Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.094
Filtrar
1.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38706095

RESUMEN

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


Asunto(s)
Proteína ADAM10 , Tejido Adiposo , Dieta Alta en Grasa , Ratones Noqueados , Animales , Masculino , Ratones , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Resistencia a la Insulina , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Obesidad/metabolismo , Obesidad/etiología , Fenotipo
2.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701714

RESUMEN

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Inhibidores de la Colinesterasa , Diseño de Fármacos , Quinazolinas , Quinazolinas/farmacología , Quinazolinas/síntesis química , Quinazolinas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Ratas , Relación Estructura-Actividad , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Dosis-Respuesta a Droga , Butirilcolinesterasa/metabolismo , Masculino
3.
J Chem Inf Model ; 64(9): 3855-3864, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38623052

RESUMEN

Allosteric modulation plays a critical role in enzyme functionality and requires a deep understanding of the interactions between the active and allosteric sites. γ-Secretase (GS) is a key therapeutic target in the treatment of Alzheimer's disease (AD), through its role in the synthesis of amyloid ß peptides that accumulate in AD patients. This study explores the structure and dynamic effects of GS modulation by E2012 binding, employing well-tempered metadynamics and conventional molecular dynamics simulations across three binding scenarios: (1) GS enzyme with and without L458 inhibitor, (2) the GS-substrate complex together with the modulator E2012 in two different binding modes, and (3) E2012 interacting with a C99 substrate fragment. Our findings reveal that the presence of L458 induces conformational changes that contribute to stabilization of the GS enzyme dynamics, previously reported as a key factor that allowed the resolution of the cryo-EM structure and the enhanced binding of E2012. Furthermore, we identified the most favorable binding site for E2012 within the GS-substrate complex, uncovering significant modulatory effects and a complex network of interactions that influence the position of the substrate for catalysis. In addition, we explore a potential substrate-modulator binding before the formation of the enzyme-substrate complex. The insights gained from our study emphasize the importance of these interactions in the development of potential therapeutic interventions that target the functionality of the GS enzyme in AD.


Asunto(s)
Alanina/análogos & derivados , Secretasas de la Proteína Precursora del Amiloide , Simulación de Dinámica Molecular , Unión Proteica , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Especificidad por Sustrato , Humanos , Conformación Proteica , Regulación Alostérica/efectos de los fármacos , Azepinas
4.
ACS Nano ; 18(18): 11753-11768, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649866

RESUMEN

The association between dysfunctional microglia and amyloid-ß (Aß) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aß anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aß and its nerve repair function. In addition, siRNA reduces the production of Aß plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aß, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Materiales Biomiméticos , Terapia Genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Técnicas de Transferencia de Gen , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Humanos , Liposomas/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Biomimética , Exosomas/metabolismo , Exosomas/química , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética
5.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663285

RESUMEN

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Inhibidores de la Colinesterasa , Diseño de Fármacos , Triazinas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratas , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Triazinas/química , Triazinas/farmacología , Triazinas/síntesis química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Estructura Molecular , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Quinasas DyrK , Relación Dosis-Respuesta a Droga , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Masculino , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Butirilcolinesterasa/metabolismo
6.
Neurol Res ; 46(5): 416-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577889

RESUMEN

OBJECTIVE: Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism. METHODS: AD mice model was established by lateral ventricular injection with Aß25-35. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aß amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting. RESULTS: N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aß amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels. CONCLUSION: N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Hipocampo , PPAR alfa , PPAR gamma , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , PPAR gamma/agonistas , PPAR gamma/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , Masculino , Péptidos beta-Amiloides/metabolismo , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ácidos Sulfónicos/farmacología , Fragmentos de Péptidos , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Memoria/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratones Endogámicos C57BL
7.
Life Sci ; 345: 122606, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574884

RESUMEN

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Animales , Humanos , Caenorhabditis elegans/metabolismo , Longevidad , Proteína GAP-43 , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales Modificados Genéticamente/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proyección Neuronal
8.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 207-212, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38595235

