum , Esquistosomiasis Japónica , Humanos , Animales , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Heces , Intestinos , Schistosoma japonicum/genética
20.
Int J Parasitol ; 52(13-14): 815-828, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265673

RESUMEN

Schistosomiasis, which is caused by parasitic schistosomes, remains the second most prevalent parasitic disease of mammals worldwide. To successfully maintain fecundity, schistosomes have evolved a lifecycle that involves the cooperation of morphologically distinct male and female forms. Eggs produced by worm pairs are vital to the lifecycle of the parasite and are responsible for pathogenesis. Understanding the reproductive mechanism of schistosomes will help to control infection. In this study, the proteomic profiles of single-sex infected male (SM) worms and bisexual infected mated male (MM) worms of Schistosoma japonicum at 18, 21, 23, and 25 days p.i. were identified through data-independent acquisition. In total, 674 differentially expressed proteins (DEPs) were identified for the SM and MM worms at all four timepoints. Bioinformatic analysis demonstrated that most of the DEPs were involved in biosynthetic processes including locomotion, cell growth and death, cell motility, and metabolic processes such as protein metabolism and glucose metabolism. Schistosoma japonicum glycosyltransferase (SjGT) and S. japonicum nicastrin protein (SjNCSTN) were selected for quantitative real­time PCR analysis and long-term interference with small interfering RNA (siRNA) to further explore the functions of the DEPs. Sjgt mRNA expression was mainly enriched in male worms, while Sjncstn was enriched in both sexes. siRNA against SjGT and SjNCSTN resulted in minor morphological changes in the testes of male worms and significant decreased vitality and fertility. The present study provides comprehensive proteomic profiles of S. japonicum SM and MM worms at 18, 21, 23, and 25 days p.i. and offers insights into the mechanisms underlying the growth and maturation of schistosomes.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Minorías Sexuales y de Género , Animales , Femenino , Masculino , Humanos , Schistosoma japonicum/genética , Proteómica , ARN Interferente Pequeño , Esquistosomiasis Japónica/parasitología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...