Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Nat Commun ; 15(1): 3606, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697975

RESUMEN

Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Cromatina/metabolismo , Cromatina/genética , Anciano , Epigenómica/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Progresión de la Enfermedad , Epigénesis Genética
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732207

RESUMEN

Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with different approaches, Machine Learning being one of the most successful. Nevertheless, we note that many such approaches fail to propose a robust and meaningful method to embed the genetic data under analysis. We try to overcome this problem by proposing a bidirectional transformer-based encoder, empowered by bidirectional long-short term memory layers and with a capsule layer responsible for the final prediction. To evaluate the efficiency of the proposed approach, we use benchmark ChIP-seq datasets of five cell lines available in the ENCODE repository (A549, GM12878, Hep-G2, H1-hESC, and Hela). The results show that the proposed method can predict TFBS within the five different cell lines very well; moreover, cross-cell predictions provide satisfactory results as well. Experiments conducted across cell lines are reinforced by the analysis of five additional lines used only to test the model trained using the others. The results confirm that prediction across cell lines remains very high, allowing an extensive cross-transcription factor analysis to be performed from which several indications of interest for molecular biology may be drawn.


Asunto(s)
Aprendizaje Profundo , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Biología Computacional/métodos , Células HeLa , Unión Proteica , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Línea Celular
3.
Nucleic Acids Res ; 52(8): 4137-4150, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38572749

RESUMEN

DNA motifs are crucial patterns in gene regulation. DNA-binding proteins (DBPs), including transcription factors, can bind to specific DNA motifs to regulate gene expression and other cellular activities. Past studies suggest that DNA shape features could be subtly involved in DNA-DBP interactions. Therefore, the shape motif annotations based on intrinsic DNA topology can deepen the understanding of DNA-DBP binding. Nevertheless, high-throughput tools for DNA shape motif discovery that incorporate multiple features altogether remain insufficient. To address it, we propose a series of methods to discover non-redundant DNA shape motifs with the generalization to multiple motifs in multiple shape features. Specifically, an existing Gibbs sampling method is generalized to multiple DNA motif discovery with multiple shape features. Meanwhile, an expectation-maximization (EM) method and a hybrid method coupling EM with Gibbs sampling are proposed and developed with promising performance, convergence capability, and efficiency. The discovered DNA shape motif instances reveal insights into low-signal ChIP-seq peak summits, complementing the existing sequence motif discovery works. Additionally, our modelling captures the potential interplays across multiple DNA shape features. We provide a valuable platform of tools for DNA shape motif discovery. An R package is built for open accessibility and long-lasting impact: https://zenodo.org/doi/10.5281/zenodo.10558980.


Asunto(s)
ADN , Motivos de Nucleótidos , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Algoritmos , Conformación de Ácido Nucleico , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Sitios de Unión , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Humanos , Unión Proteica
4.
Sci Rep ; 14(1): 9275, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654130

RESUMEN

Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Motivos de Nucleótidos , Factores de Transcripción , Pez Cebra , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Humanos , Sitios de Unión , Unión Proteica , Huella de ADN/métodos , Biología Computacional/métodos , Cromatina/metabolismo , Cromatina/genética
5.
BMC Bioinformatics ; 25(1): 158, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643066

