Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Chemosphere ; 354: 141712, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484991

RESUMEN

The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.


Asunto(s)
Actinobacteria , Selenio , Ácido Selenioso/toxicidad , Selenito de Sodio/metabolismo , Selenito de Sodio/toxicidad , Actinobacteria/genética , Actinobacteria/metabolismo , Bacterias/metabolismo , Selenio/metabolismo , Oxidación-Reducción
2.
Environ Sci Pollut Res Int ; 31(13): 20510-20520, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374507

RESUMEN

In this study, we investigated the effects of different types of selenium (Se) (sodium selenite [SS], yeast selenium [YS], and nano-selenium [NS]) on the toxicity, growth, Se accumulation, and transformation of Lucilia sericata maggots (LSMs). We found that the 50% lethal concentration of LSMs exposed to SS was 2.18 and 1.96 times that of YS and NS, respectively. LSM growth was significantly promoted at exposure concentrations of 10-50 mg kg-1 in group SS and 10-30 mg kg-1 in group YS, whereas NS inhibited LSMs growth at all concentrations (p < 0.05). Total Se content in LSMs, conversion efficiency to organic and other forms of Se, and bioaccumulation factor of Se were the highest in the SS group when exposed to 50 mg kg-1 (81.6 mg kg-1, 94.6%, and 1.63, respectively). Transcriptomic results revealed that LSMs significantly upregulated the amino acid (alanine, aspartate, glutamic, and tyrosine) and tricarboxylic acid cycle signaling pathways (p < 0.05) on exposure to Se, resulting in a significant increase in LSMs biomass and quality. In conclusion, our study indicates that LSMs exhibit good tolerance to SS and can convert it into bioorganic or other forms of Se.


Asunto(s)
Selenio , Selenito de Sodio , Animales , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Selenio/metabolismo , Saccharomyces cerevisiae/metabolismo , Larva/metabolismo , Bioacumulación
3.
J Sci Food Agric ; 104(7): 4136-4144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38258891

RESUMEN

BACKGROUND: Selenium is an important nutritional supplement that mainly exists naturally in soil as inorganic selenium. Saccharomyces cerevisiae cells are excellent medium for converting inorganic selenium in nature into organic selenium. RESULTS: Under the co-stimulation of sodium selenite (Na2SeO3) and potassium selenite (K2SeO3), the activity of selenophosphate synthetase (SPS) was improved up to about five folds more than conventional Na2SeO3 group with the total selenite salts content of 30 mg/L. Transcriptome analysis first revealed that due to the sharing pathway between sodium ion (Na+) and potassium ion (K+), the K+ largely regulates the metabolisms of amino acid and glutathione under the accumulation of selenite salt. Furthermore, K+ could improve the tolerance performance and selenium-biotransformation yields of Saccharomyces cerevisiae cells under Na2SeO3 salt stimulation. CONCLUSION: The important role of K+ in regulating the intracellular selenium accumulation especially in terms of amino acid metabolism and glutathione, suggested a new direction for the development of selenium-enrichment supplements with Saccharomyces cerevisiae cell factory. © 2024 Society of Chemical Industry.


Asunto(s)
Saccharomyces , Selenio , Selenio/metabolismo , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Selenito de Sodio/metabolismo , Ácido Selenioso/metabolismo , Glutatión/metabolismo , Sodio/metabolismo , Aminoácidos/metabolismo , Potasio/metabolismo
4.
Biol Trace Elem Res ; 202(1): 161-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37127784

