Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 863, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272009

RESUMEN

BACKGROUND: Developmental leaf senescence (DLS) is an irreversible process followed by cell death. Dark-induced leaf senescence (DILS) is a reversible process that allows adaptations to changing environmental conditions. As a result of exposure to adverse environmental changes, plants have developed mechanisms that enable them to survive. One of these is the redirection of metabolism into the senescence pathway. The plant seeks to optimise resource allocation. Our research aims to demonstrate how epigenetic machinery regulates leaf senescence, including its irreversibility. RESULTS: In silico analyses allowed the complex identification and characterisation of 117 genes involved in epigenetic processes in barley. These genes include those responsible for DNA methylation, post-translational histone modifications, and ATP-dependent chromatin remodelling complexes. We then performed RNAseq analysis after DILS and DLS to evaluate their expression in senescence-dependent leaf metabolism. Principal component analysis revealed that evaluated gene expression in developmental senescence was similar to controls, while induced senescence displayed a distinct profile. Western blot experiments revealed that senescence engages senescence-specific histone modification. During DILS and DLS, the methylation of histone proteins H3K4me3 and H3K9me2 increased. H3K9ac acetylation levels significantly decreased during DILS and remained unchanged during DLS. CONCLUSIONS: The study identified different epigenetic regulations of senescence types in barley leaves. These findings are valuable for exploring epigenetic regulation of senescence-related molecular mechanisms, particularly in response to premature, induced leaf senescence. Based on the results, we suggest the presence of an epigenetically regulated molecular switch between cell survival and cell death in DILS, highlighting an epigenetically driven cell survival metabolic response.


Asunto(s)
Epigénesis Genética , Hordeum , Hojas de la Planta , Senescencia de la Planta , Hordeum/genética , Hordeum/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Metilación de ADN , Histonas/metabolismo
2.
Sci Rep ; 14(1): 21556, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285198

RESUMEN

Leaf senescence represents the final stage of leaf development, involving transcription factors (TFs)-mediated genetic reprogramming events. The timing of crop leaf senescence has a major influence on the yield and quality of crop in agricultural production. As important regulator of plant growth, the significance of TFs in the regulation of leaf senescence have been highlighted in various plant species by recent advances in genetics. However, studies on underlying molecular mechanisms are still not adequately explained. In this study, for analyzing the regulation of TFs on senescence of tobacco leaves, we combined gene differential expression analysis with weighted gene co-expression network analysis (WGCNA) to analyze the time-series gene expression profiles in senescing tobacco leaf. Among 3517 TF genes expressed in tobacco leaves, we identified 21, 35, and 183 TFs that were associated with early, middle, and late stages of tobacco leaf senescence, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results reveal that these senescence response TFs are correlated with several biological pathways such as plant hormone signal transduction, ubiquitin mediated proteolysis and MAPK signaling pathway, indicating the roles of TFs in regulating leaf senescence. Our results provide implications for future studies of the potential regulatory mechanisms of TFs involved in senescence of tobacco leaves.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Nicotiana/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Senescencia de la Planta/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ontología de Genes , Transcriptoma
3.
Nat Commun ; 15(1): 7913, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256370

RESUMEN

Nitrogen (N) deficiency responses are essential for plant survival and reproduction. Here, via an expression genome-wide association study (eGWAS), we reveal a mechanism that regulates microRNA (miRNA) dynamics necessary for N deficiency responses in Arabidopsis. Differential expression levels of three NAC transcription factor (TF) genes involved in leaf N deficiency responses among Arabidopsis accessions are most significantly associated with polymorphisms in HASTY (HST), which encodes an importin/exportin family protein responsible for the generation of mature miRNAs. HST acts as a negative regulator of N deficiency-induced leaf senescence, and the disruption and overexpression of HST differently modifies miRNA dynamics in response to N deficiency, altering levels of miRNAs targeting transcripts. Interestingly, N deficiency prevents the interaction of HST with HST-interacting proteins, DCL1 and RAN1, and some miRNAs. This suggests that HST-mediated regulation of miRNA dynamics collectively controls regulations mediated by multiple N deficiency response-associated NAC TFs, thereby being central to the N deficiency response network.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , MicroARNs , Nitrógeno , Hojas de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Senescencia de la Planta/genética , Estudio de Asociación del Genoma Completo , Carioferinas/metabolismo , Carioferinas/genética , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína de Unión al GTP ran/metabolismo , Proteína de Unión al GTP ran/genética
4.
Physiol Plant ; 176(5): e14507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221491

