Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
2.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700926

RESUMEN

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Glucosa , Secreción de Insulina , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Animales Recién Nacidos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Mutación , Canales de Potasio/metabolismo , Canales de Potasio/genética
3.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654010

RESUMEN

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Factor 7 de Crecimiento de Fibroblastos , Islotes Pancreáticos , Organoides , Animales , Humanos , Masculino , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Islotes Pancreáticos/patología , Organoides/virología , Organoides/metabolismo , Organoides/patología , SARS-CoV-2/genética
4.
Life Sci ; 345: 122608, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574885

RESUMEN

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Proteína Fosfatasa 1 , Animales , Humanos , Ratas , Canales de Calcio/metabolismo , Línea Celular , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
5.
Adv Sci (Weinh) ; 11(16): e2304940, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417114

RESUMEN

Inadequate ß-cell mass and insulin secretion are essential for the development of type 2 diabetes (T2D). TNF-α-induced protein 8-like 1 (Tipe1) plays a crucial role in multiple diseases, however, a specific role in T2D pathogenesis remains largely unexplored. Herein, Tipe1 as a key regulator in T2D, contributing to the maintenance of ß cell homeostasis is identified. The results show that the ß-cell-specific knockout of Tipe1 (termed Ins2-Tipe1BKO) aggravated diabetic phenotypes in db/db mice or in mice with high-fat diet-induced diabetes. Notably, Tipe1 improves ß cell mass and function, a process that depends on Gαs, the α subunit of the G-stimulating protein. Mechanistically, Tipe1 inhibited the K48-linked ubiquitination degradation of Gαs by recruiting the deubiquitinase USP5. Consequently, Gαs or cAMP agonists almost completely restored the dysfunction of ß cells observed in Ins2-Tipe1BKO mice. The findings characterize Tipe1 as a regulator of ß cell function through the Gαs/cAMP pathway, suggesting that Tipe1 may emerge as a novel target for T2D intervention.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones Noqueados , Transducción de Señal , Animales , Ratones , Células Secretoras de Insulina/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Secreción de Insulina/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Masculino , Humanos , Ratones Endogámicos C57BL , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética
6.
Life Sci ; 339: 122421, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38232799

RESUMEN

AIMS: In this study, we investigated the role of the FTO gene in pancreatic ß-cell biology and its association with type 2 diabetes (T2D). To address this issue, human pancreatic islets and rat INS-1 (832/13) cells were used to perform gene silencing, overexpression, and functional analysis of FTO expression; levels of FTO were also measured in serum samples obtained from diabetic and obese individuals. RESULTS: The findings revealed that FTO expression was reduced in islets from hyperglycemic/diabetic donors compared to normal donors. This reduction correlated with decreased INS and GLUT1 expression and increased PDX1, GCK, and SNAP25 expression. Silencing of Fto in INS-1 cells impaired insulin release and mitochondrial ATP production and increased apoptosis in pro-apoptotic cytokine-treated cells. However, glucose uptake and reactive oxygen species production rates remained unaffected. Downregulation of key ß-cell genes was observed following Fto-silencing, while Glut2 and Gck were unaffected. RNA-seq analysis identified several dysregulated genes involved in metal ion binding, calcium ion binding, and protein serine/threonine kinase activity. Furthermore, our findings showed that Pdx1 or Mafa-silencing did not influence FTO protein expression. Overexpression of FTO in human islets promoted insulin secretion and upregulated INS, PDX1, MAFA, and GLUT1 expression. Serum FTO levels did not significantly differ between individuals with diabetes or obesity and their healthy counterparts. CONCLUSION: These findings suggest that FTO plays a crucial role in ß-cell survival, metabolism, and function and point to a potential therapeutic utility of FTO in T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratas , Animales , Secreción de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/genética , Obesidad/metabolismo , Glucosa/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
7.
PLoS Genet ; 19(4): e1010710, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068109

RESUMEN

Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in ß-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS ß-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS ß-cells. Consistent with reduced ER chaperones levels, PWS INS-1 ß-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS ß-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic ß-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and ß-cell secretory pathway function.