RESUMEN

OBJECTIVE: To explore the expression relationship and significance of long chain non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer disease (AD). METHODS: Sixty-six AD patients received by the department of neurology of our hospital from October 2019 to September 2021 were gathered, according to the clinical dementia rating scale score, they were grouped into mild group (≤1 point, n=41) and moderate-to-severe group (>1 point, n=25). Another 66 cases of serum and cerebrospinal fluid samples from outpatient physical examination personnel were regarded as the control group. The general information on all subjects was recorded and cognition was assessed; real-time quantitative PCR was performed to measure the expression levels of miR-27a-3p and NEAT1 in serum and cerebrospinal fluid; enzyme-linked immunosorbent assay was performed to measure the protein levels of ß-amyloid precursor protein cleaving enzyme 1 (BACE1), ß-amyloid (Aß) 40 and Aß42 in cerebrospinal fluid; Spearman' s method was performed to analyze the correlation of serum miR-27a-3p and NEAT1 levels with mini-mental state examination (MMSE) and montreal cognitive assessment (MoCA) scores; Pearson method was performed to analyze the correlation between serum miR-27a-3p and NEAT1 levels and Aß deposition standard uptake value ratio (SUVR) and cerebrospinal fluid miR-27a-3p, NEAT1, BACE1, Aß42 and Aß40 levels. RESULTS: The MMSE score [21 (17, 25), 9(7, 11) vs. 27 (21, 34)], MoCA score [17 (12, 21), 10 (7, 13) vs. 27 (21, 31)], serum miR-27a-3p level (0.55±0.13, 0.46±0.06 vs. 0.97±0.22), cerebrospinal fluid miR-27a-3p (0.48±0.10, 0.35±0.10 vs. 1.03±0.31), Aß42 levels [(303.55±36.77) ng/L, (231.45±34.14) ng/L vs. (499.99±53.63) ng/L] and Aß42/Aß40 ratio (0.030±0.008, 0.022±0.007 vs. 0.048±0.010) of AD patients in mild group and moderate-to-severe group were all lower than those in the control group, and the moderate-to-severe group were lower than the mild group (all P < 0.05); the serum NEAT1 level (2.31±0.64, 3.13±0.76 vs. 1.05±0.20), SUVR (1.50±0.29, 1.76±0.52 vs. 0.74±0.15), and cerebrospinal fluid NEAT1 (3.51±1.24, 4.30±1.65 vs. 1.01±0.23) and BACE1 levels [(55.78±5.98) µg/L, (72.32±16.08) µg/L vs. (21.39±3.73) µg/L] were higher than those in the control group, and the moderate-to-severe group were higher than the mild group (all P < 0.05). Serum NEAT1 level in AD patients was positively correlated with SUVR, cerebrospinal fluid NEAT1 and BACE1 (r=0.350, 0.606, 0.341, P < 0.05), and negatively correlated with MMSE score and MoCA score (r=-0.473, -0.482, all P < 0.05); serum miR-27a-3p level was positively correlated with cerebrospinal fluid miR-27a-3p level, MMSE score and MoCA score (r=0.695, 0.424, 0.412, all P < 0.05), and negatively correlated with SUVR and cerebrospinal fluid BACE1 level (r=-0.521, -0.447, all P < 0.05). CONCLUSION: The expression trends of NEAT1 and miR-27a-3p in the serum and cerebrospinal fluid of AD patients are consistent, the level of NEAT1 is increased, and the level of miR-27a-3p is decreased. The levels of the two are negatively correlated, which is related to the degree of Aß deposition in the brain of AD patients and is involved in the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Fragmentos de Péptidos/líquido cefalorraquídeo , MicroARNs/genética
9.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667323

RESUMEN

Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARß/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Antígenos CD , Cadherinas , Dipéptidos , Ácidos Hidroxámicos , Proteínas de la Membrana , Tetraspaninas , Neoplasias de la Vejiga Urinaria , Humanos , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Invasividad Neoplásica , Proteolisis/efectos de los fármacos , Tetraspaninas/metabolismo , Tetraspaninas/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética
10.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659053

RESUMEN

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Organoides , Células Madre Pluripotentes , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Organoides/metabolismo , Organoides/patología , Células Madre Pluripotentes/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Encéfalo/metabolismo , Encéfalo/patología , Modelos Biológicos
11.
Mol Biol Rep ; 51(1): 484, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578353

RESUMEN

BACKGROUND: Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS: Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS: Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.


Asunto(s)
Enfermedad de Alzheimer , Cardiomiopatías , Neoplasias , Humanos , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Aspártico Endopeptidasas/genética , Enfermedad de Alzheimer/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/metabolismo , Cardiomiopatías/metabolismo , Factores de Elongación de Péptidos/metabolismo , Adenosina Trifosfato , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
12.
Biomed Pharmacother ; 174: 116577, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593704

