Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Anticancer Res ; 41(12): 6135-6145, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34848468

RESUMEN

BACKGROUND/AIM: This study aimed to explore RGS2 as a regulator of melanoma cell growth. MATERIALS AND METHODS: Effect of RGS2 over-expression was analyzed in three melanoma cell lines, and Rgs2 knockdown was performed in zebrafish. RESULTS: RGS2 was differentially expressed among the cell lines. In B16F10 cells, RGS2 over-expression inhibited MAPK and AKT activation, and prevented cell growth. A similar outcome was observed in A375 cells, but the MAPK signals were not suppressed. In A2058 cells, RGS2 repressed AKT activation, but without affecting cell growth. Moreover, MAPK and AKT constitutive activation abolished the RGS2 inhibitory effect on B16F10 cell growth. Rgs2 knockdown caused ectopic melanocyte differentiation, and promoted MAPK and AKT activation in zebrafish embryos. CONCLUSION: RGS2 prevents melanoma cell growth by inhibiting MAPK and AKT, but this effect depends on the overall cell genetic landscape. Further studies are warranted to investigate the anticancer therapeutic potential of RGS2 for melanoma.


Asunto(s)
Secuencias Hélice-Asa-Hélice/fisiología , Melanoma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas RGS/uso terapéutico , Animales , Humanos , Melanoma/fisiopatología , Proteínas RGS/farmacología , Transducción de Señal , Pez Cebra
2.
Methods Mol Biol ; 2318: 21-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019285

RESUMEN

The C-terminal region of the c-MYC transcription factor consists of approximately 100 amino acids that in its native state does not adopt a stable structure. When this region binds to the obligatory partner MAX via a coupled folding-and-binding mechanism, it forms a basic-helix-loop-helix-leucine zipper (bHLHZip) heterodimeric complex. The C-terminal region of MYC is the target for numerous drug discovery programs for direct MYC inhibition via blocking the dimerization event and/or binding to DNA, and a proper understanding of the partially folded, dynamic nature of the heterodimeric complex is essential to these efforts. The bHLHZip motif also drives protein-protein interactions with cofactors that are crucial for both transcriptional repression and activation of MYC target genes. Targeting these interactions could potentially provide a means of developing alternative approaches to halt MYC functions; however, the molecular mechanism of these regulatory interactions is poorly understood. Herein we provide methods to produce high-quality human c-MYC C-terminal by itself and in complex MAX, and how to study them using Nuclear Magnetic Resonance spectroscopy and X-ray crystallography. Our protein expression and purification protocols have already been used to study interactions with cofactors.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/aislamiento & purificación , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/aislamiento & purificación , Secuencia de Aminoácidos/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión , Cristalografía por Rayos X/métodos , ADN/química , ADN/genética , Dimerización , Genes myc/genética , Genes myc/fisiología , Secuencias Hélice-Asa-Hélice/genética , Secuencias Hélice-Asa-Hélice/fisiología , Humanos , Leucina Zippers/genética , Leucina Zippers/fisiología , Espectroscopía de Resonancia Magnética/métodos , Unión Proteica , Dominios Proteicos/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo
3.
Biochemistry ; 58(29): 3144-3154, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31260268

RESUMEN

The c-MYC transcription factor is a master regulator of cell growth and proliferation and is an established target for cancer therapy. This basic helix-loop-helix Zip protein forms a heterodimer with its obligatory partner MAX, which binds to DNA via the basic region. Considerable research efforts are focused on targeting the heterodimerization interface and the interaction of the complex with DNA. The only available crystal structure is that of a c-MYC:MAX complex artificially tethered by an engineered disulfide linker and prebound to DNA. We have carried out a detailed structural analysis of the apo form of the c-MYC:MAX complex, with no artificial linker, both in solution using nuclear magnetic resonance (NMR) spectroscopy and by X-ray crystallography. We have obtained crystal structures in three different crystal forms, with resolutions between 1.35 and 2.2 Å, that show extensive helical structure in the basic region. Determination of the α-helical propensity using NMR chemical shift analysis shows that the basic region of c-MYC and, to a lesser extent, that of MAX populate helical conformations. We have also assigned the NMR spectra of the c-MYC basic helix-loop-helix Zip motif in the absence of MAX and showed that the basic region has an intrinsic helical propensity even in the absence of its dimerization partner. The presence of helical structure in the basic regions in the absence of DNA suggests that the molecular recognition occurs via a conformational selection rather than an induced fit. Our work provides both insight into the mechanism of DNA binding and structural information to aid in the development of MYC inhibitors.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Cristalografía por Rayos X/métodos , Proteínas de Unión al ADN/química , ADN/química , Secuencias Hélice-Asa-Hélice/fisiología , Espectroscopía de Resonancia Magnética/métodos , Proteínas Represoras/química , Factores de Transcripción/química , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Pollos , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Estructura Secundaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Biochem Pharmacol ; 168: 330-338, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348898