Asunto(s)
Síndrome de Prader-Willi , Ratones , Animales , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Secreción de Insulina/genética , Chaperón BiP del Retículo Endoplásmico , Regulación hacia Abajo , Proteómica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Insulina/genética , Insulina/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo
8.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36821378

RESUMEN

Adaptation of the islet ß cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in ß cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. ß Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Secreción de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Histonas/genética , Histonas/metabolismo , Epigenoma , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo
9.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36656641

RESUMEN

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina/genética , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción PAX5/metabolismo
10.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-36222140

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder due to insulin resistance that can be caused by both genetic and environmental factors. In 2018, the American Diabetes Association (ADA) estimated more than 500 million T2DM cases globally. In recent years, studies conducted on humans and animals have suggested that non-coding RNAs, namely, microRNAs (miRNAs), post-transcriptionally regulate gene expression that can bring changes in normal physiology, resulting in the development of metabolic diseases. miRNAs also regulate different cellular processes including insulin synthesis and its secretion from pancreatic ß-islet cells, its development and function, insulin signaling and glucose homeostasis. Dysregulation of miRNA can affect the functioning of different tissues during the progression of T2DM. This review focuses on various miRNAs that influence the development of ß-cells and insulin secretion, various protein cascades that play an important role in insulin signaling and glucose uptake, and their role in insulin resistance. Similarly, the long noncoding RNAs also known as lncRNAs and their ß-cell characteristics involved in T2DM have been discussed. Finally, the significance of miRNAs and their mRNA targets as effective biomarkers and therapeutics in studying the early onset and progression of T2DM have been highlighted.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , MicroARNs , ARN Largo no Codificante , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Secreción de Insulina/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo
11.
J Genet Genomics ; 49(4): 316-328, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35292418

RESUMEN

Type 2 diabetes (T2D) is caused by insulin resistance and insufficient insulin secretion. Evidence has increasingly indicated that pancreatic ß-cell dysfunction is the primary determinant of T2D disease progression and remission. High plasticity is an important feature of pancreatic ß-cells. During T2D development, pancreatic ß-cells undergo dynamic adaptation. Although ß-cell death/apoptosis in later-stage T2D is the major cause of ß-cell dysfunction, recent studies have revealed that ß-cell dedifferentiation and reprogramming, which play critical roles in ß-cell functional regulation in the early and middle T2D progression stages, are characterized by (i) a loss of mature ß-cell-enriched genes; (ii) dedifferentiation to a progenitor-like state; and (iii) transdifferentiation into other cell types. The roles of transcription factors (TFs) in the establishment and maintenance of ß-cell identity during pancreatic development have been extensively studied. Here, we summarize the roles and underlying mechanisms of TFs in the maintenance of ß-cell identity under physiological and type 2 diabetic conditions. Several feasible approaches for restoring islet functions are also discussed. A better understanding of the transcriptional control of ß-cell identity and plasticity will pave the way for developing more effective strategies, such as ß-cell regeneration therapy, to treat T2D and associated metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Desdiferenciación Celular/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo
12.
Diabetologia ; 65(5): 861-871, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35190847