RESUMEN

Selenium (Se), an essential trace element, plays an important role in the antioxidative defense mechanism, and it has been proven to improve fertility and reproductive efficiency in dairy cattle. The present study evaluated the potential protective action of Se supplement of in vitro maturation (IVM) media on the maturation and subsequent development of bovine cumulus-oocyte complexes (COCs) exposed to heat stress (HS). The treatment with Se improved the viability of cumulus cells (CCs) and oocytes (P < 0.05). The proportion of oocytes reached metaphase II (MII) and those arrested at metaphase I (MI) was greater and lower in treatment than control respectively (P < 0.05). Supplementation with Se increased the percentage of cleaved embryos, total blastocysts, and blastocyst/cleavage ratio (P < 0.05). Moreover, the upregulation of CCND1, SEPP1, GPX-4, SOD, CAT, and downregulation of GRP78, CHOP, and BAX in both Se-treated CCs and oocytes were recorded. The upregulation of NRF2 was detected in Se-treated CCs other than in oocytes, which showed upregulation of IGF2R and SOX-2 as the markers of quality as well. Se supplement in IVM media improved the viability, maturation, and the level of transcripts related to antioxidant defense and quality of heat-treated oocytes, which coincided with greater subsequent development outcomes. Se ameliorated the viability of CCs along with upregulation of antioxidative candidate gene expression and downregulation of apoptosis-related ones to support their protective role on restoring the quality of oocytes against compromising effects of HS.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Selenito de Sodio , Bovinos , Animales , Femenino , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos , Respuesta al Choque Térmico , Células del Cúmulo/fisiología
5.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138577

RESUMEN

As a beneficial nutrient and essential trace element, selenium plays a significant role in plant growth functions and human protein biosynthesis. Plant selenium enrichment is mainly obtained from both natural soil and exogenous selenium supplementation, while human beings consume selenium-enriched foods for the purposes of selenium supplementation. In this study, different types of selenium fertilizers were sprayed onto Lycium barbarum in Ningxia, and transcriptomics and metabolomics techniques were used to explore the effects of selenium on the fruit differentials and differential genes in Lycium barbarum. Taking the "Ning Qiyi No.1" wolfberry as the research object, sodium selenite, nano-selenium, and organic selenium were sprayed at a concentration of 100 mg·L-1 three times from the first fruiting period to the harvesting period, with a control treatment comprising the spraying of clear water. We determined the major metabolites and differential genes of the amino acids and derivatives, flavonoids, and alkaloids in ripe wolfberries. We found that spraying selenium significantly enhanced the Lycium barbarum metabolic differentiators; the most effective spray was the organic selenium, with 129 major metabolic differentiators and 10 common metabolic pathways screened after spraying. Nano-selenium was the next best fertilizer we screened, with 111 major metabolic differentiators, the same number as organic selenium in terms of differential genes and common metabolite pathways. Sodium selenite was the least effective of the three, with only 59 of its major metabolic differentials screened, but its differential genes and metabolites were enriched for five common pathways.


Asunto(s)
Lycium , Selenio , Humanos , Lycium/química , Selenio/análisis , Frutas/química , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Metabolómica/métodos , Perfilación de la Expresión Génica , Fertilización
6.
Biotechnol Lett ; 45(11-12): 1513-1520, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864746

RESUMEN

Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. However, current knowledge of the molecular mechanisms of selenite reduction remains circumscribed. Here, the reduction of Se(IV) by a highly selenite-resistant Bacillus sp. SL (up to 50 mM) was systematically analyzed, and the molecular mechanisms of selenite reduction were investigated. Remarkably, 10 mM selenite was entirely transformed by the strain SL within 20 h, demonstrating a faster conversion rate compared to other microorganisms. Furthermore, glutathione (GSH) and exopolysaccharides (EPS) changes were also monitored during the process. Transcriptomic analysis revealed that the genes of ferredoxin-sulfite oxidoreductase (6.82) and sulfate adenylyltransferase (6.32) were significantly upregulated, indicating that the sulfur assimilation pathway is the primary reducing pathway involved in selenite reduction by strain SL. Moreover, key genes associated with NAD(P)/FAD-dependent oxidoreductases and thioredoxin were significantly upregulated. The reduction of Se(IV) was mediated by multiple pathways in strain SL. To our knowledge, this is the initial report to identify the involvement of sulfur assimilation pathway in selenite reduction for bacillus, which is rare in aerobic bacteria.