RESUMEN

Leaf senescence is a crucial process throughout evolution, vital for plant fitness as it facilitates the gradual shift of energy allocation between photosynthesis and catabolism overtime. This onset is influenced by a complex interplay of genetic and environmental factors, making senescence a key adaptation mechanism for plants in their natural habitats. Our study investigated the genetic mechanism underlying age-induced leaf senescence in Arabidopsis natural populations. Using a phenome high-throughput investigator, we comprehensively analyzed senescence responses across 234 Arabidopsis accessions and identified that environmental factors (e.g., ambient temperature) and physiological factors (e.g., defense responses) are substantially linked to senescence phenotypes. Through genome-wide association mapping, we identified the ACCELERATED CELL DEATH 6 (ACD6) locus as a potential regulator of senescence variation among natural accessions. Knocking out ACD6 in accessions with early and delayed senescence phenotypes resulted in varying degrees of delay in age-induced senescence, highlighting the accession-dependent regulatory role of ACD6 in leaf senescence. Furthermore, our findings suggest ACD6's involvement in senescence regulation via the salicylic acid signaling pathway. In summary, our study sheds light on the genetic regulation of leaf senescence in Arabidopsis natural populations, with the discovery of ACD6 as a potential candidate for genetic modification to enhance plant adaptation and survival.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hojas de la Planta , Senescencia de la Planta , Ácido Salicílico , Arabidopsis/genética , Arabidopsis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fenotipo , Estudio de Asociación del Genoma Completo , Transducción de Señal , Ancirinas
5.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201594

RESUMEN

Leaves are a key forage part for livestock, and the aging of leaves affects forage biomass and quality. Preventing or delaying premature leaf senescence leads to an increase in pasture biomass accumulation and an improvement in alfalfa quality. NAC transcription factors have been reported to affect plant growth and abiotic stress responses. In this study, 48 NAC genes potentially associated with leaf senescence were identified in alfalfa under dark or salt stress conditions. A phylogenetic analysis divided MsNACs into six subgroups based on similar gene structure and conserved motif. These MsNACs were unevenly distributed in 26 alfalfa chromosomes. The results of the collinearity analysis show that all of the MsNACs were involved in gene duplication. Some cis-acting elements related to hormones and stress were screened in the 2-kb promoter regions of MsNACs. Nine of the MsNAC genes were subjected to qRT-PCR to quantify their expression and Agrobacterium-mediated transient expression to verify their functions. The results indicate that Ms.gene031485, Ms.gene032313, Ms.gene08494, and Ms.gene77666 might be key NAC genes involved in alfalfa leaf senescence. Our findings extend the understanding of the regulatory function of MsNACs in leaf senescence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Filogenia , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transcriptoma , Familia de Multigenes , Senescencia de la Planta/genética , Estrés Salino/genética , Perfilación de la Expresión Génica , Oscuridad
6.
Int J Mol Sci ; 25(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39201658

RESUMEN

Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácido Fítico , Hojas de la Planta , Transducción de Señal , Etilenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Fítico/metabolismo , Senescencia de la Planta/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
7.
Nat Plants ; 10(9): 1377-1388, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39209993

RESUMEN

Petal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1. A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1-DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes. These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence.


Asunto(s)
Flores , Ipomoea nil , Proteínas de Plantas , Factores de Transcripción , Flores/genética , Flores/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ipomoea nil/genética , Ipomoea nil/efectos de los fármacos , Ipomoea nil/metabolismo , Ipomoea nil/fisiología , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas
8.
Int J Biol Macromol ; 277(Pt 4): 134388, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116978

RESUMEN

Numerous studies have investigated seed aging, with a particular emphasis on the involvement of reactive oxygen species. Reactive oxygen species diffuse into the nucleus and damage telomeres, resulting in loss of genetic integrity. Telomerase reverse transcriptase (TERT) plays an essential role in maintaining plant genomic stability. Genome-wide analyses of TERT genes in alfalfa (Medicago sativa) have not yet been conducted, leaving a gap in our understanding of the mechanisms underlying seed aging associated with TERT genes. In this study, four MsTERT genes were identified in the alfalfa genome. The expression profiles of the four MsTERT genes during seed germination indicated that MS. gene79077 was significantly upregulated by seed aging. Transgenic seeds overexpressing MS. gene79077 in Arabidopsis exhibited enhanced tolerance to seed aging by reducing the levels of H2O2 and increasing telomere length and telomerase activity. Furthermore, transcript profiling of aging-treated Arabidopsis wild-type and overexpressing seeds showed an aging response in genes related to glutathione-dependent detoxification and antioxidant defense pathways. These results revealed that MS. gene79077 conferred Arabidopsis seed-aging tolerance via modulation of antioxidant defense and telomere homeostasis. This study provides a new way to understand stress-responsive MsTERT genes for the potential genetic improvement of seed vigor.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Medicago sativa , Semillas , Telomerasa , Homeostasis del Telómero , Telómero , Arabidopsis/genética , Medicago sativa/genética , Telomerasa/genética , Telomerasa/metabolismo , Semillas/genética , Telómero/genética , Telómero/metabolismo , Plantas Modificadas Genéticamente , Germinación/genética , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Senescencia de la Planta/genética
9.
Physiol Plant ; 176(4): e14454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39164841