RESUMEN

AIMS/HYPOTHESIS: Imbalances in glucose metabolism are hallmarks of clinically silent prediabetes (defined as impaired fasting glucose and/or impaired glucose tolerance) representing dysmetabolism trajectories leading to type 2 diabetes. CD26/dipeptidyl peptidase 4 (DPP4) is a clinically proven molecular target of diabetes-controlling drugs but the DPP4 gene control of dysglycaemia is not proven. METHODS: We dissected the genetic control of post-OGTT and insulin release responses by the DPP4 gene in a Portuguese population-based cohort of mainly European ancestry that comprised individuals with normoglycaemia and prediabetes, and in mouse experimental models of Dpp4 deficiency and hyperenergetic diet. RESULTS: In individuals with normoglycaemia, DPP4 single-nucleotide variants governed glycaemic excursions (rs4664446, p=1.63x10-7) and C-peptide release responses (rs2300757, p=6.86x10-5) upon OGTT. Association with blood glucose levels was stronger at 30 min OGTT, but a higher association with the genetic control of insulin secretion was detected in later phases of the post-OGTT response, suggesting that the DPP4 gene directly senses glucose challenges. Accordingly, in mice fed a normal chow diet but not a high-fat diet, we found that, under OGTT, expression of Dpp4 is strongly downregulated at 30 min in the mouse liver. Strikingly, no genetic association was found in prediabetic individuals, indicating that post-OGTT control by DPP4 is abrogated in prediabetes. Furthermore, Dpp4 KO mice provided concordant evidence that Dpp4 modulates post-OGTT C-peptide release in normoglycaemic but not dysmetabolic states. CONCLUSIONS/INTERPRETATION: These results showed the DPP4 gene as a strong determinant of post-OGTT levels via glucose-sensing mechanisms that are abrogated in prediabetes. We propose that impairments in DPP4 control of post-OGTT insulin responses are part of molecular mechanisms underlying early metabolic disturbances associated with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estado Prediabético , Animales , Glucemia/metabolismo , Péptido C/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Secreción de Insulina/genética , Ratones , Estado Prediabético/metabolismo
13.
Diabetes ; 71(3): 367-375, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196393

RESUMEN

Secretion of insulin from pancreatic ß-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of ß-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.


Asunto(s)
Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Canales KATP/fisiología , Animales , Glucemia , Calcio/farmacología , Humanos , Resistencia a la Insulina , Secreción de Insulina/genética , Secreción de Insulina/fisiología , Canales KATP/genética , Ratones , Ratones Noqueados , Mutación , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/fisiología
14.
Diabetes Care ; 45(3): 512-519, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015083

RESUMEN

OBJECTIVE: We tested whether the concurrence of food intake and elevated concentrations of endogenous melatonin, as occurs with late eating, results in impaired glucose control, in particular in carriers of the type 2 diabetes-associated G allele in the melatonin receptor-1B gene (MTNR1B). RESEARCH DESIGN AND METHODS: In a Spanish natural late-eating population, a randomized, crossover study was performed. Each participant (n = 845) underwent two evening 2-h 75-g oral glucose tolerance tests following an 8-h fast: an early condition scheduled 4 h prior to habitual bedtime ("early dinner timing") and a late condition scheduled 1 h prior to habitual bedtime ("late dinner timing"), simulating an early and a late dinner timing, respectively. Differences in postprandial glucose and insulin responses between early and late dinner timing were determined using incremental area under the curve (AUC) calculated by the trapezoidal method. RESULTS: Melatonin serum levels were 3.5-fold higher in the late versus early condition, with late dinner timing resulting in 6.7% lower insulin AUC and 8.3% higher glucose AUC. The effect of late eating impairing glucose tolerance was stronger in the MTNR1B G-allele carriers than in noncarriers. Genotype differences in glucose tolerance were attributed to reductions in ß-cell function (P for interaction, Pint glucose area under the curve = 0.009, Pint corrected insulin response = 0.022, and Pint disposition index = 0.018). CONCLUSIONS: Concurrently high endogenous melatonin and carbohydrate intake, as typical for late eating, impairs glucose tolerance, especially in MTNR1B G-risk allele carriers, attributable to insulin secretion defects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Secreción de Insulina , Receptor de Melatonina MT2 , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2/genética , Ingestión de Alimentos , Genotipo , Glucosa/administración & dosificación , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/genética , Comidas/fisiología , Melatonina/sangre , Receptor de Melatonina MT2/genética , Factores de Riesgo , España , Factores de Tiempo
15.
Mol Cell Endocrinol ; 541: 111503, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34763008