Asunto(s)
Bacillus , Ácido Selenioso , Ácido Selenioso/metabolismo , Bacillus/genética , Bacillus/metabolismo , Transcriptoma/genética , Oxidación-Reducción , Oxidorreductasas/metabolismo , Selenito de Sodio/metabolismo
7.
BMC Complement Med Ther ; 23(1): 131, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098557

RESUMEN

BACKGROUND: The physiological level of reactive oxygen species (ROS) is necessary for many cellular functions. However, during the in-vitro manipulations, cells face a high level of ROS, leading to reduced cell quality. Preventing this abnormal ROS level is a challenging task. Hence, here we evaluated the effect of sodium selenite supplementation on the antioxidant potential, stemness capacity, and differentiation of rat-derived Bone Marrow MSCs (rBM-MSCs) and planned to check our hypothesis on the molecular pathways and networks linked to sodium selenite's antioxidant properties. METHODS: MTT assay was used to assess the rBM-MSCs cells' viability following sodium selenite supplementation (concentrations of: 0.001, 0.01, 0.1, 1, 10 µM). The expression level of OCT-4, NANOG, and SIRT1 was explored using qPCR. The adipocyte differentiation capacity of MSCs was checked after Sodium Selenite treatment. The DCFH-DA assay was used to determine intracellular ROS levels. Sodium selenite-related expression of HIF-1α, GPX, SOD, TrxR, p-AKT, Nrf2, and p38 markers was determined using western blot. Significant findings were investigated by the String tool to picture the probable molecular network. RESULTS: Media supplemented with 0.1 µM sodium selenite helped to preserve rBM-MSCs multipotency and keep their surface markers presentation; this also reduced the ROS level and improved the rBM-MSCs' antioxidant and stemness capacity. We observed enhanced viability and reduced senescence for rBM-MSCs. Moreover, sodium selenite helped in rBM-MSCs cytoprotection by regulating the expression of HIF-1 of AKT, Nrf2, SOD, GPX, and TrxR markers. CONCLUSIONS: We showed that sodium selenite could help protect MSCs during in-vitro manipulations, probably via the Nrf2 pathway.


Asunto(s)
Células Madre Mesenquimatosas , Selenito de Sodio , Ratas , Animales , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Estrés Oxidativo , Transducción de Señal , Diferenciación Celular , Superóxido Dismutasa/metabolismo
8.
J Hazard Mater ; 452: 131218, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934626

RESUMEN

Selenium (Se) inhibits cadmium (Cd) root-to-shoot translocation and accumulation in the shoots of pak choi; however, the mechanism by which Se regulates Cd retention in roots is still poorly understood. A time-dependent hydroponic experiment was conducted to compare the effects of selenite and selenate on Cd translocation and retention in the roots. The underlying mechanisms were investigated regarding Se biotransformation and metal transportation in roots using HPLC and transcriptome analyses. Selenite showed reducing effects on Cd translocation and accumulation in shoots earlier than selenate. Selenite is mainly biotransformed into selenomethionine (80% of total Se in roots) at 72 h, while SeO42- was the dominant species in the selenate treatments (68% in shoots). Selenite up-regulated genes involved in the biosynthesis of lignin, suberin, and phytochelatins and those involved in stress signaling, thereby helping to retain Cd in the roots, whereas essentially, selenate had opposite effects and impaired the symplastic and apoplastic retention of Cd. These results suggest that cell-wall reinforcement and Cd retention in roots may be the key processes by which Se regulates Cd accumulation, and faster biotransformation into organic seleno-compounds could lead to earlier effects.


Asunto(s)
Brassica rapa , Cadmio , Selenio , Contaminantes del Suelo , Brassica rapa/genética , Brassica rapa/metabolismo , Cadmio/metabolismo , Perfilación de la Expresión Génica , Raíces de Plantas/metabolismo , Ácido Selénico/farmacología , Ácido Selénico/metabolismo , Ácido Selenioso/farmacología , Ácido Selenioso/metabolismo , Selenio/metabolismo , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Contaminantes del Suelo/metabolismo
9.
J Sci Food Agric ; 103(10): 4887-4898, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36942518