RESUMEN

BACKGROUND: Motif finding in Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data is essential to reveal the intricacies of transcription factor binding sites (TFBSs) and their pivotal roles in gene regulation. Deep learning technologies including convolutional neural networks (CNNs) and graph neural networks (GNNs), have achieved success in finding ATAC-seq motifs. However, CNN-based methods are limited by the fixed width of the convolutional kernel, which makes it difficult to find multiple transcription factor binding sites with different lengths. GNN-based methods has the limitation of using the edge weight information directly, makes it difficult to aggregate the neighboring nodes' information more efficiently when representing node embedding. RESULTS: To address this challenge, we developed a novel graph attention network framework named MMGAT, which employs an attention mechanism to adjust the attention coefficients among different nodes. And then MMGAT finds multiple ATAC-seq motifs based on the attention coefficients of sequence nodes and k-mer nodes as well as the coexisting probability of k-mers. Our approach achieved better performance on the human ATAC-seq datasets compared to existing tools, as evidenced the highest scores on the precision, recall, F1_score, ACC, AUC, and PRC metrics, as well as finding 389 higher quality motifs. To validate the performance of MMGAT in predicting TFBSs and finding motifs on more datasets, we enlarged the number of the human ATAC-seq datasets to 180 and newly integrated 80 mouse ATAC-seq datasets for multi-species experimental validation. Specifically on the mouse ATAC-seq dataset, MMGAT also achieved the highest scores on six metrics and found 356 higher-quality motifs. To facilitate researchers in utilizing MMGAT, we have also developed a user-friendly web server named MMGAT-S that hosts the MMGAT method and ATAC-seq motif finding results. CONCLUSIONS: The advanced methodology MMGAT provides a robust tool for finding ATAC-seq motifs, and the comprehensive server MMGAT-S makes a significant contribution to genomics research. The open-source code of MMGAT can be found at https://github.com/xiaotianr/MMGAT , and MMGAT-S is freely available at https://www.mmgraphws.com/MMGAT-S/ .


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Genómica , Humanos , Animales , Ratones , Sitios de Unión , Unión Proteica , Genómica/métodos , Cromatina/genética , Factores de Transcripción/metabolismo
6.
Genome Biol ; 25(1): 90, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589969

RESUMEN

Single-cell ATAC-seq has emerged as a powerful approach for revealing candidate cis-regulatory elements genome-wide at cell-type resolution. However, current single-cell methods suffer from limited throughput and high costs. Here, we present a novel technique called scifi-ATAC-seq, single-cell combinatorial fluidic indexing ATAC-sequencing, which combines a barcoded Tn5 pre-indexing step with droplet-based single-cell ATAC-seq using the 10X Genomics platform. With scifi-ATAC-seq, up to 200,000 nuclei across multiple samples can be indexed in a single emulsion reaction, representing an approximately 20-fold increase in throughput compared to the standard 10X Genomics workflow.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Núcleo Celular
7.
Nat Comput Sci ; 4(4): 285-298, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600256

RESUMEN

The single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focus on the cell peak matrix without fully utilizing the underlying genomic sequence. Here we propose a method, SANGO, for accurate single-cell annotation by integrating genome sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak statistics of cells through a fully connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms and tissues. SANGO was also shown to be able to detect unknown tumor cells through attention edge weights learned by the graph transformer. Moreover, from the annotated cells, we found cell-type-specific peaks that provide functional insights/biological signals through expression enrichment analysis, cis-regulatory chromatin interaction analysis and motif enrichment analysis.


Asunto(s)
Cromatina , Análisis de la Célula Individual , Humanos , Algoritmos , Cromatina/genética , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos , Genoma/genética , Genómica/métodos , Neoplasias/genética , Análisis de la Célula Individual/métodos , Transposasas/genética , Transposasas/metabolismo
8.
Sci Adv ; 10(13): eadi4393, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536919

RESUMEN

The Drosophila brain contains tens of thousands of distinct cell types. Thousands of different transgenic lines reproducibly target specific neuron subsets, yet most still express in several cell types. Furthermore, most lines were developed without a priori knowledge of where the transgenes would be expressed. To aid in the development of cell type-specific tools for neuronal identification and manipulation, we developed an iterative assay for transposase-accessible chromatin (ATAC) approach. Open chromatin regions (OCRs) enriched in neurons, compared to whole bodies, drove transgene expression preferentially in subsets of neurons. A second round of ATAC-seq from these specific neuron subsets revealed additional enriched OCR2s that further restricted transgene expression within the chosen neuron subset. This approach allows for continued refinement of transgene expression, and we used it to identify neurons relevant for sleep behavior. Furthermore, this approach is widely applicable to other cell types and to other organisms.


