Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Food Chem ; 443: 138607, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301552

RESUMEN

Food crops provide a good selenium (Se) source for Se-deficient populations. This study assessed how boiling affects Se concentration, speciation, and bioaccessibility in common food crops to determine human Se intake. Boiling rice resulted in an 11.9% decrease in minimum Se content, while sorghum experienced a maximum (34.9%) reduction. Boiled vegetables showed a 21% - 40% Se loss. Cereals showed notable decreases in selenomethionine (SeMet) and selenocysteine (SeCys2), while most vegetables exhibited a significant reduction in Se-methylselenocysteine (SeMeCys). Boiling significantly reduced the Se bioaccessibility in all food crops, except cabbage and potato. Cereal crops were more efficacious in meeting the recommended daily intake (RDI) of Se compared to vegetables. Rice exceeds other crops and provides up to 39.2% of the WHO/FAO-recommended target minimum daily intake of 60 µg/day. This study provides insight into a substantial dissonance between the estimated daily intake (EDI) of Se and the bioaccessible Se in both raw and boiled crops. Consequently, revising EDI standards is imperative.


Asunto(s)
Selenio , Humanos , Selenometionina/análisis , Productos Agrícolas , Grano Comestible/química , Verduras
2.
Anal Chem ; 96(3): 1156-1166, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190495

RESUMEN

Selenopeptide identification relies on databases to interpret the selenopeptide spectra. A common database search strategy is to set selenium as a variable modification instead of sulfur on peptides. However, this approach generally detects only a fraction of selenopeptides. An alternative approach, termed Selenium Decipher, is proposed in the present study. It involves identifying collision-induced dissociation-cleavable selenomethionine-containing peptides by iteratively matching the masses of seleno-amino acids in selenopeptide spectra. This approach uses variable-data-independent acquisition (vDIA) for peptide detection, providing a flexible and customizable window for secondary mass spectral fragmentation. The attention mechanism was used to capture global information on peptides and determine selenomethionine-containing peptide backbones. The core structure of selenium on selenomethionine-containing peptides generates a series of fragment ions, namely, C3H7Se+, C4H10NSe+, C5H7OSe+, C5H8NOSe+, and C7H11N2O2Se+, with known mass gaps during higher-energy collisional dissociation (HCD) fragmentation. De-selenium spectra are generated by removing selenium originating from selenium replacement and then reassigning the precursors to peptides. Selenium-enriched milk is obtained by feeding selenium-rich forage fed to cattle, which leads to the formation of native selenium through biotransformation. A novel antihypertensive selenopeptide Thr-Asp-Asp-Ile-SeMet-Cys-Val-Lys TDDI(Se)MCVK was identified from selenium-enriched milk. The selenopeptide (IC50 = 60.71 µM) is bound to four active residues of the angiotensin-converting enzyme (ACE) active pocket (Ala354, Tyr523, His353, and His513) and two active residues of zinc ligand (His387 and Glu411) and exerted a competitive inhibitory effect on the spatial blocking of active sites. The integration of vDIA and the iteratively matched seleno-amino acids was applied for Selenium Decipher, which provides high validity for selenomethionine-containing peptide identification.


Asunto(s)
Selenio , Selenometionina , Animales , Bovinos , Selenometionina/análisis , Selenometionina/química , Selenometionina/metabolismo , Selenio/química , Leche/química , Temperatura , Péptidos/química
3.
Biochim Biophys Acta Gen Subj ; 1868(4): 130564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272191

RESUMEN

Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.


Asunto(s)
Antioxidantes , Nitrilos , Pirazoles , Pirimidinas , Selenometionina , Animales , Embrión de Pollo , Antioxidantes/metabolismo , Pollos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Janus Quinasa 2/metabolismo , Lipopolisacáridos/toxicidad , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Piroptosis , Especies Reactivas de Oxígeno/metabolismo , Selenometionina/farmacología , Selenometionina/análisis , Selenometionina/metabolismo , Factor de Transcripción STAT3/metabolismo
4.
Anal Bioanal Chem ; 416(11): 2761-2772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37987766