RESUMEN

Pancreatic beta cell dysfunction is a hallmark of type 2 diabetes. Growth differentiation factor 15 (GDF15), which is an energy homeostasis regulator, has been shown to improve several metabolic parameters in the context of diabetes. However, its effects on pancreatic beta-cell remain to be identified. We, therefore, performed experiments using cell models and histological sectioning of wild-type and knock-out GDF15 mice to determine the effect of GDF15 on insulin secretion and cell viability. A bioinformatics analysis was performed to identify GDF15-correlated genes. GDF15 prevents glucotoxicity-mediated altered glucose-stimulated insulin secretion (GSIS) and connexin-36 downregulation. Inhibition of endogenous GDF15 reduced GSIS in cultured mouse beta-cells under standard conditions while it had no impact on GSIS in cells exposed to glucolipotoxicity, which is a diabetogenic condition. Furthermore, this inhibition exacerbated glucolipotoxicity-reduced cell survival. This suggests that endogenous GDF15 in beta-cell is required for cell survival but not GSIS in the context of glucolipotoxicity.


Asunto(s)
Conexinas/genética , Glucosa/efectos adversos , Factor 15 de Diferenciación de Crecimiento/fisiología , Células Secretoras de Insulina/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Conexinas/metabolismo , Citoprotección/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Glucosa/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína delta-6 de Union Comunicante
16.
Diabetes ; 71(2): 275-284, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753799

RESUMEN

MicroRNAs (miRNAs) are part of deregulated insulin secretion in type 2 diabetes (T2D) development. Rodent models have suggested miR-200c to be involved, but the role and potential as therapeutic target of this miRNA in human islets are not clear. Here we report increased expression of miR-200c in islets from T2D as compared with nondiabetic (ND) donors and display results showing reduced glucose-stimulated insulin secretion in EndoC-ßH1 cells overexpressing miR-200c. We identify transcription factor ETV5 as the top rank target of miR-200c in human islets using TargetScan in combination with Pearson correlation analysis of miR-200c and mRNA expression data from the same human donors. Among other targets were JAZF1, as earlier shown in miR-200 knockout mice. Accordingly, linear model analysis of ETV5 and JAZF1 gene expression showed reduced expression of both genes in islets from human T2D donors. Western blot analysis confirmed the reduced expression of ETV5 on the protein level in EndoC-ßH1 cells overexpressing miR-200c, and luciferase assay validated ETV5 as a direct target of miR-200c. Finally, LNA knockdown of miR-200c increased glucose-stimulated insulin secretion in islets from T2D donors approximately threefold. Our data reveal a vital role of the miR-200c-ETV5 axis in ß-cell dysfunction and pathophysiology of T2D.


Asunto(s)
Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2 , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , MicroARNs/genética , Factores de Transcripción/genética , Animales , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación hacia Abajo/genética , Regulación de la Expresión Génica , Glucosa/farmacología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/patología , Ratones , MicroARNs/metabolismo , Factores de Transcripción/metabolismo
17.
Biochem Biophys Res Commun ; 589: 116-122, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34906901