Asunto(s)
Cromatina , Transposasas , Cromatina/genética , Transposasas/genética , Transposasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Inmunoprecipitación de Cromatina , Neuronas/metabolismo , Análisis de Secuencia de ADN
9.
BMC Genomics ; 25(1): 300, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515040

RESUMEN

BACKGROUND: The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) utilizes the Transposase Tn5 to probe open chromatic, which simultaneously reveals multiple transcription factor binding sites (TFBSs) compared to traditional technologies. Deep learning (DL) technology, including convolutional neural networks (CNNs), has successfully found motifs from ATAC-seq data. Due to the limitation of the width of convolutional kernels, the existing models only find motifs with fixed lengths. A Graph neural network (GNN) can work on non-Euclidean data, which has the potential to find ATAC-seq motifs with different lengths. However, the existing GNN models ignored the relationships among ATAC-seq sequences, and their parameter settings should be improved. RESULTS: In this study, we proposed a novel GNN model named GNNMF to find ATAC-seq motifs via GNN and background coexisting probability. Our experiment has been conducted on 200 human datasets and 80 mouse datasets, demonstrated that GNNMF has improved the area of eight metrics radar scores of 4.92% and 6.81% respectively, and found more motifs than did the existing models. CONCLUSIONS: In this study, we developed a novel model named GNNMF for finding multiple ATAC-seq motifs. GNNMF built a multi-view heterogeneous graph by using ATAC-seq sequences, and utilized background coexisting probability and the iterloss to find different lengths of ATAC-seq motifs and optimize the parameter sets. Compared to existing models, GNNMF achieved the best performance on TFBS prediction and ATAC-seq motif finding, which demonstrates that our improvement is available for ATAC-seq motif finding.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Animales , Ratones , Análisis de Secuencia de ADN , Cromatina/genética , Redes Neurales de la Computación
10.
BMC Bioinformatics ; 25(1): 123, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515011

RESUMEN

BACKGROUND: Chromosome is one of the most fundamental part of cell biology where DNA holds the hierarchical information. DNA compacts its size by forming loops, and these regions house various protein particles, including CTCF, SMC3, H3 histone. Numerous sequencing methods, such as Hi-C, ChIP-seq, and Micro-C, have been developed to investigate these properties. Utilizing these data, scientists have developed a variety of loop prediction techniques that have greatly improved their methods for characterizing loop prediction and related aspects. RESULTS: In this study, we categorized 22 loop calling methods and conducted a comprehensive study of 11 of them. Additionally, we have provided detailed insights into the methodologies underlying these algorithms for loop detection, categorizing them into five distinct groups based on their fundamental approaches. Furthermore, we have included critical information such as resolution, input and output formats, and parameters. For this analysis, we utilized the GM12878 Hi-C datasets at 5 KB, 10 KB, 100 KB and 250 KB resolutions. Our evaluation criteria encompassed various factors, including memory usages, running time, sequencing depth, and recovery of protein-specific sites such as CTCF, H3K27ac, and RNAPII. CONCLUSION: This analysis offers insights into the loop detection processes of each method, along with the strengths and weaknesses of each, enabling readers to effectively choose suitable methods for their datasets. We evaluate the capabilities of these tools and introduce a novel Biological, Consistency, and Computational robustness score ( B C C score ) to measure their overall robustness ensuring a comprehensive evaluation of their performance.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , ADN , Secuenciación de Inmunoprecipitación de Cromatina , Algoritmos
11.
Genome Biol ; 25(1): 78, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519979

RESUMEN

We develop a large-scale single-cell ATAC-seq method by combining Tn5-based pre-indexing with 10× Genomics barcoding, enabling the indexing of up to 200,000 nuclei across multiple samples in a single reaction. We profile 449,953 nuclei across diverse tissues, including the human cortex, mouse brain, human lung, mouse lung, mouse liver, and lung tissue from a club cell secretory protein knockout (CC16-/-) model. Our study of CC16-/- nuclei uncovers previously underappreciated technical artifacts derived from remnant 129 mouse strain genetic material, which cause profound cell-type-specific changes in regulatory elements near many genes, thereby confounding the interpretation of this commonly referenced mouse model.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Ratones , Humanos , Cromatina/metabolismo , Núcleo Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos
12.
mSystems ; 9(4): e0095123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470037