RESUMEN

Mushrooms are considered a valuable food source due to their high protein and fibre and low fat content, among the other health benefits of their consumption. Selenium is an essential nutrient and is renowned for its chemo-preventative properties. In this study, batches of selenium-enriched Lingzhi mushrooms were prepared by growing mycelium and fruit in substrates containing various concentrations of sodium selenite. The mushroom fruit accumulated low levels of selenium with selenomethionine being the most abundant form in all enriched samples. Conversely, the mycelium showed significant selenium accumulation but relatively low proportions of selenomethionine. The red colour of the selenium-enriched mycelia indicated the probable presence of selenium nanoparticles, which was confirmed by single-particle inductively coupled plasma-mass spectrometry. Mean particle diameters of 90-120 nm were observed, with size distributions of 60-250 nm. Additional analysis with transmission electron microscopy confirmed this size distribution and showed that the biogenic selenium nanoparticles were roughly spherical in shape and contained elemental selenium.


Asunto(s)
Agaricales , Nanopartículas , Reishi , Selenio , Selenio/análisis , Selenometionina/análisis , Agaricales/metabolismo , Reishi/metabolismo , Nanopartículas/química
5.
Anal Chem ; 95(31): 11583-11588, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37499220

RESUMEN

Selenized yeast is commonly used as a highly bioavailable source of selenium in dietary supplements and feed additives and is used in research settings in various disciplines due to the large number of selenium-containing metabolites formed during growth. With the selenomethionine being the major form of selenium present in selenized yeasts, its accurate quantitation is essential, however, values are frequently underestimated due to the costly and time-consuming hydrolysis-based sample preparation required to release the selenoamino acid from proteins for analysis. The National Research Council Canada has developed an 82-Se-enriched selenized yeast Certified Reference Material, SEEY-1 (DOI: 10.4224/crm.2023.seey-1) intended to be used as a matrix-matched spike material for isotope dilution analysis of selenized yeasts. The total selenium and selenomethionine contents of SEEY-1 were determined to be 322.1 ± 4.8 mg/kg (k = 2) and 635.6 ± 16.8 mg/kg (k = 2), respectively. Here we present results on the preparation of the 82-Se-enriched yeast, the certification process, and provide an example of the use of SEEY-1 as a matrix-matched spike for the analysis of selenomethionine in a sample of selenized yeast. We demonstrate here that SEEY-1 is able to compensate for the partial digestion of yeast proteins and provide reliable analytical data on Se amino acid content in under an hour instead of the 16 hours required for conventional complete acid hydrolysis.


Asunto(s)
Selenio , Selenometionina , Selenometionina/análisis , Selenometionina/química , Selenometionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Selenio/química , Espectrometría de Masas/métodos , Isótopos/metabolismo
6.
J Trace Elem Med Biol ; 79: 127266, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499550

RESUMEN

INTRODUCTION: Selenium (Se) is a trace element with different toxicological and nutritional properties according to its chemical forms. Among the wide range of selenium species, human serum albumin-bound selenium (Se-HSA) has still uncertain composition in terms of organic or inorganic selenium species. This study aimed at investigating the relation between Se-HSA levels with total selenium and the specific organic and inorganic selenium species. METHODS: We determined levels of total selenium and selenium species in serum of participants enrolled in two populations of the Emilia-Romagna region, in Northern Italy. Anion exchange chromatography coupled with inductively coupled plasma dynamic reaction cell mass spectrometry was used as quantification method. Correlations between Se-HSA and the other selenium compounds were analyzed using linear regression and restricted cubic spline regression models, adjusted for potential confounders. RESULTS: The first cohort comprised 50 participants (men/women: 26/24) with median (interquartile range, IQR) age 50 (55-62) years, while the second was composed of 104 participants (M/W: 50/54), median (IQR) age 48 (44-53) years. Median (IQR) levels of total selenium were 118.5 (109-136) µg/L and 116.5 (106-128) µg/L, respectively, while Se-HSA was 25.5 µg/L (16.2-51.5) and 1.1 (0.03-3.1) µg/L, respectively. In both populations, Se-HSA was positively associated with inorganic selenium species. Conversely, Se-HSA was inversely associated with organic selenium, especially with selenoprotein P-bound-Se (Se-SELENOP) and less strongly with selenomethionine-bound-Se (Se-Met), while the relation was null or even positive with other organic species. Evaluation of non-linear trends showed a substantially positive association with inorganic selenium, particularly selenite, until a concentration of 30 µg/L, above which a plateau was reached. The association with Se-SELENOP was inverse and strong until 100 µg/L, while it was almost null at higher levels. CONCLUSIONS: Our findings seem to indicate that Se-HSA incorporates more selenium when circulating levels of inorganic compounds are higher, thus supporting its mainly inorganic nature, particularly at high circulating levels of selenite.