RESUMEN

The signaling mechanisms of the angiotensin II type 2 receptor (AT2R), a heptahelical receptor, have not yet been clearly and completely defined. In the present contribution, we set out to identify the molecular determinants involved in AT2R activation. Although AT2R has not been shown to engage Gq/11, G12, Gi2, and ß-arrestin (ßarr) pathways as does the AT1R upon angiotensin II (AngII) stimulation, the atypical positioning of helix VIII in the recently published AT2R structure may play a role in the receptor's capacity to couple to downstream effectors. In the AT2R structure, helix VIII points inwards and towards intracellular loop 3 (ICL3) to form tertiary interactions with transmembrane domain 6 (TM6), possibly impeding access to signaling effectors. On the other hand, in most class A GPCRs, helix VIII is found to be engaged in tertiary interactions with ICL1 and away from the effector binding site. Upon closer examination of the AT2R structure, we found that the residues contained within intracellular loop 1 (ICL1) may be involved in driving this unusual conformation of helix VIII. To explore this hypothesis, we designed a series of AT1R/AT2R receptor chimeras to validate the roles of ICL1 and helix VIII in AT2R signaling. Substituting the AT1R ICL1 into AT2R led to a mutant receptor that coupled to Gi2. The substitution of the helix VIII and C-terminal domains of AT2R into the AT1R backbone led to a mutant receptor that retained AT1R-like signaling properties. These results suggest that the C-terminal portion of AT2R is compatible with canonical GPCR signaling and that ICL1 of AT2R is involved in repositioning helix VIII, which impedes engagement of classical GPCR effectors such as G proteins or ßarrs.


Asunto(s)
Secuencias Hélice-Asa-Hélice/fisiología , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Receptor de Angiotensina Tipo 2/química , Receptor de Angiotensina Tipo 2/metabolismo , Angiotensina II/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Relación Dosis-Respuesta a Droga , Células HEK293 , Secuencias Hélice-Asa-Hélice/efectos de los fármacos , Humanos , Membranas Intracelulares/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptor de Angiotensina Tipo 2/agonistas
5.
Genes Dev ; 33(1-2): 6-25, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602438

RESUMEN

Helix-loop-helix (HLH) proteins are dimeric transcription factors that control lineage- and developmental-specific gene programs. Genes encoding for HLH proteins arose in unicellular organisms >600 million years ago and then duplicated and diversified from ancestral genes across the metazoan and plant kingdoms to establish multicellularity. Hundreds of HLH proteins have been identified with diverse functions in a wide variety of cell types. HLH proteins orchestrate lineage specification, commitment, self-renewal, proliferation, differentiation, and homing. HLH proteins also regulate circadian clocks, protect against hypoxic stress, promote antigen receptor locus assembly, and program transdifferentiation. HLH proteins deposit or erase epigenetic marks, activate noncoding transcription, and sequester chromatin remodelers across the chromatin landscape to dictate enhancer-promoter communication and somatic recombination. Here the evolution of HLH genes, the structures of HLH domains, and the elaborate activities of HLH proteins in multicellular life are discussed.