RESUMEN

BACKGROUND: Selenium rich bread is a good carrier of selenium, but the inorganic selenium used in the actual production process is toxic. It is necessary to develop a new green bread production technology. The extraction and utilization of humic acid chelated selenium from selenium-rich soil is beneficial for reducing resource waste and pollution without destroying the soil ecosystem in selenium-deficient areas. Sodium selenite and nanoselenium were selected as controls because they are commonly used as selenium agronomic enhancers in production. RESULTS: Humic acid chelated selenium can be absorbed and accumulated by wheat leaves, and humic acid chelated selenium had no significant effect on wheat yield, which was also shown in the treatments with nanoselenium and sodium selenite. Excessive accumulation of selenium in wheat grains can lead to a deterioration of processing quality. Among them, the use of excessive nanoselenium at the filling stage inhibited the accumulation of wheat grain protein, whereas humic acid chelated selenium is beneficial to grain protein accumulation and has the least negative effect on the processing quality. The accumulation of excessive selenium in wheat seeds had a negative effect on seed germination and growth; specifically, the seed vigor of wheat treated with humic acid chelated selenium was higher than that of untreated wheat. CONCLUSION: Humic acid chelated selenium is particularly suitable for the whole process of Se-enriched bread wheat production. The seed vigour of wheat treated with humic acid chelated selenium, which supplied a moderate amount of selenium, was higher than that of untreated wheat. Conversely, the accumulation of excessive selenium in wheat seeds reduced germination and seedling growth. © 2023 Society of Chemical Industry.


Asunto(s)
Proteínas de Granos , Selenio , Selenio/metabolismo , Selenito de Sodio/metabolismo , Sustancias Húmicas , Triticum/metabolismo , Biofortificación , Ecosistema , Suelo
10.
Artículo en Inglés | MEDLINE | ID: mdl-36722480

RESUMEN

AIM: The study aims to show that sodium selenite (Ss) would have an immunomodulatory effect on the functional activity of proinflammatory macrophages (Mφs) during their extended extracellular activation at the onset of human type 1 diabetes (T1D). BACKGROUND: Exacerbated activation of proinflammatory "M1" macrophages (Mφs) can promote chronic local pancreatic islet inflammation and T1D development. OBJECTIVE: We investigated the ex vivo effects of Ss on the immune modulation of global/extended activation of human proinflammatory M1-like Mφs. METHODS: Experiments were carried out on primary monocytes-derived Mφs (MDMs). RESULTS: The levels of IL-1ß, TNF-α, H2O2 and intracellular free calcium ions (ifCa2+), and the ratios of IL-1ß-to-IL-10 and TNF-α-to-IL-10 were markedly increased in T1D Mφs than in healthy control Mφs. Conversely, both IL-10 production and arginase 1 (ARG1) activity were downregulated in T1D Mφs. Additionally, Ss treatment induced a marked downregulation of respiratory burst, ifCa2+ levels, M1-like Mφ-associated inducible nitric oxide (NO) synthase (iNOS) activity, cell necrosis and related necroinflammation biomarkers, including IL-1ß and TNF-α, CD14 expression, and the ratios of iNOS-to-ARG1, IL-1ß-to-IL-10, and TNF-α-to-IL-10. Moreover, Ss upregulated anti-inflammatory "M2-like" Mφ activity as demonstrated by ARG1 activity and IL-10 production, as well as phagocytosis capacity. CONCLUSION: Ss exerts a potent immunomodulatory role on functional activities of human proinflammatory T1D M1-like Mφs subjected to extended activation, as well as on the M1-like/M2-like dichotomy. Additionally, the current study provides a novel therapeutic approach using Ss to promote the anti-inflammatory function of Mφs at the onset of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Interleucina-10 , Humanos , Interleucina-10/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Peróxido de Hidrógeno/metabolismo , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
11.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768241

RESUMEN

Selenium is a promising multi-target chemotherapeutic agent with controversial clinical results. Hence, reassessing the anticancer effects of Se is necessary to clearly understand the potential of high-dose selenium in cancer treatment. Here, we observed that high-dose sodium selenite (SS) significantly decreased the proliferation and increased the death of ovarian cancer cells, mediated by an increased generation of reactive oxygen species. Notably, high-dose SS decreased the levels of glutathione peroxidase (GPx), a selenoprotein with antioxidant properties, without altering other selenoproteins. Furthermore, high-dose SS triggered lipid peroxidation and ferroptosis, a type of iron-dependent cell death, due to dysregulated GPx4 pathways. We demonstrated that intravenous high-dose SS significantly reduced the tumor growth and weight in SKOV3-bearing mice. Consistent with our in vitro results, mice with SKOV3 cells treated with high-dose SS showed decreased GPx4 expression in tumors. Therefore, we highlight the significance of high-dose SS as a potential chemotherapeutic agent for ovarian cancer. High-dose SS-mediated ferroptotic therapy integrating glutathione depletion and ROS generation is a promising strategy for cancer therapy.