Asunto(s)
Compuestos de Selenio , Selenio , Oligoelementos , Masculino , Humanos , Femenino , Persona de Mediana Edad , Albúmina Sérica Humana , Selenometionina/análisis , Compuestos de Selenio/análisis , Ácido Selenioso , Selenoproteína P
7.
Food Res Int ; 164: 112289, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737897

RESUMEN

Total selenium (Se) and Se species concentrations were determined in 50 infant formulas and milk samples commercialized in Brazil and Belgium. Infant formula categories were starter, follow-up, specialized and plant-based (soy and rice), while milk samples included whole, skimmed, semi-skimmed and plant-based products. Total Se content was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), after microwave digestion. An enzymatic extraction method was applied to evaluate the Se species, mostly selenomethionine (SeMet), Se(IV) and Se(VI), through High Performance Liquid Chromatography coupled to ICP-MS (LC-ICP-MS). Starters and follow-up samples presented the highest total Se concentrations and values up to 30 µg/kg were observed in the reconstituted product. The lowest level (below the LOQ = 10 µg/kg) was verified in an anti-regurgitation specialized formula. The relative agreement between the measured total Se and the Se content declared on the label varied from 55 % to 317 %. Concentrations in infant formulas were not markedly different from concentrations in milk except for rice and oat milk samples that showed values below the LOQ. SeMet was the main species found in milks, while in infant formulas the species concentrations varied according to the product. The daily intake (DI) of Se via infant formula consumption was calculated and compared with the Adequate Intake (AI) value and the Dietary Reference Intake (DRI) established by the EFSA NDA Panel and ANVISA, respectively. Estimated maximum intakes of total Se obtained for reconstituted infant formula were 40.6 mg/day, corresponding to 400 % and 202 % of the DRI and AI, respectively.


Asunto(s)
Selenio , Humanos , Lactante , Animales , Selenio/análisis , Fórmulas Infantiles/análisis , Brasil , Bélgica , Leche/química , Selenometionina/análisis
8.
J Chromatogr A ; 1674: 463134, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35598538

RESUMEN

An enzyme-assisted extraction and an ion pairing reversed phase chromatography (IP-RPC) coupled to inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) method were established for the simultaneous analysis of five selenium species in rice: selenious acid (SeIV), selenic acid (SeVI), selenocystine (SeCys2), methylselenocysteine (SeMeCys) and selenomethionine (SeMet). Optimal extraction efficiencies were obtained by using 15 mg protease XIV, water bath temperature of 45°C, pH of 6.5 and incubation of six hours. The total extracted Se species account for 92.5-109.3 % of the total Se in rice. The instrumental limits of detection for five selenium species ranged from 0.04 to 0.12 ng Se g-1. Spike recovery experiments performed on rice samples were in the range of 96.1-102.9 % for all analytes except for SeCys2 (66.1-77.1 %). A consistency of Se elemental response was observed among Se species analyzed in this study as the ratio of linear equation slope ranged from 1.020 to 1.036 (SeIV as reference) in rice matrix. The developed compound-independent calibration method was applied to detect Se species in eleven rice samples from China. Both selenium-enriched rice and regular rice were predominated with SeMet, accounting for ∼89.4 % of total selenium.


Asunto(s)
Oryza , Compuestos de Selenio , Selenio , Calibración , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa , Oryza/química , Selenio/análisis , Compuestos de Selenio/análisis , Compuestos de Selenio/química , Selenometionina/análisis , Espectrometría de Masas en Tándem
9.
J Pharm Biomed Anal ; 214: 114714, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35279451

RESUMEN

The stability of two inorganic (selenite Se (IV) and selenate Se(VI)) as well as four organic (selenomethionine (SeMet), selenocystine (SeCys2), selenomethylocysteine (MeSeCys) and selenomethionine selenoxide (SeMetO)) selenium species were investigated in standard solutions and aqueous extracts of dietary supplements. All of the samples were without any stabilizer addition. The effect of the sample solvent pH and the storage temperature was investigated using hydrophilic interaction liquid chromatography coupled to mass spectrometry detection (HILIC-MS). It was proven that sample solvent has a great impact on the selenium stability. The lowest stability of selenium compounds is observed in ammonium acetate samples. Acidification of the solution increase the selenium stability (with the exception of SeMet in yeast sample). The results of the stability of selenium compounds obtained for the standard solutions are different than those for supplement samples, which shows the enormous influence of the sample matrix on the stability of selenium compounds. Light does not affect selenium stability in standard solutions as well as in supplements extracts.