Asunto(s)
Evolución Molecular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/genética , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica , Secuencias Hélice-Asa-Hélice/fisiología , Regiones Promotoras Genéticas/fisiología
6.
Brain Res ; 1705: 48-65, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29544733

RESUMEN

The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neurogénesis/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/genética , Reprogramación Celular/fisiología , Sistema Nervioso Central/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Secuencias Hélice-Asa-Hélice/fisiología , Humanos , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo
7.
Dev Biol ; 445(1): 1-7, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389344

RESUMEN

MESP1 is a key transcription factor in development of early cardiovascular tissue and it is required for induction of the cardiomyocyte (CM) gene expression program, but its role in vascular development is unclear. Here, we used inducible CRISPRi knock-down of MESP1 to analyze the molecular processes of the early differentiation stages of human induced pluripotent stem cells into mesoderm and subsequently vascular progenitor cells. We found that expression of the mesodermal marker, BRACHYURY (encoded by T) was unaffected in MESP1 knock-down cells as compared to wild type cells suggesting timely movement through the primitive streak whereas another mesodermal marker MIXL1 was slightly, but significantly decreased. In contrast, the expression of the vascular cell surface marker KDR was decreased and CD31 and CD34 expression were substantially reduced in MESP1 knock-down cells supporting inhibition or delay of vascular specification. In addition, mRNA microarray data revealed several other altered gene expressions including the EMT regulating transcription factors SNAI1 and TWIST1, which were both significantly decreased indicating that MESP1 knock-down cells are less likely to undergo EMT during vascular progenitor differentiation. Our study demonstrates that while leaving primitive streak markers unaffected, MESP1 expression is required for timely vascular progenitor specification. Thus, MESP1 expression is essential for the molecular features of early CM, EC and VSMC lineage specification.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Línea Primitiva/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Células Madre Embrionarias/citología , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Secuencias Hélice-Asa-Hélice/fisiología , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Mesodermo/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Línea Primitiva/citología , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
8.
PLoS Genet ; 14(7): e1007527, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30020925

RESUMEN

Extra Cytoplasmic Function (ECF) σ factors are a diverse group of alternate σ factors bacteria use to respond to changes in the environment. The Bacillus subtilis ECF σ factor σV responds to lysozyme. In the absence of lysozyme, σV is held inactive by the anti-σ factor, RsiV. In the presence of lysozyme RsiV is degraded via regulated intramembrane proteolysis, which results in the release of σV and thus activation of lysozyme resistance genes. Signal peptidase is required to initiate degradation of RsiV. Previous work indicated that RsiV only becomes sensitive to signal peptidase upon direct binding to lysozyme. We have identified a unique domain of RsiV that is responsible for protecting RsiV from cleavage by signal peptidase in the absence of lysozyme. We provide evidence that this domain contains putative amphipathic helices. Disruption of the hydrophobic surface of these helices by introducing positively charged residues results in constitutive cleavage of RsiV by signal peptidase and thus constitutive σV activation. We provide further evidence that this domain contains amphipathic helices using a membrane-impermeable reagent. Finally, we show that upon lysozyme binding to RsiV, the hydrophobic face of the amphipathic helix becomes accessible to a membrane-impermeable reagent. Thus, we propose the amphipathic helices protect RsiV from cleavage in the absence of lysozyme. Additionally, we propose the amphipathic helices rearrange to form a suitable signal peptidase substrate upon binding of RsiV to lysozyme leading to the activation of σV.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Secuencias Hélice-Asa-Hélice/fisiología , Muramidasa/metabolismo , Factor sigma/metabolismo , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Proteolisis , Serina Endopeptidasas/metabolismo
9.
Exp Cell Res ; 356(2): 141-145, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28366537