Asunto(s)
Neoplasias Ováricas , Selenio , Ratones , Animales , Femenino , Humanos , Selenio/farmacología , Selenio/metabolismo , Glutatión Peroxidasa/metabolismo , Muerte Celular , Selenoproteínas , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Neoplasias Ováricas/tratamiento farmacológico
12.
Biol Trace Elem Res ; 201(9): 4374-4388, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36574166

RESUMEN

Selenium (Se) is an essential element and antioxidant that catalyzes the destruction of hydrogen peroxide formed during cellular oxidative metabolism. Doses of Se as selenomethionine (SeMe) by oral route are 0.1-0.3 mgSe/kg DM, while the dose by parenteral route with sodium selenite (Na2SeO3) is 0.1 mgSe/BW. The effects of supranutritional Se supplementation on normal kids have rarely been studied. The objective of the study was to evaluate both Se sources on growth performance, Se in tissues, histopathological findings, and meat characteristics. Forty-five kids of the Pastoreña breed with 25-day age were distributed (4.7 ± 1.13 kg) in three treatments: a) control group, C: consumption with goat milk (GM: containing 0.135 mgSe/g); b) NaSe: GM plus Na2SeO3 injectable, 0.25 mgSe/kg BW; c) SeMe: GM plus oral dosage, 0.3 mgSe as SeMe daily. Fifteen animals per treatment were slaughtered at 7, 14, and 21 days. Feed conversion improved (P < 0.05) with Se supplement (P < 0.05) at 7 and 14 days. SeMe had higher protein and fat meat content (P < 0.05). SeMe increased Se liver at 14 and 21 days. NaSe and SeMe had higher (P < 0.05) levels of Se kidney. SeMe-21d showed 42% mononuclear and periportal cell infiltration lesions. In conclusion, Se administered through milk in goat kids was insufficient to prevent nutritional muscular dystrophy. The supranutritional dose of 0.25 mg/kg as NaSe was sufficient to maintain the Se level in tissues. SeMe increased Se liver and kidney efficiently. Both Se sources improved the bioavailability of the mineral in kids.


Asunto(s)
Selenio , Animales , Selenio/farmacología , Cabras/metabolismo , Antioxidantes/metabolismo , Selenometionina/farmacología , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Carne/análisis , Suplementos Dietéticos
13.
Metallomics ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36583695

RESUMEN

The influence of the fermentation process on selenite metabolism by a probiotic Bifidobacterium longum DD98 and its consequent enrichment in selenium (Se) were studied. The effects of sodium selenite (Na2SeO3) concentration (18-400 µg/ml), feeding time (12, 16, and 24 h), and fermentation stage (secondary and tertiary fermentation) were evaluated by measuring (i) the total Se content and its distribution between the water-soluble metabolome fraction and the water-insoluble fraction; (ii) the total concentrations of the two principal Se compounds produced: selenomethionine (SeMet) and γ-glutamyl-selenomethionine (γ-Glu-SeMet), and (iii) the speciation of Se in the metabolite fraction. The results revealed that the fermentation process notably changed the Se incorporation into metabolites (γ-Glu-SeMet and free SeMet) and proteins (bound-SeMet) in B. longum DD98. In particular, the production of SeMet was negatively correlated to that of γ-Glu-SeMet when no red precipitate was seen in the bacteria. The study offers a tool for the control of the optimization of the fermentation process towards the desired molecular speciation of the incorporated Se and hence contributes to the production of Se-enriched probiotics with good qualities and bioactivities.