Asunto(s)
Compuestos de Selenio , Selenio , Antioxidantes/análisis , Suplementos Dietéticos/análisis , Selenometionina/análisis , Solventes/análisis , Agua
10.
J Appl Microbiol ; 132(4): 2583-2593, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34847280

RESUMEN

AIMS: This study aims to investigate the effect of hydroxy-selenomethionine supplementation on the in vitro rumen fermentation characteristics and microorganisms of Holstein cows. METHODS AND RESULTS: Five fermentation substrates, including control (without selenium supplementation, CON), sodium selenite supplementation (0.3 mg kg-1 DM, SS03), and hydroxy-selenomethionine supplementation (0.3, 0.6 and 0.9 mg kg-1 DM, SM03, SM06 and SM09, respectively) were incubated with rumen fluid in vitro. The results showed that in vitro dry matter disappearance and gas production at 48 h was significantly higher in SM06 than SM03, SS03 and CON; propionate and total volatile fatty acid (VFA) production was higher in SM06 than CON. Moreover, higher species richness of rumen fluid was found in SM06 than others. Higher relative abundance of Prevotella and Prevotellaceae-UCG-003 and lower relative abundance of Ruminococcus-1 were detected in SM06 than CON. Besides, higher relative abundance of Ruminococcaceae_UCG-005 was found in CON than other treatments. CONCLUSIONS: It is observed that 0.6 mg kg-1 DM hydroxy-selenomethionine supplementation could increase cumulative gas production, propionate, and total VFAs production by altering the relative abundance of Prevotella, Prevotellaceae-UCG-003, Ruminococcaceae_UCG-005 and Ruminococcus-1, so that it can be used as a rumen fermentation regulator in Holstein cows. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides an optimal addition ratio of hydroxy-selenomethionine on rumen fermentation and bacterial composition via an in vitro test.


Asunto(s)
Rumen , Selenometionina , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Fermentación , Lactancia , Leche/química , Rumen/microbiología , Selenometionina/análisis , Selenometionina/metabolismo , Selenometionina/farmacología
11.
Acc Chem Res ; 54(20): 3818-3827, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34612032

RESUMEN

Devising synthetic strategies to construct a covalent bond is a common research topic among synthetic chemists. A key driver of success is the high tunability of the conditions, including catalysts, reagents, solvents, and reaction temperature. Such flexibility of synthetic operations has allowed for the rapid exploration of a myriad of artificial synthetic transformations in recent decades. However, if we turn our attention to chemical reactions controlled in living cells, the situation is quite different; the number of hit substrates for the reaction-type is relatively small, while the crowded environment is chemically complex and inflexible to control.A specific objective of this Account is to introduce our chemical methylome analysis as an example of bridging the gap between chemistry and biology. Protein methylation, catalyzed by protein methyltransferases (MTases) using S-adenosyl-l-methionine (SAM or AdoMet) as a methyl donor, is a simple but important post-translational covalent modification. We aim to efficiently identify MTase substrates and methylation sites using activity-based protein profiling (ABPP) with propargylic Se-adenosyl-l-selenomethionine (ProSeAM, also called SeAdoYn). Specifically, we draw heavily from quantitative proteomics that yields information about the differences between two samples utilizing LC-MS/MS analysis. By exploiting the use of ProSeAM, we have prepared the requisite two samples for quantitative methylome analysis. The structural difference between ProSeAM and the parent SAM is so small that the quantity of modification of the protein substrate with this artificial cofactor reflects, to a large extent, levels of activity of the MTase of interest with SAM. First, we identified that the addition of exogenous recombinant MTase (methylation accel), a natural catalyst, enhances the generation of the corresponding propargylated product even in the cell lysate. Then, we applied the principle to isotope label-free quantification with HEK293T cell lysates. By comparing the intensity of LC-MS/MS signals in the absence and presence of the MTase, we have successfully correlated the MTase substrates. We have currently applied the concept to the stable isotope label-based quantification, SILAC (stable isotope labeling by amino acids in cell culture). The strategy merging ProSeAM/MTase/SILAC (PMS) is uniquely versatile and programmable. We can choose suitable cell lines, subcellular fractions (i.e.; whole lysate or mitochondria), and genotypes as required. In particular, we would like to emphasize that the use of cell lysates derived from disease-associated MTase knockouts (KOs) holds vast potential to discover functionally unknown but biologically important methylation events. By adding ProSeAM and a recombinant MTase to the lysates derived from KO cells, we successfully characterized unprecedented nonhistone substrates of several MTases. Furthermore, this chemoproteomic procedure can be applied to explore MTase inhibitors (methylation brake). The combined strategy with ProSeAM/inhibitor/SILAC (PIS) offers intriguing opportunities to explore nonhistone methylation inhibitors.Considering that SAM is the second most widely used enzyme-substrate following ATP, the interdisciplinary research between chemistry and biology using SAM analogs has a potentially huge impact on a wide range of research fields associated with biological methylation. We hope that this Account will help to further delineate the biological function of this important class of enzymatic reaction.