RESUMEN

Two decades of research into functions of the ubiquitous transcription factor HIF have revealed pervasive roles in development, oxygen homeostasis, metabolism, cancer and responses to ischemia. Unsurprisingly, HIF activities impinge on many pathologies, for which underlying molecular mechanisms are actively sought. HIF is a member of the heterodimeric bHLH/PAS family of transcription factors, a set of proteins that commonly function in developmental pathways and adaptive responses to environmental or physiological stress. Similarities in the mechanisms that regulate gene targeting by these transcription factors create opportunities for extensive crosstalk between family members. Data supporting pathway interactions between HIF1a and other bHLH/PAS factors, both collaborative and antagonistic, is beginning to surface in the areas of cancer, circadian rhythm, and immune responses. This review summarises the status of HIF1a-bHLH/PAS protein crosstalk and is dedicated to the memory of Lorenz Poellinger, a pioneer investigator into the molecular mechanisms of HIF, AHR, and ARNT bHLH/PAS factors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fenómenos Fisiológicos Celulares/fisiología , Secuencias Hélice-Asa-Hélice/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Transcripción Genética/fisiología
10.
Biochemistry ; 55(9): 1287-90, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26894260

RESUMEN

Little is known about how a membrane can regulate interactions between transmembrane helices. Here, we show that strong self-interaction of the transmembrane helix of human quiescin sulfhydryl oxidase 2 rests on a motif of conserved amino acids comprising one face of the helix. Atomistic molecular dynamics simulations suggest that water molecules enter the helix-helix interface and connect serine residues of both partner helices. In addition, an interfacial tyrosine can interact with noninterfacial water or lipid. Dimerization of this transmembrane helix might therefore be controlled by membrane properties controlling water permeation and/or by the lipid composition of the membrane.


Asunto(s)
Secuencias Hélice-Asa-Hélice/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Estructura Secundaria de Proteína
11.
Nat Commun ; 5: 4687, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25134617

RESUMEN

Brassinosteroids (BRs) are steroid hormones that are essential for plant growth. Responses to these hormones are mediated by transcription factors of the bri1-EMS suppressor 1/brassinazole resistant 1 subfamily, and BRs activate these factors by impairing their inhibitory phosphorylation by GSK3/shaggy-like kinases. Here we show that BRs induce nuclear compartmentalization of CESTA (CES), a basic helix-loop-helix transcription factor that regulates BR responses, and reveal that this process is regulated by CES SUMOylation. We demonstrate that CES contains an extended SUMOylation motif, and that SUMOylation of this motif is antagonized by phosphorylation to control CES subnuclear localization. Moreover, we provide evidence that phosphorylation regulates CES transcriptional activity and protein turnover by the proteasome. A coordinated modification model is proposed in which, in a BR-deficient situation, CES is phosphorylated to activate target gene transcription and enable further posttranslational modification that controls CES protein stability and nuclear dynamics.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Brasinoesteroides , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Secuencias Hélice-Asa-Hélice/fisiología , Modelos Biológicos , Fosforilación/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Sumoilación/fisiología
12.
Andrology ; 2(4): 607-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24902969

RESUMEN

The optimal markers for human spermatogonial stem cells (SSCs) are not known. Among the genes recently linked to SSCs in mice and other animals are the basic helix-loop-helix transcription factor ID4 and the orphan G-protein-coupled receptor GPR125. While ID4 and GPR125 are considered putative markers for SSCs, they have not been evaluated for coexpression in human tissue. Furthermore, neither the size nor the character of the human spermatogonial populations that express ID4 and GPR125, respectively, are known. A major barrier to addressing these questions is the availability of healthy adult testis tissue from donors with no known reproductive health problems. To overcome this obstacle, we have employed healthy testicular tissue from a novel set of organ donors (n = 16; aged 17-68 years) who were undergoing post-mortem clinical organ procurement. Using immunolabelling, we found that ID4 and GPR125 are expressed on partially overlapping spermatogonial populations and are more broadly expressed in the normal adult human testis. In addition, we found that expression of ID4 remained stable during ageing. These findings suggest that ID4 and GPR125 could be efficacious for identifying previously unrecognized human spermatogonial subpopulations in conjunction with other putative human stem cell markers, both in younger and older donors.


Asunto(s)
Biomarcadores/metabolismo , Secuencias Hélice-Asa-Hélice/fisiología , Proteínas Inhibidoras de la Diferenciación/biosíntesis , Receptores Acoplados a Proteínas G/biosíntesis , Espermatogonias/metabolismo , Células Madre/metabolismo , Adolescente , Adulto , Anciano , Cadáver , Humanos , Masculino , Persona de Mediana Edad , Donantes de Tejidos
13.
J Cell Physiol ; 228(2): 313-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22886425

RESUMEN

Epigenetic mechanisms mediating expression of the Runt-related transcription factor Runx2 are critical for controlling its osteogenic activity during skeletal development. Here, we characterized bona fide regulatory elements within 120 kbp of the endogenous bone-related Runx2 promoter (P1) in osteoblasts by genomic DNase I footprinting and chromatin immuno-precipitations (ChIPs). We identified a ~10 kbp genomic domain spanning the P1 promoter that interacts with acetylated histones H3 and H4 reflecting an open chromatin conformation in MC3T3 osteoblasts. This large chromatin domain contains a single major DNaseI hypersensitive (DHS) region that defines a 0.4 kbp "basal core" promoter. This region encompasses two endogenous genomic protein/DNA interaction sites (i.e., footprints at Activating Protein 1 [AP1], E-box and Runx motifs). Helix-Loop-Helix (HLH)/E-box occupancy and presence of the DHS region persists in several mesenchymal cell types, but AP1 site occupancy occurs only during S phase when Runx2 expression is minimal. Point-mutation of the HLH/E box dramatically reduces basal promoter activity. Our results indicate that the Runx2 P1 promoter utilizes two stable principal protein/DNA interaction domains associated with AP1 and HLH factors. These sites function together with dynamic and developmentally responsive sites in a major DHS region to support epigenetic control of bone-specific transcription when osteoblasts transition into a quiescent or differentiated state.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Secuencias Hélice-Asa-Hélice/genética , Dominios y Motivos de Interacción de Proteínas/genética , Animales , Línea Celular , Cromatina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Secuencias Hélice-Asa-Hélice/fisiología , Histonas/metabolismo , Mesodermo/metabolismo , Ratones , Osteoblastos/metabolismo , Mutación Puntual , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas/fisiología , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
14.
J Neurosci ; 32(40): 13929-44, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035102

RESUMEN

Within the developing vertebrate retina, particular subtypes of amacrine cells (ACs) tend to arise from progenitors expressing the basic helix-loop-helix (bHLH) transcription factor, Atoh7, which is necessary for the early generation of retinal ganglion cells (RGCs). All ACs require the postmitotic expression of the bHLH pancreas transcription factor Ptf1a; however, Ptf1a alone is not sufficient to give subtype identities. Here we use functional and in vivo time-lapse studies in the zebrafish retina to investigate on the developmental programs leading to ACs specification within the subsequent divisions of Atoh7-positive progenitors. We find evidences that the homeobox transcription factor Barhl2 is an AC subtype identity-biasing factor that turns on within Atoh7-positive descendants. In vivo lineage tracing reveals that particular modes of cell division tend to generate Barhl2-positive precursors from sisters of RGCs. Additionally, Atoh7 indirectly impacts these division modes to regulate the right number of barhl2-expressing cells. We finally find that Atoh7 itself influences the subtypes of Barhl2-dependent ACs. Together, the results from our study uncover lineage-related and molecular logic of subtype specification in the vertebrate retina, by showing that specific AC subtypes arise via a particular mode of cell division and a transcriptional network cascade involving the sequential expression of first atoh7 followed by ptf1a and then barhl2.


Asunto(s)
Células Amacrinas/citología , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Células Amacrinas/clasificación , Células Amacrinas/metabolismo , Animales , Animales Modificados Genéticamente , División Celular , Linaje de la Célula , Proteínas de Unión al ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Secuencias Hélice-Asa-Hélice/fisiología , Masculino , Morfolinos/farmacología , Retina/embriología , Imagen de Lapso de Tiempo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
15.
J Mol Recognit ; 25(7): 414-26, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22733550

RESUMEN

c-Myc must heterodimerize with Max to accomplish its functions as a transcription factor. This specific heterodimerization occurs through the b-HLH-LZ (basic region, helix 1-loop-helix 2-leucine zipper) domains. In fact, many studies have shown that the c-Myc b-HLH-LZ (c-Myc'SH) preferentially forms a heterodimer with the Max b-HLH-LZ (Max'SH). The primary mechanism underlying the specific heterodimerization lies on the destabilization of both homodimers and the formation of a more stable heterodimer. In this regard, it has been widely reported that c-Myc'SH has low solubility and homodimerizes poorly and that repulsions within the LZ domain account for the homodimer instability. Here, we show that replacing one residue in the basic region and one residue in Helix 1 (H(1)) of c-Myc'SH with corresponding residues conserved in b-HLH proteins confers to c-Myc'SH a higher propensity to form a stable homodimer in solution. In stark contrast to the wild-type protein, this double mutant (L362R, R367L) of the c-Myc b-HLH-LZ (c-Myc'RL) shows limited heterodimerization with Max'SH in vitro. In addition, c-Myc'RL forms highly stable and soluble complexes with canonical as well as non-canonical E-box probes. Altogether, our results demonstrate for the first time that structural determinants driving the specific heterodimerization of c-Myc and Max are embedded in the basic region and H(1) of c-Myc and that these can be exploited to engineer a novel homodimeric c-Myc b-HLH-LZ with the ability of binding the E-box sequence autonomously and with high affinity.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Multimerización de Proteína/fisiología , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Aminoácidos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Clonación Molecular , Secuencias Hélice-Asa-Hélice/genética , Secuencias Hélice-Asa-Hélice/fisiología , Humanos , Leucina Zippers/genética , Leucina Zippers/fisiología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/genética , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
J Neurosci Res ; 89(10): 1627-36, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21688290

RESUMEN

In vertebrates and invertebrates, dopamine signaling modulates a wide variety of physical and behavioral functions and exerts these effects through heterotrimeric G proteins. The soil nematode Caenorhabditis elegans has been used to model dopamine signaling and reacts reproducibly to alterations in dopamine levels through eight well-characterized dopaminergic neurons located in the head. In C. elegans, the basic helix-loop-helix transcription factor HLH-17 is strongly and constitutively expressed in the glia cells that ensheath four of the dopaminergic neurons, yet it is not required for specification or development of either the glia or the neurons. In this study, we sought to determine whether HLH-17 functions in dopamine signaling. We found that, unlike wild-type animals, hlh-17 animals are resistant to the effects of exogenous dopamine on egg laying and mobility. hlh-17 animals are also defective in the basal slowing and gustatory plasticity behaviors that require functional dopamine signaling. We also found that the expression of the dopamine receptor genes dop-1, dop-2, and dop-3 and the RGS protein gene egl-10 is significantly reduced in hlh-17 animals. Together these results point to a role for HLH-17 in dopamine signaling in C. elegans.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Dopamina/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Animales , Dopamina/metabolismo , Femenino , Secuencias Hélice-Asa-Hélice/fisiología , Masculino , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Receptores Dopaminérgicos/fisiología
17.
Invest Ophthalmol Vis Sci ; 51(11): 5561-70, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20574024

RESUMEN

PURPOSE: Twist2 is a member of a family of bHLH transcription factors critical for normal mesenchymal proliferation and differentiation. In this study, the authors analyzed the role of Twist2 in the eye and cornea through examination of a Twist2 loss-of-function mouse mutant. METHODS: Twist2 expression during eye development in the mouse was investigated using RT-PCR and mRNA slide in situ hybridization. Lineage tracing was performed using Cre reporter mice. Morphometric analyses were performed, and cell proliferation and cell death were investigated by immunohistochemistry using Ki67 and cleaved caspase 3 antibodies, respectively. RESULTS: In the mouse, Twist2 is expressed first in the periocular mesenchyme and subsequently in the corneal stroma and endothelium of the developing eye. Loss of Twist2 function leads to corneal thinning and a reduced population of stromal keratocytes. The reduction in the stromal cell population can be traced back to embryonic stages during which the proliferation of stromal progenitor cells is impaired and to the reduced number of proliferating cells in the corneal limbus postnatally. Adult Twist2-null mice display enophthalmia and blepharophimosis. Corneal thinning in mutant mice is not accompanied by glaucoma, an association reported in human patients. CONCLUSIONS: Twist2 is required for normal corneal keratocyte proliferation and eyelid morphogenesis in the mouse. Loss of Twist2 function leads to corneal thinning because of the reduction in stromal keratocyte proliferation.


Asunto(s)
Proliferación Celular , Córnea/embriología , Córnea/patología , Sustancia Propia/embriología , Proteínas Represoras/fisiología , Proteína 1 Relacionada con Twist/fisiología , Animales , Animales Recién Nacidos , Apoptosis , Blefarofimosis/genética , Blefarofimosis/patología , Caspasa 3/metabolismo , Diferenciación Celular/fisiología , Sustancia Propia/metabolismo , Enoftalmia/genética , Enoftalmia/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Genotipo , Secuencias Hélice-Asa-Hélice/fisiología , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Biochemistry ; 49(8): 1577-89, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20102160

RESUMEN

Neuronal specification is regulated by the activity of transcription factors containing the basic helix-loop-helix motif (bHLH); these regulating proteins include, among others, the neurogenin (Ngn) family, related to the atonal family of genes. Neurogenin 1 (NGN1) is a 237-residue protein that contains a bHLH domain and is involved in neuronal differentiation. In this work, we synthesized the bHLH region of NGN1 (bHLHN) comprising residues 90-150 of the full-length NGN1. The domain is a monomeric natively unfolded protein with a pH-dependent premolten globule conformation, as shown by several spectroscopic techniques (namely, NMR, fluorescence, FTIR, and circular dichroism). The unfolded character of the domain also explains, first, the impossibility of its overexpression in several Escherichia coli strains and, second, its insolubility in aqueous buffers. To the best of our knowledge, this is the first extensive study of the conformational preferences of a bHLH domain under different solution conditions. Upon binding to two DNA E-boxes, the protein forms "fuzzy" complexes (that is, the complexes were not fully folded). The affinities of bHLHN for both DNA boxes were smaller than those of other bHLH domains, which might explain why the protein-DNA complexes were not fully folded.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dicroismo Circular , Secuencias Hélice-Asa-Hélice/genética , Secuencias Hélice-Asa-Hélice/fisiología , Humanos , Proteínas del Tejido Nervioso/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
19.
J Cell Biochem ; 109(2): 417-24, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19950203

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors including Twist1 and E2a proteins regulate essential processes. These factors bind DNA as homo- or heterodimers and the choice of binding partners determines their functional output. To investigate potential regulators of bHLH dimerization, cells were exposed to the oxidative agent hydrogen peroxide (H(2)O(2)). Western blot analysis in the presence or absence of reducing agents, revealed that H(2)O(2) induces the rapid formation of an intermolecular disulfide bond between Twist1 homodimers and Twist/E2a proteins heterodimers. The disulfide bond is first observed between Twist1 homodimers at 25 mM H(2)O(2) and between Twist1 heterodimers at 75 mM H(2)O(2). This response is dependent upon cell density as H(2)O(2) did not induce disulfide bridge formation between bHLH proteins in cells seeded at high density. In the presence of E proteins, the formation of Twist1/E2a proteins heterodimers is favored over Twist1 homodimers, identifying an oxidative stimulus as an important factor in modulating binding partner specificity. We further demonstrated that a cysteine residue located at the C-terminus of Twist1 and E2a proteins is involved in this response. Disulfide bond formation between Twist1 homodimers significantly reduced its ability to interact with two of its binding partners, Runx2 and HDAC4, indicating that disulfide dimerization in response to H(2)O(2) has functional significance. These data support the conclusion that disulfide bond formation in response to an oxidative stimulus contributes to Twist1 homo- and heterodimerization and raises the possibility that the redox status of a cell may represent an important step in bHLH transcriptional regulation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/química , Proteína 1 Relacionada con Twist/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Recuento de Células , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Cisteína , Dimerización , Disulfuros/metabolismo , Secuencias Hélice-Asa-Hélice/fisiología , Histona Desacetilasas/metabolismo , Humanos , Peróxido de Hidrógeno , Ratones , Proteínas Nucleares/genética , Estrés Oxidativo , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...