Asunto(s)
Bifidobacterium longum , Probióticos , Selenio , Selenio/metabolismo , Selenometionina/metabolismo , Ácido Selenioso , Fermentación , Bifidobacterium longum/metabolismo , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología
14.
Biol Trace Elem Res ; 201(4): 1559-1566, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35486317

RESUMEN

Sodium selenite modulates the activity of lymphocytes. It negatively regulates the suppressive activity of cells and increases the immune response. In this study, we evaluated whether the regulatory T cell differentiation was modulated by sodium selenite. The percentages of CD4+CD25+Foxp3+, CD4+CD25+, and CD4+CTLA-4+ cells in CD4+ T cells cultures stimulated with IL-2 and TGF-ß in the presence or absence of selenium, in the form of sodium selenite (2.0×10-6M), were evaluated by flow cytometry. The mRNA expression of TET2/3 enzymes and IL-10 was analyzed by RT-qPCR and the levels of IL-10 were measured by an ELISA. We observed a decrease in CD4+CD25+Foxp3+ and CD4+CTLA-4+ cells in presence of selenium. However, normal percentages were reached again after selenium removal. An increase in CD4+CTL4-4+ cells was detected in selenium-primed cell cultures in absence of IL-2 and TGF-ß. In addition, we observed a decrease in TET3 in presence of selenium. Finally, we observed an augment in IL-10 transcription and protein levels and relative expression of TET2 in cultures exposed to selenium. We suggest that selenium reversibly affects the regulatory T cell differentiation in vitro. Likewise, selenium may modulate Treg percentages promoting optimal immune responses and, at the same time, the expression of specific suppressor molecules.


Asunto(s)
Interleucina-10 , Selenio , Linfocitos T Reguladores/metabolismo , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Antígeno CTLA-4/metabolismo , Selenio/farmacología , Selenio/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo
15.
Braz J Biol ; 82: e264216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36383797

RESUMEN

In 2017-2019, we conducted the field and vegetation experiments at the field station of Russian State Agrarian University, Moscow Timiryazev Agricultural Academy to study the effect of sodium selenite on the yield and grain quality indicators of white lupine, Dega variety, and spring wheat, Yubileynaya-80 variety. The best way found to use selenium is to spray vegetative plants with 0.01% aqueous sodium selenite solution. The studies have shown an increase in grain yield by 15-17%, crude protein content by 9-15% and crude fat content by 5-7% when treated with sodium selenite. The obtained grain yield of white lupine has a higher feed and nutritional value and is suitable for feeding animals and preparing various types of feed and feed additives. The optimal way to use selenium is spraying vegetative plants before shooting. Treatment with sodium selenite contributes to an increase in wheat yield by 1.5 times. We have established the positive effect of sodium selenite on the quality indicators of wheat grain. An increase in the content of raw gluten and glassiness of grain has been noted, which determines high bread-making qualities.


Asunto(s)
Lupinus , Selenio , Animales , Triticum/metabolismo , Lupinus/metabolismo , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología , Selenio/metabolismo , Pan
16.
Food Chem ; 393: 133385, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751225

RESUMEN

Elemental selenium nanosphere is considered to exhibit high bioavailability compared to its salts. In this study, a Se(IV)-resistant Lactobacillus paralimentarius strain JZ07 with great selenium biotransformation ability was screened and the red elemental selenium biosynthesized by it was characterized. The results indicated that Se(0) occurred as major accumulated species and the S atom content of the cells increased significantly in the presence of selenite. The reduced amorphous selenium nanospheres (150 to 300 nm in diameter) deposited in the extracellular space of JZ07 and the cells exhibited altered morphology under selenium stress. The macromolecules containing carboxylate bands and amide groups played an important role in Se(IV) bioaccumulation. The findings of present study indicate that JZ07 can be a promising SeNPs producing probiotic LAB and has the potential to be explored as an alternative source of Se supplements for human or animal consumption.


Asunto(s)
Nanosferas , Selenio , Animales , Lactobacillus/metabolismo , Ácido Selenioso , Selenio/metabolismo , Selenio/farmacología , Selenito de Sodio/metabolismo
17.
Nutr Metab Cardiovasc Dis ; 32(6): 1528-1537, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35365371