RESUMEN

The regulation of Bordetella pertussis virulence is mediated by the two-component system BvgA/S, which activates the transcription of virulence-activated genes (vags). In the avirulent phase, the vags are not expressed, but instead, virulence-repressed genes (vrgs) are expressed, under the control of another two-component system, RisA/K. Here, we combined transcriptomic and chromatin immunoprecipitation sequencing (ChIPseq) data to examine the RisA/K regulon. We performed RNAseq analyses of RisA-deficient and RisA-phosphoablative B. pertussis mutants cultivated in virulent and avirulent conditions. We confirmed that the expression of most vrgs is regulated by phosphorylated RisA. However, the expression of some, including those involved in flagellum biosynthesis and chemotaxis, requires RisA independently of phosphorylation. Many RisA-regulated genes encode proteins with regulatory functions, suggesting multiple RisA regulation cascades. By ChIPseq analyses, we identified 430 RisA-binding sites, 208 within promoter regions, 201 within open reading frames, and 21 in non-coding regions. RisA binding was demonstrated in the promoter regions of most vrgs and, surprisingly, of some vags, as well as for other genes not identified as vags or vrgs. Unexpectedly, many genes, including some vags, like prn, brpL, bipA, and cyaA, contain a BvgA-binding site and a RisA-binding site, which increases the complexity of the RisAK/BvgAS network in B. pertussis virulence regulation.IMPORTANCEThe expression of virulence-activated genes (vags) of Bordetella pertussis, the etiological agent of whooping cough, is under the transcriptional control of the two-component system BvgA/S, which allows the bacterium to switch between virulent and avirulent phases. In addition, the more recently identified two-component system RisA/K is required for the expression of B. pertussis genes, collectively named vrgs, that are repressed during the virulent phase but activated during the avirulent phase. We have characterized the RisA/K regulon by combined transcriptomic and chromatin immunoprecipitation sequencing analyses. We identified more than 400 RisA-binding sites. Many of them are localized in promoter regions, especially vrgs, but some were found within open reading frames and in non-coding regions. Surprisingly, RisA-binding sites were also found in promoter regions of some vags, illustrating the previously underappreciated complexity of virulence regulation in B. pertussis.


Asunto(s)
Bordetella pertussis , Tos Ferina , Humanos , Bordetella pertussis/genética , Regulón/genética , Factores de Transcripción/genética , Tos Ferina/genética , Proteínas Bacterianas/genética , Secuenciación de Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica
13.
Mol Plant Pathol ; 25(3): e13446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38502176

RESUMEN

Animal studies have shown that virus infection causes changes in host chromatin accessibility, but little is known about changes in chromatin accessibility of plants infected by viruses and its potential impact. Here, rice infected by rice stripe virus (RSV) was used to investigate virus-induced changes in chromatin accessibility. Our analysis identified a total of 6462 open- and 3587 closed-differentially accessible chromatin regions (DACRs) in rice under RSV infection by ATAC-seq. Additionally, by integrating ATAC-seq and RNA-seq, 349 up-regulated genes in open-DACRs and 126 down-regulated genes in closed-DACRs were identified, of which 34 transcription factors (TFs) were further identified by search of upstream motifs. Transcription levels of eight of these TFs were validated by reverse transcription-PCR. Importantly, four of these TFs (OsWRKY77, OsWRKY28, OsZFP12 and OsERF91) interacted with RSV proteins and are therefore predicted to play important roles in RSV infection. This is the first application of ATAC-seq and RNA-seq techniques to analyse changes in rice chromatin accessibility caused by RSV infection. Integrating ATAC-seq and RNA-seq provides a new approach to select candidate TFs in response to virus infection.