RESUMEN

INTRODUCTION: Total ginsenosides (TG), the major active constituents of ginseng, have been proven to be beneficial in treatment of Alzheimer's disease (AD). However, the underlying mechanism of TG remains unclear. METHODS: APP/PS1 mice and N2a/APP695 cells were used as in vivo and in vitro model, respectively. Morris water maze (MWM) was used to investigate behavioral changes of mice; neuronal pathological changes were assessed by hematoxylin and eosin (H&E) and nissl staining; immunofluorescence staining was used to examine amyloid beta (Aß) deposition; Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of relative amyloidogenic genes and proteins. Moreover, the antagonist of PPARγ, GW9662, was used to determine whether the effects of TG on Aß production were associated with PPARγ activity. RESULTS: TG treatment increased the spatial learning and memory abilities of APP/PS1 mice while decreasing the Aß accumulation in the cortex and hippocampus. In N2a/APP695 cells, TG treatment attenuated the secretion of Aß1-40 and Aß1-42 acting as an PPARγ agonist by inhibiting the translocation of NF-κB p65. Additionally, TG treatment also decreased the expression of amyloidogenic pathway related gene BACE1, PS1 and PS2. CONCLUSIONS: TG treatment reduced the production of Aß both in vivo and in vitro. Activating PPARγ might be a potential therapeutic target of TG in facilitating Aß clearance and ameliorating cognitive deficiency in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ginsenósidos , PPAR gamma , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ginsenósidos/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Presenilina-1/genética
13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673989

RESUMEN

Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.


Asunto(s)
Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide , Proteolisis , Tirosina Quinasa c-Mer , Humanos , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células THP-1 , Macrófagos/metabolismo , Proteína S/metabolismo , Monocitos/metabolismo , Acetato de Tetradecanoilforbol/farmacología
14.
Cancer Lett ; 590: 216845, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38589004

RESUMEN

Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.


Asunto(s)
Calpaína , Portadores de Fármacos , Nanopartículas , Paclitaxel , Neoplasias Pancreáticas , Dióxido de Silicio , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Dióxido de Silicio/química , Humanos , Animales , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Nanopartículas/química , Línea Celular Tumoral , Calpaína/metabolismo , Portadores de Fármacos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Porosidad , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ratones Desnudos , Femenino
15.
Brain Res ; 1834: 148888, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548249

RESUMEN

A Disintegrin And Metalloprotease 10 (ADAM10), is able to control several important physiopathological processes through the shedding of a large number of protein substrates. Although ADAM10 plays a crucial role in the central nervous system (CNS) development and function, its protein distribution in the CNS has not been fully addressed. Here, we described the regional and cellular ADAM10 protein expression in C57BL/6 mice examined by immunofluorescence 1) throughout the adult mouse brain, cerebellum and spinal cord in vivo and 2) in different cell types as neurons, astrocytes, oligodendrocytes and microglia in vitro. We observed ADAM10 expression through the whole CNS, with a strong expression in the hippocampus, in the hypothalamus and in the cerebral and piriform cortex in the brain, in the Purkinje and in granular cell layers in the cerebellum and in the spinal cord to a lower extent. In vivo, ADAM10 protein expression was mainly found in neurons and in some oligodendroglial cell populations. However, in primary cultures we observed ADAM10 expression in neurons, oligodendrocytes, astrocytes and microglia. Interestingly, ADAM10 was not only found in the membrane but also in cytoplasmic vesicles and in the nucleus of primary cultured cells. Overall, this work highlights a wide distribution of ADAM10 throughout the CNS. The nuclear localization of ADAM10, probably due to its intracellular domain, emphasizes its role in cell signalling in physiological and pathological conditions. Further investigations are required to better elucidate the role of ADAM10 in glial cells.


Asunto(s)
Proteína ADAM10 , Sistema Nervioso Central , Proteínas de la Membrana , Ratones Endogámicos C57BL , Neuronas , Médula Espinal , Animales , Proteína ADAM10/metabolismo , Neuronas/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Sistema Nervioso Central/metabolismo , Médula Espinal/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Células Cultivadas , Oligodendroglía/metabolismo , Masculino , Encéfalo/metabolismo , Cerebelo/metabolismo
16.
Cell Mol Life Sci ; 81(1): 139, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480559

RESUMEN

Neurotoxic amyloid-ß (Aß) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the ß-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo. Most of these classical models overexpress human APP with mutations driving AD-associated pathogenic APP processing. However, the resulting pattern of Aß species in the mouse brains differs from those observed in AD patients' brains. Particularly mutations proximal to the ß-secretase cleavage site (e.g., the so-called Swedish APP (APPswe) fostering Aß1-x formation) lead to artificial Aß production, as N-terminally truncated Aß peptides are hardly present in these mouse brains. Meprin ß is an alternative ß-secretase upregulated in brains of AD patients and capable of generating N-terminally truncated Aß2-x peptides. Therefore, we aimed to generate a mouse model for the production of so far underestimated Aß2-x peptides by conditionally overexpressing meprin ß in astrocytes. We chose astrocytes as meprin ß was detected in this cell type in close proximity to Aß plaques in AD patients' brains. The meprin ß-overexpressing mice showed elevated amyloidogenic APP processing detected with a newly generated neo-epitope-specific antibody. Furthermore, we observed elevated Aß production from endogenous APP as well as AD-related behavior changes (hyperlocomotion and deficits in spatial memory). The novel mouse model as well as the established tools and methods will be helpful to further characterize APP cleavage and the impact of different Aß species in future studies.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Ratones , Animales , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Astrocitos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteolisis , Encéfalo/metabolismo
17.
Traffic ; 25(3): e12932, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38528836

RESUMEN

Alzheimer's disease is associated with increased levels of amyloid beta (Aß) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the ß-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aß secretion. A 20°C block in cargo exit from the Golgi confirmed ß- and γ-secretase processing of APPswe in the Golgi. Inhibition of the ß-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aß production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aß production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Suecia , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Mutación
18.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542381

RESUMEN

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aß) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and to explore its underlying mechanisms. APPswe/Ind SH-SY5Y cells and 5xFAD mice were treated with CA. Soluble Aß1-42 and Aß plaque levels were analyzed by ELISA and immunohistochemistry, respectively. Transcriptome sequencing was used to compare the changes in hippocampal gene expression profiles among the 5xFAD mouse groups. The specific gene expression levels were quantified by qRT-PCR and Western blot analysis. It was found that CA treatment reduced the Aß1-42 levels in the APPswe/Ind cells and 5xFAD mice. It also reduced the Aß plaque levels as well as the APP and BACE1 levels. Transcriptome analysis showed that CA affected the synaptic-plasticity-related genes in the 5xFAD mice. The levels of L1CAM, PSD-95 and synaptophysin were increased in the APPswe/Ind SH-SY5Y cells and 5xFAD mice treated with CA, which could be inhibited by administering siRNA-L1CAM to the CA-treated APPswe/Ind SH-SY5Y cells. In summary, CA reduced Aß levels and increased the expression levels of synaptic-function-related markers via L1CAM in AD models.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Cafeicos , Molécula L1 de Adhesión de Célula Nerviosa , Neuroblastoma , Enfermedades Neurodegenerativas , Succinatos , Humanos , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo
19.
Neurotox Res ; 42(2): 21, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441819

RESUMEN

The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, ß-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aß peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aß plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.


Asunto(s)
Quitosano , Nanopartículas , Masculino , Ratas , Animales , Secretasas de la Proteína Precursora del Amiloide , Ratas Wistar , Envejecimiento , Apolipoproteínas E , Hipocampo , Arginina
20.
J Ethnopharmacol ; 328: 117976, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38492794

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Guhan Yangshengjing (GHYSJ) is an effective prescription for delaying progression of Alzheimer's disease (AD) based on the ancient Chinese medical classics excavated from Mawangdui Han Tomb. Comprising a combination of eleven traditional Chinese herbs, the precise protective mechanism through which GHYSJ acts on AD progression remains unclear and has significant implications for the development of new drugs to treat AD. AIM OF THE STUDY: To investigate the mechanism of GHYSJ in the treatment of AD through network pharmacology and validate the results through in vitro experiments. MATERIALS AND METHODS: Chemical composition-target-pathway network and protein-protein interaction network were constructed by network pharmacology to predict the potential targets of GHYSJ for the treatment of AD. The interaction relationship between active ingredients and targets was verified by molecular docking and molecular force. Furthermore, the chemical constituents of GHYSJ were analyzed by LC-MS and HPLC, the effects of GHYSJ on animal tissues were analyzed by H&E staining. An Aß-induced SH-SY5Y cellular model was established to validate the core pathways and targets predicted by network pharmacology and molecular docking. RESULTS: The results of the network pharmacology analysis revealed a total of 155 bioactive compounds capable of crossing the blood-brain barrier and interacting with 677 targets, among which 293 targets specifically associated with AD, which mainly participated in and regulated the amyloid aggregation pathway and PI3K/Akt signaling pathway, thereby treating AD. In addition, molecular docking analysis revealed a robust binding affinity between the principal bioactive constituents of GHYSJ and crucial targets implicated in AD. Our findings were further substantiated by in vitro experiments, which demonstrated that Liquiritigenin and Ginsenosides Rh4, crucial constituents of GHYSJ, as well as GHYSJ pharmaceutic serum, exhibited a significant down-regulation of BACE1 expression in Aß-induced damaged SH-SY5Y cells. This study provides valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD and secondary development of GHYSJ prescription. CONCLUSION: Through network pharmacology, molecular docking, LC-MS, and cellular experiments, GHYSJ was initially confirmed to delay the progression of AD by regulating the expression of BACE1 in Amyloid aggregation pathway. Our observations provided valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Neuroblastoma , Humanos , Animales , Simulación del Acoplamiento Molecular , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/tratamiento farmacológico , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Ácido Aspártico Endopeptidasas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...