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis as a chronic inflammatory disorder of the arterial wall is the main leading cause of the cardiovascular disease (CVD). Caspase-dependent pyroptosis plays a pivotal role in the pathogenesis of CVD. Selenium (Se) is an important component of the antioxidant defense and plays a crucial role in cardiovascular health. This study aimed to investigate the effects of daily consumption of sodium selenite and Se-enriched yeast on the expression of pyroptosis-related genes, and biomarkers of oxidative stress in patients with atherosclerosis. METHODS AND RESULTS: In this randomized, double-blinded, placebo-controlled clinical trial, 60 patients with atherosclerosis were recruited. Participants received 200 µg/day of sodium selenite, Se-enriched yeast, or placebo for 8 following weeks. The pyroptosis-related genes' mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed before and after the intervention. Also, the levels of superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and glutathione peroxidases (GPX) were measured at baseline and following the intervention. Following sodium selenite and Se-enriched yeast supplementation, the relative expression levels of TLR4, ASC, NLRP3, and NF-κB1 were significantly downregulated (p < 0.05). Furthermore, the changes in GPX were significantly increased after selenite and yeast supplementation (p < 0.05). Also, selenite and yeast consumption caused a statistically significant decrease in the change of MDA level (p < 0.05). CONCLUSION: In summary, these findings showed that Se supplementation may reduce inflammation through down-regulation of some pro-inflammatory genes, improving antioxidant defenses in atherosclerosis patients. Further research is required to come to a definite conclusion of selenium supplementation on the CVD risk. This study was registered on the Iranian Registry of Clinical Trials website (identifier: RCT20110123005670N28; https://www.irct.ir/).


Asunto(s)
Aterosclerosis , Selenio , Antioxidantes/efectos adversos , Antioxidantes/metabolismo , Aterosclerosis/diagnóstico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Suplementos Dietéticos/efectos adversos , Glutatión Peroxidasa/genética , Humanos , Irán , Leucocitos Mononucleares/metabolismo , Estrés Oxidativo , Piroptosis , Saccharomyces cerevisiae/metabolismo , Selenio/efectos adversos , Selenito de Sodio/efectos adversos , Selenito de Sodio/metabolismo
18.
Cell Physiol Biochem ; 56(S1): 24-35, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263537

RESUMEN

BACKGROUND/AIMS: Colitis is a main presentation of inflammatory bowel disease (IBD) and yet, has no definitive cure. Currently, corticosteroids, anti-tumor necrosis factor (anti-TNF) agents and 5-aminosalicylic acid derivatives are prescribed for management of colitis. Except their failure rate, they are not always tolerated because of their severe adverse effects. Additive formulas with fewer adverse effects may improve the treatment of colitis. METHODS: In this study, colitis was induced with intra-rectal injection of three concentrations of acetic acid (4, 6 and 8 v/v). Each group received sodium selenite (0.5 mg/kg) or saline, gavaged on days 0 and 1 for treatment. Two days after induction of colitis, rats were sacrificed and the end part of their colons were resected for macroscopic and microscopic evaluation and molecular measurement. RESULTS: Sodium selenite improved macroscopic and microscopic view of the colon, decreased cryptitis, crypt abscess and inflammatory cells infiltration and partly maintained mucosal structure. Sodium selenite markedly reduced tissue levels of malondialdehyde (MDA), TNF-α and interferon γ (INF-γ) and decreased myeloperoxidase (MPO) activity. Treatment with sodium selenite also significantly downregulated IL17, IL22, indoleamine 2,3-dioxygenase (IDO1), and kynurenine levels. Western blotting revealed that sodium selenite prevented apoptosis by increasing bcl2/Bax ratio. Furthermore, our findings showed that sodium selenite significantly downregulated the upstream inflammatory molecules such as nuclear factor kappa B (NF-κB) and toll-like receptor 4 (TLR4) in colitis. CONCLUSION: These findings show that sodium selenite alleviates inflammatory response and oxidative stress and protects against colitis.