Asunto(s)
Oryza , Infecciones por Virus Sincitial Respiratorio , Tenuivirus , Animales , Factores de Transcripción/genética , Oryza/genética , Tenuivirus/genética , Secuenciación de Inmunoprecipitación de Cromatina , RNA-Seq , Cromatina , Análisis de Datos
14.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38493346

RESUMEN

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data provided new insights into the understanding of epigenetic heterogeneity and transcriptional regulation. With the increasing abundance of dataset resources, there is an urgent need to extract more useful information through high-quality data analysis methods specifically designed for scATAC-seq. However, analyzing scATAC-seq data poses challenges due to its near binarization, high sparsity and ultra-high dimensionality properties. Here, we proposed a novel network diffusion-based computational method to comprehensively analyze scATAC-seq data, named Single-Cell ATAC-seq Analysis via Network Refinement with Peaks Location Information (SCARP). SCARP formulates the Network Refinement diffusion method under the graph theory framework to aggregate information from different network orders, effectively compensating for missing signals in the scATAC-seq data. By incorporating distance information between adjacent peaks on the genome, SCARP also contributes to depicting the co-accessibility of peaks. These two innovations empower SCARP to obtain lower-dimensional representations for both cells and peaks more effectively. We have demonstrated through sufficient experiments that SCARP facilitated superior analyses of scATAC-seq data. Specifically, SCARP exhibited outstanding cell clustering performance, enabling better elucidation of cell heterogeneity and the discovery of new biologically significant cell subpopulations. Additionally, SCARP was also instrumental in portraying co-accessibility relationships of accessible regions and providing new insight into transcriptional regulation. Consequently, SCARP identified genes that were involved in key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to diseases and predicted reliable cis-regulatory interactions. To sum up, our studies suggested that SCARP is a promising tool to comprehensively analyze the scATAC-seq data.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Cromatina/genética , Genoma , Epigenómica , Análisis de Datos
15.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474039

RESUMEN

Ascidian larvae undergo tail elongation and notochord lumenogenesis, making them an ideal model for investigating tissue morphogenesis in embryogenesis. The cellular and mechanical mechanisms of these processes have been studied; however, the underlying molecular regulatory mechanism remains to be elucidated. In this study, assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were applied to investigate potential regulators of the development of ascidian Ciona savignyi larvae. Our results revealed 351 and 138 differentially accessible region genes through comparisons of ATAC-seq data between stages 21 and 24 and between stages 24 and 25, respectively. A joint analysis of RNA-seq and ATAC-seq data revealed a correlation between chromatin accessibility and gene transcription. We further verified the tissue expression patterns of 12 different genes. Among them, Cs-matrix metalloproteinase 24 (MMP24) and Cs-krüppel-like factor 5 (KLF5) were highly expressed in notochord cells. Functional assay results demonstrated that both genes are necessary for notochord lumen formation and expansion. Finally, we performed motif enrichment analysis of the differentially accessible regions in different tailbud stages and summarized the potential roles of these motif-bearing transcription factors in larval development. Overall, our study found a correlation between gene expression and chromatin accessibility and provided a vital resource for understanding the mechanisms of the development of ascidian embryos.


Asunto(s)
Ciona , Urocordados , Animales , Cromatina , Urocordados/genética , Secuenciación de Inmunoprecipitación de Cromatina , Morfogénesis , Factores de Transcripción/genética
16.
Nature ; 627(8005): 865-872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509377

RESUMEN

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Asunto(s)
Astrocitos , Encefalomielitis Autoinmune Experimental , Memoria Epigenética , Esclerosis Múltiple , Animales , Femenino , Humanos , Masculino , Ratones , Acetilcoenzima A/metabolismo , Astrocitos/enzimología , Astrocitos/metabolismo , Astrocitos/patología , ATP Citrato (pro-S)-Liasa/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Sistemas CRISPR-Cas , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Inflamación/enzimología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Análisis de Expresión Génica de una Sola Célula , Transposasas/metabolismo
17.
Nucleic Acids Res ; 52(7): e40, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38499482

RESUMEN

Genome-wide binding assays aspire to map the complete binding pattern of gene regulators. Common practice relies on replication-duplicates or triplicates-and high stringency statistics to favor false negatives over false positives. Here we show that duplicates and triplicates of CUT&RUN are not sufficient to discover the entire activity of transcriptional regulators. We introduce ICEBERG (Increased Capture of Enrichment By Exhaustive Replicate aGgregation), a pipeline that harnesses large numbers of CUT&RUN replicates to discover the full set of binding events and chart the line between false positives and false negatives. We employed ICEBERG to map the full set of H3K4me3-marked regions, the targets of the co-factor ß-catenin, and those of the transcription factor TBX3, in human colorectal cancer cells. The ICEBERG datasets allow benchmarking of individual replicates, comparing the performance of peak calling and replication approaches, and expose the arbitrary nature of strategies to identify reproducible peaks. Instead of a static view of genomic targets, ICEBERG establishes a spectrum of detection probabilities across the genome for a given factor, underlying the intrinsic dynamicity of its mechanism of action, and permitting to distinguish frequent from rare regulation events. Finally, ICEBERG discovered instances, undetectable with other approaches, that underlie novel mechanisms of colorectal cancer progression.