RESUMEN

BACKGROUND: Circadian locomotor output cycles kaput protein (CLOCK) plays a crucial role in glucose homeostasis and controlling insulin secretion. However, the mechanism of the CLOCK regulating rhythmic insulin secretion has not been fully understood. METHODS: Rhythmic expression of the CLOCK in rat pancreatic beta cell was detected. INS-1 cells were transfected with siRNAs to knockdown the CLOCK before the cells were incubated with different concentrations of glucose. Insulin secretion was analyzed by ELISA method. Expression of the L-type calcium channel protein (Cav1.2, Cacna1c) was determined both in the CLOCK-knockdown cells and the control cells. Calcium influx was probed by fluorescent. Chromatin immunoprecipitation (ChIP) test and dual-luciferase reporter gene experiments were applied to verify the relationship between the CLOCK and Cav1.2. RESULTS: The CLOCK is abundantly expressed in rat pancreatic beta cells. Transcription level of the CLOCK showed rhythmicity in the beta cells. Compared to the control group, insulin release was significantly impaired with 25 mM glucose incubation in the CLOCK-knockdown group, but not showed with 2.5 mM glucose incubation. The expression of Cav1.2 and the influx of calcium were significantly decreased in the CLOCK-knockdown group with 25 mM glucose incubation. ChIP test indicted that the CLOCK bound to -444∼-454 region of the Cacna1c promoter of the INS-1 cells, but the binding was significantly reduced following the CLOCK-knockdown. Luciferase experiment was in accordance with the finding of ChIP. CONCLUSIONS: The CLOCK mediating Cav1.2 expression may point out a potential pathway of circadian rhythm affecting insulin secretion.


Asunto(s)
Proteínas CLOCK/metabolismo , Canales de Calcio Tipo L/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Animales , Secuencia de Bases , Proteínas CLOCK/genética , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Regulación hacia Abajo/genética , Insulina/biosíntesis , Secreción de Insulina/genética , Masculino , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
18.
Life Sci ; 289: 120213, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34902439

RESUMEN

BACKGROUND: Regardless of the etiology, any type of DM presents a reduction of insulin-secreting cell mass, so it is important to investigate pathways that induce the increase of this cell mass. AIM: Based on the fact that (1) HNF4α is crucial for ß-cell proliferation, (2) DEX-induced IR promotes ß-cell mass expansion, and (3) the stimulation of ß-cell mass expansion may be an important target for DM therapies, we aimed to investigate whether DEX-induced proliferation of ß pancreatic cells is dependent on HNF4α. METHODS: We used WildType (WT) and Knockout (KO) mice for HNF4-α, treated or not with 100 mg/Kg/day of DEX, for 5 consecutive days. One day after the last injection of DEX the IR was confirmed by ipITT and the mice were euthanized for pancreas removal. RESULTS: In comparison to WT, KO mice presented increased glucose tolerance, lower fasting glucose and increased glucose-stimulates insulin secretion (GSIS). DEX induced IR in both KO and WT mice. In addition, DEX-induced ß-cell mass expansion and an increase in the Ki67 immunostaining were observed only in WT mice, evidencing that IR-induced ß-cell mass expansion is dependent on HNF4α. Also, we observed that DEX-treatment, in an HNF4α-dependent way, promoted an increase in PDX1, PAX4 and NGN3 gene expression. CONCLUSIONS: Our results strongly suggest that DEX-induced IR promotes ß-cell mass expansion through processes of proliferation and neogenesis that depend on the HNF4α activity, pointing to HNF4α as a possible therapeutic target in DM treatment.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Factor Nuclear 4 del Hepatocito/metabolismo , Resistencia a la Insulina , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/genética , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Secreción de Insulina/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Transactivadores/biosíntesis , Transactivadores/genética
19.
Mol Cell Endocrinol ; 540: 111506, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34801668

RESUMEN

MicroRNAs are crucial regulators for the development, mass and function of pancreatic ß-cells. MiRNA dysregulation is associated with ß-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic ß-cells. We generated pancreatic ß-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, ß-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in ß-cells. Let7b-5p overexpression impaired the insulin production and secretion of ß-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic ß-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic ß-cells.


Asunto(s)
Secreción de Insulina/genética , Células Secretoras de Insulina/fisiología , MicroARNs/fisiología , Animales , Recuento de Células , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Células HEK293 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34718610

RESUMEN

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/genética , Malato Deshidrogenasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Glucemia/análisis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Análisis Mutacional de ADN , Femenino , Mutación con Ganancia de Función , Humanos , Hiperglucemia/sangre , Insulina/análisis , Insulina/metabolismo , Secreción de Insulina/genética , Islotes Pancreáticos , Malato Deshidrogenasa/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...