Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.683
Filtrar
1.
Sci Rep ; 14(1): 11011, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744937

RESUMEN

Spider silk is a promising material with great potential in biomedical applications due to its incredible mechanical properties and resistance to degradation of commercially available bacterial strains. However, little is known about the bacterial communities that may inhabit spider webs and how these microorganisms interact with spider silk. In this study, we exposed two exopolysaccharide-secreting bacteria, isolated from webs of an orb spider, to major ampullate (MA) silk from host spiders. The naturally occurring lipid and glycoprotein surface layers of MA silk were experimentally removed to further probe the interaction between bacteria and silk. Extensibility of major ampullate silk produced by Triconephila clavata that was exposed to either Microbacterium sp. or Novosphigobium sp. was significantly higher than that of silk that was not exposed to bacteria (differed by 58.7%). This strain-enhancing effect was not observed when the lipid and glycoprotein surface layers of MA silks were removed. The presence of exopolysaccharides was detected through NMR from MA silks exposed to these two bacteria but not from those without exposure. Here we report for the first time that exopolysaccharide-secreting bacteria inhabiting spider webs can enhance extensibility of host MA silks and silk surface layers play a vital role in mediating such effects.


Asunto(s)
Seda , Arañas , Animales , Arañas/microbiología , Arañas/metabolismo , Seda/metabolismo , Bacterias/metabolismo , Polisacáridos Bacterianos/metabolismo
2.
BMC Genomics ; 25(1): 472, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745159

RESUMEN

Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.


Asunto(s)
Seda , Animales , Seda/metabolismo , Seda/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma , Insectos/metabolismo , Insectos/genética , Fibroínas/genética , Fibroínas/metabolismo , Fibroínas/química , Proteómica/métodos , Proteoma , Perfilación de la Expresión Génica
3.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38690985

RESUMEN

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Asunto(s)
Fibroínas , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porosidad , Animales , Humanos , Fibroínas/química , Bombyx , Materiales Biocompatibles/química , Seda/química
4.
J Mol Model ; 30(5): 156, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693294

RESUMEN

CONTEXT: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.


Asunto(s)
Celulosa , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Seda , Arañas , Celulosa/química , Arañas/química , Animales , Seda/química , Adsorción , Unión Proteica , Fibroínas/química
5.
Methods Mol Biol ; 2800: 147-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709483

RESUMEN

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Imagen Individual de Molécula/métodos , Animales , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Seda/química
6.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732243

RESUMEN

This study presents the functionalization of silk fabric with SWCNT ink. The first step was the formation of a polydopamine (PDA) thin coating on the silk fabric to allow for effective bonding of SWCNTs. PDA formation was carried out directly on the fabric by means of polymerization of dopamine in alkali conditions. The Silk/PDA fabric was functionalized with SWCNT ink of different SWCNT concentrations by using the dip-coating method. IR and Raman analyses show that the dominant ß-sheet structure of silk fibroin after the functionalization process remains unchanged. The heat resistance is even slightly improved. The hydrophobic silk fabric becomes hydrophilic after functionalization due to the influence of PDA and the surfactant in SWCNT ink. The ink significantly changes the electrical properties of the silk fabric, from insulating to conductive. The volume resistance changes by nine orders of magnitude, from 2.4 × 1012 Ω to 2.3 × 103 Ω for 0.12 wt.% of SWCNTs. The surface resistance changes by seven orders of magnitude, from 2.1 × 1012 Ω to 2.4 × 105 Ω for 0.17 wt.% of SWCNTs. The volume and surface resistance thresholds are determined to be about 0.05 wt.% and 0.06 wt.%, respectively. The low value of the percolation threshold indicates efficient functionalization, with high-quality ink facilitating the formation of percolation paths through SWCNTs and the influence of the PDA linker.


Asunto(s)
Conductividad Eléctrica , Indoles , Tinta , Nanotubos de Carbono , Polímeros , Seda , Indoles/química , Polímeros/química , Seda/química , Nanotubos de Carbono/química , Textiles , Interacciones Hidrofóbicas e Hidrofílicas
7.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731513

RESUMEN

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Asunto(s)
Óxido de Aluminio , Fibroínas , Nanopartículas , Rayos Ultravioleta , Fibroínas/química , Nanopartículas/química , Óxido de Aluminio/química , Animales , Bombyx , Calor , Humanos , Seda/química
8.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587986

RESUMEN

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Asunto(s)
Fibroínas , Péptidos , Resistencia a la Tracción , Fibroínas/química , Fibroínas/genética , Péptidos/química , Seda/química , Animales , Secuencias de Aminoácidos , Nanofibras/química , Arañas/química
9.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632231

RESUMEN

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Asunto(s)
Fibroínas , Seda , Humanos , Seda/química , Textiles , Conductividad Eléctrica , Fibroínas/química , Tacto
10.
ACS Biomater Sci Eng ; 10(5): 2784-2804, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38597279

RESUMEN

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.


Asunto(s)
Electrónica , Humanos , Animales , Materiales Biocompatibles/química , Seda/química , Fibroínas/química , Dispositivos Electrónicos Vestibles , Óptica y Fotónica , Bombyx
11.
Sci Prog ; 107(2): 368504241242282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38614468

RESUMEN

This research aims to optimize the silk and wool dyeing process using natural dyes from Bixa orellana (annatto) through response surface methodology. Central composite design experiments highlight the significant enhancement of color outcomes achieved through microwave treatment. For silk, the optimal conditions (80 °C for 40 min) with annatto extract yield a color strength (K/S) of 17.8588, while wool achieves a K/S of 7.5329. Introducing eco-friendly bio-mordants, such as pomegranate peel and red sumac tannins, enhances color strength. Pre-dyeing treatments with 2% red sumac, 1.5% pomegranate peel, and weld flower extracts for silk produce high color strength, with K/S values of 16.4063, 16.3784, and 12.1658, respectively. Post-dyeing, the K/S values increase to 40.1178, 17.4779, and 21.6494. Wool yarn exhibits similar improvements, with pre-dyeing K/S values of 13.1353, 13.5060, and 16.3232, escalating to 10.5892, 15.3141, and 23.4850 post-dyeing. Furthermore, this research underscores improved colorfastness properties, including notable enhancements in light, wash, and rubbing fastness for both silk fabric and wool yarn. These findings underscore the efficacy of the proposed sustainable dyeing methods, offering valuable insights for eco-friendly textile production.


Asunto(s)
Carotenoides , Árboles , Lana , Animales , Bixaceae , Textiles , Semillas , Seda
12.
Nat Commun ; 15(1): 3485, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664427

RESUMEN

Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m-3 to 0.53 GPa and 700 MJ m-3, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.


Asunto(s)
Nanofibras , Polielectrolitos , Seda , Arañas , Animales , Nanofibras/química , Arañas/química , Seda/química , Polielectrolitos/química , Resistencia a la Tracción , Músculos , Materiales Biomiméticos/química
13.
Proc Biol Sci ; 291(2020): 20232340, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593845

RESUMEN

Studies of adaptive radiations have played a central role in our understanding of reproductive isolation. Yet the focus has been on human-biased visual and auditory signals, leaving gaps in our knowledge of other modalities. To date, studies on chemical signals in adaptive radiations have focused on systems with multimodal signalling, making it difficult to isolate the role chemicals play in reproductive isolation. In this study we examine the use of chemical signals in the species recognition and adaptive radiation of Hawaiian Tetragnatha spiders by focusing on entire communities of co-occurring species, and conducting behavioural assays in conjunction with chemical analysis of their silks using gas chromatography-mass spectrometry. Male spiders significantly preferred the silk extracts of conspecific mates over those of sympatric heterospecifics. The compounds found in the silk extracts, long chain alkyl methyl ethers, were remarkably species-specific in the combination and quantity. The differences in the profile were greatest between co-occurring species and between closely related sibling species. Lastly, there were significant differences in the chemical profile between two populations of a particular species. These findings provide key insights into the role chemical signals play in the attainment and maintenance of reproductive barriers between closely related co-occurring species.


Asunto(s)
Arañas , Animales , Humanos , Masculino , Hawaii , Especificidad de la Especie , Aislamiento Reproductivo , Seda
14.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573429

RESUMEN

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Asunto(s)
Polipéptidos Similares a Elastina , Seda , Seda/genética , Proteínas de Artrópodos , Elastina/genética , Elastina/química , Elastina/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusión/genética
15.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663278

RESUMEN

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Asunto(s)
Glicerol , Magnesio , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Glicerol/química , Glicerol/farmacología , Magnesio/química , Magnesio/farmacología , Ratones , Seda/química , Hidrogeles/química , Hidrogeles/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Vendajes , Humanos , Ratas , Nanofibras/química , Proliferación Celular/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Masculino , Células Endoteliales de la Vena Umbilical Humana , Celulosa/química , Celulosa/farmacología , Celulosa/análogos & derivados
16.
Int J Biol Macromol ; 267(Pt 2): 131608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621558

RESUMEN

Amidoxime-based fiber adsorbents hold significant promise for uranium extraction. However, a notable issue is that these adsorbents primarily originate from synthetic polymer materials, which, aside from providing good mechanical support, have no other functions. In recent study, we shifted our focus to silk fiber (SF), a natural protein fiber known for its unique core-shell structure and rich amino acids. The shell layer, due to its abundant functional groups, makes it easily modifiable, while the core layer provides excellent mechanical strength. Leveraging these inherent properties, an amidoxime-based fiber adsorbent was developed. This adsorbent utilizes amino and carboxyl groups for enhanced performance synergistically. This method involves establishing uranium affinity sites on the outer sericin layer of SF via chemical initiation of graft polymerization (CIGP) and amidoximation (SF-g-PAO). The water absorption ratio of SF-g-PAO is as high as 601.16 % (DG = 97.17 %). Besides, SF-g-PAO demonstrates an exceptional adsorption capacity of 15.69 mg/g in simulated seawater, achieving a remarkable removal rate of uranyl ions at 95.06 %. It can withstand a minimum of five adsorption-elution cycles. Over a 4-week period in natural seawater, SF-g-PAO displayed an adsorption capacity of 4.95 mg/g. Furthermore, SF-g-PAO also exhibits impressive uranium removal efficiency in real nuclear wastewater, with a removal rate of 63 % in just 15 min and a final removal rate of 90 %. It is hoped that this SF-g-PAO, prepared through this straightforward method and characterized by the synergistic action of amino and carboxyl groups, can offer innovative insights into the development of uranium extraction adsorbents.


Asunto(s)
Oximas , Seda , Uranio , Uranio/química , Adsorción , Oximas/química , Seda/química , Fibroínas/química
17.
ACS Appl Bio Mater ; 7(4): 2389-2401, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38502100