Asunto(s)
Colitis , FN-kappa B , Ácido Acético/toxicidad , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/uso terapéutico , FN-kappa B/metabolismo , Ratas , Transducción de Señal , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología , Selenito de Sodio/uso terapéutico , Receptor Toll-Like 4/metabolismo , Inhibidores del Factor de Necrosis Tumoral
19.
Biol Trace Elem Res ; 200(11): 4865-4879, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34973128

RESUMEN

Selenium (Se) is an essential micronutrient with many beneficial effects for humans and other living organisms. Numerous microorganisms in culture systems enrich and convert inorganic selenium to organic selenium. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing Na2SeO3 concentrations (0, 0.1, 0.2, 0.3, and 0.4 mmol/L) in Petri dishes with potato dextrose agar (PDA) for 8 weeks. Epichloë sp. mycelia were immediately collected after mycelial diameters were measured at 4, 5, 6, 7, and 8 weeks of cultivation, respectively. Gas chromatography-mass spectrometer (GC-MS) analysis was performed on different groups of Epichloë sp. mycelia. Different changes were observed as Epichloë sp. was exposed to different selenite conditions and cultivation time. The colony diameter of Epichloë sp. decreased in response to increased selenite concentrations, whereas the inhibitory effects diminished over time. Seventy-two of the 203 identified metabolites did not differ significantly across selenite treatments within the same time point, while 82 compounds did not differ significantly between multiple time points of the same Se concentration. However, the relative levels of 122 metabolites increased the most under selenite conditions. Specifically, between the 4th and 8th weeks, there were increases in 2-keto-isovaleric acid, uridine, and maltose in selenite treatments compared to controls. Selenium increased glutathione levels and exhibited antioxidant properties in weeks 4, 5, and 7. Additionally, we observed that different doses of selenite could promote the production of carbohydrates such as isomaltose, cellobiose, and sucrose; fatty acids such as palmitoleic acid, palmitic acid, and stearic acid; and amino acids such as lysine and tyrosine in Epichloë sp. mycelia. Therefore, Epichloë sp. exposed to selenite stress may benefit from increased levels of some metabolite compounds.


Asunto(s)
Epichloe , Festuca , Selenio , Agar , Antioxidantes/farmacología , Celobiosa , Epichloe/química , Epichloe/metabolismo , Ácidos Grasos , Festuca/metabolismo , Glucosa , Glutatión , Humanos , Isomaltosa , Lisina , Maltosa , Micronutrientes , Ácidos Palmíticos , Ácido Selenioso , Selenio/metabolismo , Selenio/farmacología , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología , Ácidos Esteáricos , Sacarosa , Tirosina , Uridina
20.
Vet Res Commun ; 46(2): 431-445, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34845583

RESUMEN

This study compares the effects of sodium selenite, selenium yeast, and enriched bacterial organic selenium protein on antioxidant enzyme activity, serum biochemical profiles, and egg yolk, serum, and tissue selenium concentration in laying hens. In a 112-d experiment, 144 Lohman Brown Classic hens, 23-wks old were divided into four equal groups, each has six replicates. They were assigned to 4 treatments: 1) a basal diet (Con), 2) Con plus 0.3 mg/kg feed sodium selenite (SS); 3) Con plus 0.3 mg/kg feed Se-yeast (SY): 4) Con plus 0.3 mg/kg feed bacterial enriched organic Se protein (ADS18) from Stenotrophomonas maltophilia bacteria. On d 116, hens were euthanized (slaughtered) to obtain blood (serum), liver organ, and breast tissue to measure antioxidant enzyme activity, biochemical profiles, and selenium concentration. The results show that antioxidant enzyme activity of hens was increased when fed bacterial organic Se (ADS18), resulting in a significant (P < 0.05) increase in serum GSH-Px, SOD, and CAT activity compared to other treatment groups. However, ADS18 and SY supplementation increase (P < 0.05) hepatic TAC, GSH-Px, and CAT activity, unlike the SS and Con group. Similarly, dietary Se treatment reduced total cholesterol and serum triglycerides concentrations significantly (P < 0.05) compared to the Con group. At 16 and 18 weeks, selenium concentration in hen egg yolks supplemented with dietary Se was higher (P < 0.05) than in Con, with similar patterns in breast tissue and serum. Supplementation with bacterial organic Se (ADS18) improved antioxidant enzyme activity, decreased total serum cholesterol and serum lipids, and increased Se deposition in egg yolk, tissue, and serum. Hence, organic Se may be considered a viable source of Se in laying hens.


Asunto(s)
Selenio , Selenito de Sodio , Alimentación Animal/análisis , Animales , Antioxidantes , Bacterias , Pollos/metabolismo , Colesterol/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Saccharomyces cerevisiae , Selenio/farmacología , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...