Asunto(s)
Programas Informáticos , Transcripción Genética , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Sitios de Unión , Línea Celular Tumoral , Secuenciación de Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Genoma Humano , Histonas/metabolismo , Histonas/genética , Unión Proteica , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
18.
STAR Protoc ; 5(1): 102859, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329877

RESUMEN

Chromatin accessibility influences gene regulation and can be quantified using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Recapitulating in vivo fluid shear stress (FSS) mechano-regimes in vitro allows the study of atheroprone and atheroprotective mechanisms. In this protocol, we show how to culture and harvest endothelial cells from microfluidic channels for the preparation of ATAC-seq, highlighting optional growth factor stimulation and different FSS rates. This extends the application of ATAC-seq to the analysis of in vitro mechanically stimulated cells. For complete details on the use and execution of this protocol, please refer to Jatzlau et al.1.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Humanos , Cromatina/genética , Células Endoteliales , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
19.
Dev Cell ; 59(6): 793-811.e8, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38330939

RESUMEN

Despite recent advances in single-cell genomics, the lack of maps for single-cell candidate cis-regulatory elements (cCREs) in non-mammal species has limited our exploration of conserved regulatory programs across vertebrates and invertebrates. Here, we developed a combinatorial-hybridization-based method for single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) named CH-ATAC-seq, enabling the construction of single-cell accessible chromatin landscapes for zebrafish, Drosophila, and earthworms (Eisenia andrei). By integrating scATAC censuses of humans, monkeys, and mice, we systematically identified 152 distinct main cell types and around 0.8 million cell-type-specific cCREs. Our analysis provided insights into the conservation of neural, muscle, and immune lineages across species, while epithelial cells exhibited a higher organ-origin heterogeneity. Additionally, a large-scale gene regulatory network (GRN) was constructed in four vertebrates by integrating scRNA-seq censuses. Overall, our study provides a valuable resource for comparative epigenomics, identifying the evolutionary conservation and divergence of gene regulation across different species.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Humanos , Animales , Ratones , Pez Cebra/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Análisis de la Célula Individual/métodos
20.
Cell Biochem Funct ; 42(2): e3943, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379015

RESUMEN

Dapagliflozin (DAPA) are clinically effective in improving diabetic nephropathy (DN). However, whether and how chromatin accessibility changed by DN responds to DAPA treatment is unclear. Therefore, we performed ATAC-seq, RNA-seq, and weighted gene correlation network analysis to identify the chromatin accessibility, the messenger RNA (mRNA) expression, and the correlation between clinical phenotypes and mRNA expression using kidney from three mouse groups: db/m mice (Controls), db/db mice (case group), and those treated with DAPA (treatment group). RNA-Seq and ATAC-seq conjoint analysis revealed many overlapping pathways and networks suggesting that the transcriptional changes of DN and DAPA intervention largely occured dependently on chromatin remodeling. Specifically, the results showed that some key signal transduction pathways, such as immune dysfunction, glucolipid metabolism, oxidative stress and xenobiotic and endobiotic metabolism, were repeatedly enriched in the analysis of the RNA-seq data alone, as well as combined analysis with ATAC-seq data. Furthermore, we identified some candidate genes (UDP glucuronosyltransferase 1 family, Dock2, Tbc1d10c, etc.) and transcriptional regulators (KLF6 and GFI1) that might be associated with DN and DAPA restoration. These reversed genes and regulators confirmed that pathways related to immune response and metabolism pathways were critically involved in DN progression.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus , Nefropatías Diabéticas , Glucósidos , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , RNA-Seq , Cromatina , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...