RESUMEN

Graphene-based nanomaterials, renowned for their outstanding electrical conductivity, have been extensively studied as electroconductive biomaterials (ECBs) for electrically stimulated tissue regeneration. However, using eco-friendly reducing agents like l-ascorbic acid (l-Aa) can result in lower conductive properties in these ECBs, limiting their full potential for smooth charge transfer in living tissues. Moreover, creating a flexible biomaterial scaffold using these materials that accurately mimics a specific tissue microarchitecture, such as nerves, poses additional challenges. To address these issues, this study developed a microfibrous scaffold of Bombyx mori (Bm) silk fibroin uniformly coated with graphene nanoplatelets (GNPs) through a vacuum coating method. The scaffold's electrical conductivity was optimized by varying the reduction period using l-Aa. The research systematically investigated how different reduction periods impact scaffold properties, focusing on electrical conductivity and its significance on electrically stimulated axonal growth in PC12 cells. Results showed that a 48 h reduction significantly increased surface electrical conductivity by 100-1000 times compared to a shorter or no reduction process. l-Aa contributed to stabilizing the reduced GNPs, demonstrated by a slow degradation profile and sustained conductivity even after 60 days in a proteolytic environment. ß (III) tubulin immunostaining of PC12 cells on varied silk:GNP scaffolds under pulsed electrical stimulation (ES, 50 Hz frequency, 1 ms pulse width, and amplitudes of 100 and 300 mV/cm) demonstrates accelerated axonal growth on scaffolds exhibiting higher conductivity. This is supported by upregulated intracellular Ca2+ dynamics immediately after ES on the scaffolds with higher conductivity, subjected to a prolonged reduction period. The study showcases a sustainable reduction approach using l-Aa in combination with natural Bm silk fibroin to create a highly conductive, mechanically robust, and stable silk:GNP-based aligned fibrous scaffold. These scaffolds hold promise for functional regeneration in electrically excitable tissues such as nerves, cardiac tissue, and muscles.


Asunto(s)
Bombyx , Fibroínas , Grafito , Ratas , Animales , Seda , Andamios del Tejido , Grafito/farmacología , Fibroínas/farmacología , Materiales Biocompatibles/farmacología , Conductividad Eléctrica
18.
Molecules ; 29(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474537

RESUMEN

Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.


Asunto(s)
Seda , Arañas , Secuencias Repetitivas de Ácidos Nucleicos , Seda/química , Animales
19.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542108

RESUMEN

The increasing demand for innovative approaches in wound healing and skin regeneration has prompted extensive research into advanced biomaterials. This review focuses on showcasing the unique properties of sustainable silk-based particulate systems in promoting the controlled release of pharmaceuticals and bioactive agents in the context of wound healing and skin regeneration. Silk fibroin and sericin are derived from well-established silkworm production and constitute a unique biocompatible and biodegradable protein platform for the development of drug delivery systems. The controlled release of therapeutic compounds from silk-based particulate systems not only ensures optimal bioavailability but also addresses the challenges associated with conventional delivery methods. The multifaceted benefits of silk proteins, including their inherent biocompatibility, versatility, and sustainability, are explored in this review. Furthermore, the intricate mechanisms by which controlled drug release takes place from silk-based carriers are discussed.


Asunto(s)
Fibroínas , Seda , Seda/metabolismo , Preparaciones de Acción Retardada , Cicatrización de Heridas , Piel/metabolismo , Materiales Biocompatibles/uso terapéutico , Fibroínas/metabolismo
20.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542528

RESUMEN

Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant proteins for wet-spinning applications. Attempts to synthesize large amounts of native size recombinant spidroins in diverse cell types have been unsuccessful. In these studies, we design and express recombinant miniature black widow MaSp1 spidroins in bacteria that incorporate the N-terminal and C-terminal domain (NTD and CTD), along with varying numbers of codon-optimized internal block repeats. Following spidroin overexpression, we perform quantitative analysis of the bacterial proteome to identify proteins associated with spidroin synthesis. Liquid chromatography with tandem mass spectrometry (LC MS/MS) reveals a list of molecular targets that are differentially expressed after enforced mini-spidroin production. This list included proteins involved in energy management, proteostasis, translation, cell wall biosynthesis, and oxidative stress. Taken together, the purpose of this study was to identify genes within the genome of Escherichia coli for molecular targeting to overcome bottlenecks that throttle spidroin overexpression in microorganisms.


Asunto(s)
Fibroínas , Arañas , Animales , Fibroínas/química , Proteómica , Espectrometría de Masas en Tándem , Seda/química , Proteínas Recombinantes/química , Bacterias , Arañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...