Asunto(s)
Metiltransferasas/metabolismo , Selenometionina/análogos & derivados , Biocatálisis , Metiltransferasas/química , Estructura Molecular , Selenometionina/análisis , Selenometionina/metabolismo
12.
J Sep Sci ; 44(16): 3031-3040, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34102001

RESUMEN

A new and efficient reversed-phase high-performance liquid chromatography-inductively coupled plasma-optical emission spectrometry method was developed for the simultaneous separation and determination of SeO3 2- and seleno-dl-methionine in kefir grains. For the system, limits of detection and quantitation values for SeO3 2- and seleno-dl-methionine were calculated as 0.52/1.73 mg/kg (as Se) and 0.26/0.87 mg/kg (as Se), respectively. After performing the system analytical performance, recovery experiment was done for kefir grains and percent recovery results for SeO3 2- and seleno-dl-methionine were calculated as 98.4 ± 0.8% and 93.6 ± 1.0%, respectively. It followed by the feeding studies that the kefir grains were exposed to three different concentrations of SeO3 2- (20, 30, and 50 mg/kg) for approximately 4 days at room temperature to investigate the conversion/non-conversion of SeO3 2- to seleno-dl-methionine. Next, the fed grains were extracted with tetramethylammonium hydroxide pentahydrate solution (20%, w/w) and then sent to the developed system. There was no detectable seleno-dl-methionine found in fed kefir grains at different concentrations of SeO3 2- while inorganic or elemental selenium in the fed kefir grains was determined between 1579.5 - 3116.0 mg/kg (as Se). Selenium species in the kefir grains samples was found in the form of SeO3 2- proved by using an anion exchange column.


Asunto(s)
Análisis de los Alimentos/métodos , Kéfir/análisis , Ácido Selenioso/análisis , Selenometionina/análisis , Antioxidantes , Técnicas de Química Analítica , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Diseño de Equipo , Límite de Detección , Selenio , Espectrofotometría/métodos
13.
Biometals ; 34(4): 831-840, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33913063

RESUMEN

Selenium is an essential element in human and animal metabolism integrated into the catalytic site of glutathione peroxidase (GPX1), an antioxidant enzyme that protects cells from damage caused by reactive oxygen species (ROS). Oxidative stress refers the imbalance between ROS and antioxidant defense systems. It generates alterations of DNA, proteins and lipid peroxidation. The imbalance occurs particularly during ischemia and lack of postmortem perfusion. This mechanism is of relevance in transplant organs, affecting their survival. The aim of this research is to evaluate the effect of seleno-methionine (SeMet) as a protective agent against postmortem ischemia injury in transplant organs. Wistar rats were orally administered with SeMet. After sacrifice, liver, heart and kidney samples were collected at different postmortem intervals (PMIs). SeMet administration produced a significant increase of Se concentration in the liver (65%, p < 0.001), heart (40%, p < 0.01) and kidneys (45%, p < 0.05). Levels of the oxidative stress marker malondialdehyde (MDA) decreased significantly compared to control in the heart (0.21 ± 0.04 vs. 0.12 ± 0.02 mmol g-1) and kidneys (0.41 ± 0.02 vs. 0.24 ± 0.03 mmol g-1) in a PMI of 1-12 h (p < 0.01). After SeMet administration for 21 days, a significant increase in GPX1 activity was observed in the liver (80%, p < 0.001), kidneys (74%, p < 0.01) and heart (35%, p < 0.05). SeMet administration to rats significantly decreased the oxidative stress in the heart, liver and kidneys of rats generated by postmortem ischemia.


Asunto(s)
Corazón , Isquemia/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Selenometionina/metabolismo , Administración Oral , Animales , Femenino , Estrés Oxidativo , Ratas , Ratas Wistar , Selenometionina/administración & dosificación , Selenometionina/análisis
14.
Food Chem ; 354: 129515, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33756318

RESUMEN

Fortification of Se is vital importance for both nutritional demand and prevention of Se-deficiency-related diseases. To better understand t selenium distribution, concentration, speciation, its effects on proteins, and cytotoxic activity, the biofortification of exogenous Se in peanut was conducted in this study. Our data have shown that foliar spraying of Se-riched fertilizer was more efficient for biotransformation of inorganic Se to organic Se by peanut plant. Besides, the Se content in peanut was increased in a dose-dependent manner. Our present study also confirmed that SeCys2, MeSeCys, and SeMet were the main Se speciation within peanut proteins. Moreover, the secondary structure and thermostability of peanut protein were altered as a result of the Se treatments, and these alterations could be attributed to the replacements of cysteine and methionine by selenocysteine and selenomethionine, respectively. The Se-enriched peanut protein could significantly inhibit the growth of Caco-2 and HepG2 in a concentration-dependent manner.


Asunto(s)
Arachis/metabolismo , Proteínas de Plantas/química , Selenio/química , Arachis/química , Biofortificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Fertilizantes/análisis , Humanos , Espectrometría de Masas , Aceite de Cacahuete/análisis , Aceite de Cacahuete/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Estructura Secundaria de Proteína , Selenio/análisis , Selenocisteína/análisis , Selenocisteína/metabolismo , Selenometionina/análisis , Selenometionina/metabolismo
15.
Metallomics ; 13(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33595655

RESUMEN

In relation to the decrease of selenium (Se) content in aquafeeds, the impact of level and form of parental and dietary Se supplementation was investigated in rainbow trout fry using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS) bioimaging. The offspring of rainbow trout broodstock, fed either a control diet without any Se supplementation (0.3 mg Se/kg diet) or a diet supplemented with Se (0.6 mg Se/kg diet) either as sodium selenite or hydroxy-selenomethionine, were sampled at swim-up fry stage or after 11 weeks of cross-feeding. Total body Se levels were influenced by parental Se nutrition in swim-up fry and by direct Se feeding in 11-week fry with higher levels in the Se-supplemented groups compared with the control and the highest levels in the hydroxy-selenomethionine treatment. The Se retention was lower for dietary sodium selenite. Selenomethionine levels increased when Se was provided as hydroxy-selenomethionine. LA-ICP MS maps revealed yolk in swim-up fry and intestine, liver, and kidney in 11-week fed fry as tissues with high Se abundance. In swim-up fry, muscle Se was the highest abundant when parents were fed hydroxy-selenomethionine. In 11-week fed fry, muscle Se abundance was higher in the head part of fry fed both Se-supplemented diets, but only in the tail part of fry fed hydroxy-selenomethionine. Liver Se abundance was higher in fry fed sodium selenite compared with the control diet supporting the hypothesis that tissue Se distribution can be influenced by parental and dietary Se forms and levels.


Asunto(s)
Suplementos Dietéticos/análisis , Oncorhynchus mykiss/metabolismo , Selenio/análisis , Alimentación Animal/análisis , Animales , Acuicultura , Femenino , Masculino , Espectrometría de Masas , Selenio/metabolismo , Selenometionina/análisis , Selenometionina/metabolismo
16.
Anal Bioanal Chem ; 413(2): 331-344, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33140125

RESUMEN

This work represents the first systematic speciation study of selenium (Se) in plasma from subjects participating in a pilot study for a cancer prevention trial (PRECISE). This involved supplementation of elderly British and Danish individuals with selenised yeast for 6 months and 5 years, respectively, at 100, 200, and 300 µg Se/day or placebo. Speciation data was obtained for male plasma using HPLC-ICP-MS and HPLC-ESI-MS/MS. With the proposed strategy, approximately 1.5 mL of plasma was needed to determine total Se concentration and the fractionation of Se in high molecular weight (HMW) and low molecular weight (LMW) pools, and for quantification and identification of small Se species. For the first time, Se-methyl-selenocysteine (MSC) and methyl-2-acetamido-2deoxy1-seleno-ß-D-galactopyranoside (Selenosugar-1) were structurally confirmed in plasma after supplementation with selenised yeast within the studied range. Determination of selenomethionine (SeMet) incorporated non-specifically into albumin (SeALB) was achieved by HPLC-ICP-MS after hydrolysis. By subtracting this SeMet concentration from the total Se in the HMW pool, the concentration of Se incorporated into selenoproteins was calculated. Results from the speciation analysis of the free Se metabolite fraction (5% of total plasma Se) suggest a significant increase in the percentage of Se (as SeMet plus Selenosugar-1) of up to 80% of the total Se in the LMW fraction after 6 months of supplementation. The Se distribution in the HMW fraction reflects a significant increase in SeALB with Se depletion from selenoproteins, which occurs most significantly at doses of over 100 µg Se/day after 5 years. The results of this work will inform future trial design. Graphical abstract.


Asunto(s)
Neoplasias/sangre , Neoplasias/prevención & control , Selenio/administración & dosificación , Selenio/sangre , Anciano , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión/métodos , Dinamarca , Suplementos Dietéticos , Enzimas/química , Humanos , Hidrólisis , Masculino , Proyectos Piloto , Selenio/análisis , Compuestos de Selenio , Selenometionina/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Análisis Espectral , Espectrometría de Masas en Tándem , Reino Unido
17.
Food Chem ; 326: 126965, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413755

RESUMEN

Natural deep eutectic solvents (NADES) were introduced for the extraction of free seleno-amino acids from lyophilized and powdered milk samples. Different NADES were evaluated, and lactic acid:glucose (LGH) showed the highest selenium recoveries. Selenium analysis was performed by inductively coupled plasma mass spectrometry (ICP MS). Se-NADES analysis in ICP MS was optimized according to the radio frequency power and nebulization gas flow rate. Se-NADES extraction was optimized by an experimental design. LGH dilution, LGH volume, sample quantity, and ultrasound time were factors influencing the extraction. Seleno-amino acids were determined by liquid chromatography-ICP MS. After optimization, the limits of detection obtained were 7.37, 8.63, and 9.64 µg kg-1 for selenocysteine, selenomethionine, and seleno-methyl-selenocysteine, respectively. The NADES-extraction is a green procedure with 2 penalty points in the EcoScale. The method was applied to the analysis of powdered milk, lyophilized Se-fortified sheep milk, and ERM-BD151 skimmed milk powder.


Asunto(s)
Análisis de los Alimentos/métodos , Leche/química , Selenocisteína/análogos & derivados , Selenocisteína/análisis , Selenometionina/análisis , Animales , Fraccionamiento Químico/métodos , Cromatografía Liquida , Femenino , Alimentos Fortificados/análisis , Liofilización , Tecnología Química Verde , Límite de Detección , Espectrometría de Masas/métodos , Polvos/química , Selenio/análisis , Ovinos , Solventes/química
18.
Food Chem ; 321: 126692, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32251923

RESUMEN

In this work, we describe for the first time the presence of selenoprotein P in human breast milk. To this end, a novel analytical method has been developed based on a two-dimensional column switching system, which consisted of three size exclusion columns and one affinity column coupled to inductively coupled plasma mass spectrometry (ICP-MS). The method combines the accurate quantification of selenoproteins and selenometabolites by species unspecific isotopic dilution ICP-MS, with unequivocal identification by quadrupole-time-of-flight mass spectrometry. Several selenopeptides, which contain the amino acid selenocysteine (U, SeCys), were identified after tryptic digestion followed by their separation. The results reveal that the relative selenium concentration in colostrum follows the order: glutathione peroxidase (GPX) ≈ selenoprotein P (SELENOP) > selenocystamine (SeCA) > other selenometabolites (SeMB), in contrast with previously published papers (GPX > SeCA > selenocystine > selenomethionine). A mean concentration of 20.1 ± 1.0 ng Se g-1 as SELENOP (1.45 µg SELENOP/g) was determined in colostrum (31% of total selenium).


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Leche Humana/química , Selenoproteína P/análisis , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía Líquida de Alta Presión/instrumentación , Femenino , Glutatión Peroxidasa/metabolismo , Humanos , Selenio/análisis , Selenocisteína/análisis , Selenocisteína/química , Selenometionina/análisis , Selenoproteínas/análisis
19.
Metallomics ; 12(5): 758-766, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32211715

RESUMEN

Liver and other tissues accumulate selenium (Se) when animals are supplemented with high dietary Se as inorganic Se. To further study selenometabolites in Se-deficient, Se-adequate, and high-Se liver, turkey poults were fed 0, 0.4, and 5 µg Se g-1 diet as Na2SeO3 (Se(iv)) in a Se-deficient (0.005 µg Se g-1) diet for 28 days, and the effects of Se status determined using HPLC-ICP-MS and HPLC-ESI-MS/MS. No selenomethionine (SeMet) was detected in liver in turkeys fed either this true Se-deficient diet or supplemented with inorganic Se, showing that turkeys cannot synthesize SeMet de novo from inorganic Se. Selenocysteine (Sec) was also below the level of detection in Se-deficient liver, as expected in animals with negligible selenoprotein levels. Sec content in high Se liver only doubled as compared to Se-adequate liver, indicating that the 6-fold increase in liver Se was not due to increases in selenoproteins. What increased dramatically in high Se liver were low molecular weight (MW) selenometabolites: glutathione-, cysteine- and methyl-conjugates of the selenosugar, seleno-N-acetyl galactosamine (SeGalNac). Substantial Se in Se-adequate liver was present as selenosugars decorating general proteins via mixed-disulfide bonds. In high-Se liver, these "selenosugar-decorated" proteins comprised ∼50% of the Se in the water-soluble fraction, in addition to low MW selenometabolites. In summary, more Se is present as the selenosugar moiety in Se-adequate liver, mostly decorating general proteins, than is present as Sec in selenoproteins. With high Se supplementation, increased selenosugar formation occurs, further increasing selenosugar-decorated proteins, but also increasing selenosugar linked to low MW thiols.


Asunto(s)
Hígado/metabolismo , Compuestos de Selenio/análisis , Selenocisteína/análisis , Selenometionina/análisis , Selenoproteínas/análisis , Animales , Suplementos Dietéticos , Pavos
20.
Food Chem ; 302: 125371, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437711

RESUMEN

Dietary selenium deficiency is recognized as a global problem. Pork is the most widely consumed meat throughout the world and an important source of selenium for humans. In this study, a reliable approach was developed for analyzing selenium and its speciation in the muscles of pigs after different selenium treatments. The selenium source deposition efficiency was ranked as: selenomethionine > methylselenocysteine > selenite, and the muscle selenium content had a dose effect with selenomethionine supplementation. In total, four species of selenium were detected in the muscles of pigs and the distributions of these selenium species were greatly affected by the dietary selenium supplementation forms and levels. Selenomethionine (>70% of total selenium) and selenocystine (>11%) were the major selenium species, followed by methylselenocysteine and selenourea. Therefore, selenium-enriched pork produced from selenomethionine is a good source for improving human dietary selenium intake.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Músculo Esquelético/química , Compuestos de Selenio/farmacología , Selenio/análisis , Animales , Cistina/análogos & derivados , Cistina/análisis , Suplementos Dietéticos , Análisis de los Alimentos/métodos , Masculino , Músculo Esquelético/efectos de los fármacos , Compuestos de Organoselenio/análisis , Reproducibilidad de los Resultados , Ácido Selenioso/farmacología , Compuestos de Selenio/análisis , Selenocisteína/análogos & derivados , Selenocisteína/farmacología , Selenometionina/análisis , Selenometionina/farmacología , Porcinos , Urea/análogos & derivados , Urea/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...