RESUMEN

Climate change is bringing more frequent and intense droughts, reducing overall water availability and adversely affecting crops. There is a need to improve our understanding of the tissular and cellular adaptation mechanisms that are critical for plant water conservation strategies. Here, we have used NMR relaxometry in combination with microscopy and multi-omic analysis to study the effects of progressive soil drought on winter oilseed rape (WOSR, Brassica napus L., cv. Aviso) leaves. This study reveals the structural and metabolic adjustments these leaves operate to maintain cell homeostasis. Our results are original in showing that the adaptive responses are altered in leaves at the onset of senescence, associated with changes in metabolic plasticity and mesophyll structures. Thus, long-term responses in young leaves involving osmotic adjustment were combined with the maintenance of tissue hydration and cell growth, contributing to high survival and recovery capacity. For the first time, short-term responses observed in early senescent-old leaves were associated with early drought-induced dehydration of the spongy layer. However, this dehydration was not followed by osmotic adjustment and did not allow maintenance of leaf tissue turgor. These findings open further studies on the genetic variability of drought responses related to identified short- and long-term structural and metabolic plasticity traits in Brassica species.


Asunto(s)
Adaptación Fisiológica , Brassica napus , Sequías , Hojas de la Planta , Brassica napus/fisiología , Brassica napus/genética , Espectroscopía de Resonancia Magnética/métodos , Multiómica , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Senescencia de la Planta/genética , Senescencia de la Planta/fisiología , Estaciones del Año , Agua/metabolismo
10.
Mol Plant ; 17(8): 1289-1306, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39003499

RESUMEN

Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Senescencia de la Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
11.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000188

RESUMEN

Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.


Asunto(s)
Clorofila , Mutación , Oryza , Hojas de la Planta , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Senescencia de la Planta/genética , Mapeo Cromosómico , Fenotipo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Genes de Plantas , Peróxido de Hidrógeno/metabolismo
12.
BMC Plant Biol ; 24(1): 734, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085786

RESUMEN

BACKGROUND: Isopentenyltransferases (IPT) serve as crucial rate-limiting enzyme in cytokinin synthesis, playing a vital role in plant growth, development, and resistance to abiotic stress. RESULTS: Compared to the wild type, transgenic creeping bentgrass exhibited a slower growth rate, heightened drought tolerance, and improved shade tolerance attributed to delayed leaf senescence. Additionally, transgenic plants showed significant increases in antioxidant enzyme levels, chlorophyll content, and soluble sugars. Importantly, this study uncovered that overexpression of the MtIPT gene not only significantly enhanced cytokinin and auxin content but also influenced brassinosteroid level. RNA-seq analysis revealed that differentially expressed genes (DEGs) between transgenic and wild type plants were closely associated with plant hormone signal transduction, steroid biosynthesis, photosynthesis, flavonoid biosynthesis, carotenoid biosynthesis, anthocyanin biosynthesis, oxidation-reduction process, cytokinin metabolism, and wax biosynthesis. And numerous DEGs related to growth, development, and stress tolerance were identified, including cytokinin signal transduction genes (CRE1, B-ARR), antioxidase-related genes (APX2, PEX11, PER1), Photosynthesis-related genes (ATPF1A, PSBQ, PETF), flavonoid synthesis genes (F3H, C12RT1, DFR), wax synthesis gene (MAH1), senescence-associated gene (SAG20), among others. CONCLUSION: These findings suggest that the MtIPT gene acts as a negative regulator of plant growth and development, while also playing a crucial role in the plant's response to abiotic stress.


Asunto(s)
Agrostis , Transferasas Alquil y Aril , Citocininas , Sequías , Hojas de la Planta , Senescencia de la Planta , Plantas Modificadas Genéticamente , Agrostis/genética , Agrostis/fisiología , Agrostis/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Plantas Modificadas Genéticamente/genética , Senescencia de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Fotosíntesis/genética , Genes de Plantas , Resistencia a la Sequía
13.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898417

RESUMEN

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Asunto(s)
Arabidopsis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbicidas , Senescencia de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Herbicidas/farmacología , Herbicidas/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Senescencia de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Transcriptoma , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Physiol Biochem ; 213: 108805, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861819

RESUMEN

Transcription factors play crucial roles in almost all physiological processes including leaf senescence. Cell death is a typical symptom appearing in senescing leaves, which is also classified as developmental programmed cell death (PCD). However, the link between PCD and leaf senescence still remains unclear. Here, we found a WRKY transcription factor WRKY47 positively modulates age-dependent leaf senescence in Arabidopsis (Arabidopsis thaliana). WRKY47 was expressed preferentially in senescing leaves. A subcellular localization assay indicated that WRKY47 was exclusively localized in nuclei. Overexpression of WRKY47 showed precocious leaf senescence, with less chlorophyll content and higher electrolyte leakage, but loss-of-function mutants of WRKY47 delayed this biological process. Through qRT-PCR and dual luciferase reporter assays, we found that WRKY47 could activate the expression of senescence-associated genes (SAGs) and PCD-associated genes to regulate leaf senescence. Furthermore, through electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-qPCR, WRKY47 was found to bind to W-box fragments in promoter regions of BFN1 (Bifunctional Nuclease 1) and MC6 (Metacaspase 6) directly. In general, our research revealed that WRKY47 regulates age-dependent leaf senescence by activating the transcription of two PCD-associated genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Apoptosis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Senescencia de la Planta/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
15.
Physiol Plant ; 176(3): e14374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837422

RESUMEN

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Asunto(s)
Frutas , Respuesta al Choque Térmico , Complejo de Proteína del Fotosistema II , Hojas de la Planta , Proteínas de Plantas , Plastidios , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Respuesta al Choque Térmico/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Plastidios/metabolismo , Plastidios/genética , Clorofila/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Plantas Modificadas Genéticamente , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Malondialdehído/metabolismo
17.
Plant Cell Environ ; 47(9): 3654-3667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38752443

RESUMEN

Bamboo cultivation, particularly Moso bamboo (Phyllostachys edulis), holds significant economic importance in various regions worldwide. Bamboo shoot degradation (BSD) severely affects productivity and economic viability. However, despite its agricultural consequences, the molecular mechanisms underlying BSD remain unclear. Consequently, we explored the dynamic changes of BSD through anatomy, physiology and the transcriptome. Our findings reveal ruptured protoxylem cells, reduced cell wall thickness and the accumulation of sucrose and reactive oxygen species (ROS) during BSD. Transcriptomic analysis underscored the importance of genes related to plant hormone signal transduction, sugar metabolism and ROS homoeostasis in this process. Furthermore, BSD appears to be driven by the coexpression regulatory network of senescence-associated gene transcription factors (SAG-TFs), specifically PeSAG39, PeWRKY22 and PeWRKY75, primarily located in the protoxylem of vascular bundles. Yeast one-hybrid and dual-luciferase assays demonstrated that PeWRKY22 and PeWRKY75 activate PeSAG39 expression by binding to its promoter. This study advanced our understanding of the molecular regulatory mechanisms governing BSD, offering a valuable reference for enhancing Moso bamboo forest productivity.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Plantas , Brotes de la Planta , Factores de Transcripción , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/fisiología , Poaceae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Senescencia de la Planta/genética , Transcriptoma , Pared Celular/metabolismo
18.
Plant Physiol ; 196(1): 273-290, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38781292

RESUMEN

Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Senescencia de la Planta , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Senescencia de la Planta/genética , Autofagia/genética , Plantones/genética , Plantones/fisiología , Plantones/crecimiento & desarrollo , Retículo Endoplásmico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Perfilación de la Expresión Génica , Carboxipeptidasas
19.
New Phytol ; 244(1): 116-130, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38702992

RESUMEN

Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Etilenos/biosíntesis , Etilenos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fosforilación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Senescencia de la Planta/genética , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Activación Transcripcional/genética
20.
Plant Mol Biol ; 114(3): 63, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805152

RESUMEN

Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.


Asunto(s)
Muerte Celular , Flores , Especies Reactivas de Oxígeno , Transducción de Señal , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Etilenos/metabolismo , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA