Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
Methods Mol Biol ; 2804: 91-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753142

RESUMEN

Circulating tumor cells (CTCs) isolated directly from whole blood opens new perspectives for cancer monitoring and the development of personalized treatments. However, due to their rarity among the multitude of blood cells, it remains a challenge to recover them alive with high level of purity, i.e., with few remaining white blood cells, and in a time frame compatible with the clinical context. Microfluidic chips have emerged as promising tools to address these challenges. We propose a two-step workflow including a pre-enrichment step, performed by a size-based pre-enrichment system, and a purification step, performed by an immunomagnetic chip. Here, we describe the protocol for the fabrication of the immunomagnetic microchip, the preparation of the sample, and the procedure for injection into the microchip allowing the sorting of the CTCs.


Asunto(s)
Separación Inmunomagnética , Dispositivos Laboratorio en un Chip , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patología , Separación Inmunomagnética/métodos , Humanos , Separación Celular/métodos , Separación Celular/instrumentación , Neoplasias/patología , Neoplasias/sangre , Línea Celular Tumoral , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
2.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667157

RESUMEN

The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles. Simultaneously, we employed a magnetic nanoparticle coating and surface biofunctionalization modification to immobilize PCT-trapping antibodies, creating the required immune substrates. The resulting magnetic nanoparticles and antibody complexes, acting as carriers and recognition units, exhibited superparamagnetism and the specific recognition of biomarkers. Then, this complex efficiently underwent magnetic separation with an applied magnetic field, streamlining the cumbersome steps of traditional ELISA and significantly reducing the detection time. In conclusion, the exploration of immunomagnetic bead detection technology based on surface-enhanced Raman spectroscopy holds crucial practical significance for the sensitive detection of PCT.


Asunto(s)
Separación Inmunomagnética , Polipéptido alfa Relacionado con Calcitonina , Espectrometría Raman , Humanos , Separación Inmunomagnética/métodos , Nanopartículas del Metal/química , Técnicas Biosensibles
3.
Food Chem ; 444: 138565, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38340505

RESUMEN

Although αs1-casein poses significant health risks to individuals with milk allergies, the availability of quantification methods for this allergen remains limited. In this study, we developed an immunomagnetic beads-based immunoassay (IMBs-ELISA) for the precise quantitative detection of bovine αs1-CN, specifically targeting epitope AA173-194. No cross-reactivity was observed with the other 7 food allergens including milk allergen. The linear detection range of the established IMBs-ELISA method was 0.125 µg/mL-2.000 µg/mL, with a limit of detection of 0.099 µg/mL. The accuracy of this method was 1.048 %, and the intra-plate and inter-plate precision achieved 4.100 % and 6.777 %, respectively. Notably, the entire IMBs-ELISA process could be completed within 75 min, representing a substantial time-saving advantage over traditional ELISA methods. These results proved the reliability and rapidity of the IMBs-ELISA method for detecting αs1-CN in real food.


Asunto(s)
Alérgenos , Caseínas , Animales , Bovinos , Humanos , Epítopos , Caseínas/análisis , Reproducibilidad de los Resultados , Alérgenos/análisis , Separación Inmunomagnética/métodos , Leche/química
4.
Methods Mol Biol ; 2770: 3-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38351442

RESUMEN

In all organisms with sexual reproduction, sperm and oocytes derive from embryonic precursors termed primordial germ cells (PGCs) which pass on genetic information to subsequent generations. Studies aimed to unravel PGC development at molecular level in mammals can be traced at the early 1980s and were hampered by the difficulty in obtaining both sufficient quantities and purity of PGCs. For many laboratories, the isolation and purification methods of PGCs at different stages from embryos are the most shortcut and affordable tool to study many aspects of their development at cellular and molecular levels. In the present chapter, I focus on immunomagnetic cell sorting (MACS) and fluorescence-activated cell sorting (FACS) methods used in my laboratory for the purification of mouse PGCs from 10.5 to 12.5 dpc embryos before their differentiation in oogonia/oocytes in female and prospermatogonia in male.


Asunto(s)
Células Germinativas , Semen , Animales , Masculino , Femenino , Ratones , Separación Inmunomagnética/métodos , Diferenciación Celular , Citometría de Flujo , Mamíferos
5.
PLoS One ; 19(2): e0297806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335195

RESUMEN

Immunomagnetic separation (IMS) techniques employing superparamagnetic particles can successfully isolate various components from mixtures. However, their utility can be limited for large-volume samples, viscous samples, or those containing a high density of particulate matter because of the need to generate high field gradients for particle recovery. Therefore, a new class of immunomagnetic particles was devised utilizing a single, macroscopic Pyrex spinbar conjugated with biorecognition elements to address these limitations. Advantages include an inherent capacity for effective mixing, an almost instantaneous recovery of the spinbar that can be performed without expensive equipment and with no loss of magnetic particles during processing, and reduced transfer of sample matrix. As a result, spinbars can provide an effective means for IMS with large-volume assays composed of complex matrices.


Asunto(s)
Separación Inmunomagnética , Imanes , Separación Inmunomagnética/métodos , Magnetismo , Fenómenos Magnéticos
6.
Food Chem ; 441: 138377, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38219367

RESUMEN

Immunomagnetic beads provide novel tools for high-throughput immunoassay techniques. In this study, protein G (PG) was immobilized onto bacterial magentic particles (BMPs) using an additional cysteine residue at the C-terminus. A broad-spectrum monoclonal antibody against glucocorticoids (GCs) was attached to BMPs through PG-Fc interaction, generating BMP-PG-mIgG immunomagentic beads. A sensitive one-step immunoassay was developed for GCs based on combination of BMP-PG-mIgG and dexamethasone-horseradish peroxidase tracer (DMS-HRP). The developed assay exhibited half inhibitory concentrations (IC50) for dexamethasone (DMS), betamethasone (BMS), prednisolone (PNS), hydrocortisone (HCS), beclomethasone (BCMS), cortisone (CS), 6-α-methylprednisone (6-α-MPNS), fludrocortisone acetate (HFCS) of 0.98, 1.49, 2.42, 9.29, 1.63, 6.13, 7.3, and 4.89 ng/mL, respectively. The method showed recoveries ranging rates from 86.5 % to 117 % with a coefficient of variation less than 12.3 % in milk sample, which showed a good correlation with LC-MS/MS. Thus, the proposed assay offers a rapid and broad-spectrum screening tool for simultaneous detection of GCs in milk.


Asunto(s)
Glucocorticoides , Magnetosomas , Animales , Glucocorticoides/análisis , Leche/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Inmunoensayo/métodos , Bacterias , Dexametasona/análisis , Separación Inmunomagnética/métodos
7.
Lab Chip ; 24(3): 460-466, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38105678

RESUMEN

Immunomagnetic enrichment of cell populations from bodily fluids followed by immunofluorescent labeling is an established sample preparation method often used for the detection and enumeration of rare cells such as circulating tumor cells. For a detailed analysis of the heterogeneous characteristics of these cells, the cells need to be retrieved individually. Although several technologies are available to obtain 100% pure cells either individually or in bulk, these are often expensive, have low specificity, or suffer from high cell losses, either inherent to the technology or caused by sample transfer into special chips. To solve this issue, we introduce the magnetic micro-needle approach, which allows for the isolation of immunomagnetically labeled target cells by the use of a magnetized microneedle directly from glass slides. The magnetic microneedle approach makes use of the already present magnetic labeling used for enrichment, while the glass-slide-based open sample container allows for easy and loss-free sample loading. Additionally, the system facilitates not only the isolation but also the precise placement of cells. As the used parts are low cost, the technology provides researchers with an affordable and efficient method to pick up and isolate, as well as specifically place magnetically labeled cells from enriched fractions, thereby enabling the researchers to isolate or analyze these rare cells in more detail.


Asunto(s)
Separación Inmunomagnética , Células Neoplásicas Circulantes , Humanos , Separación Inmunomagnética/métodos , Magnetismo , Fenómenos Magnéticos
8.
J Water Health ; 21(10): 1580-1590, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37902211

RESUMEN

Cryptosporidium spp. are protozoan parasites of significant health importance found in environmental waters globally. Four commercially available Cryptosporidium-specific immunomagnetic separation (IMS) kits used in various water sample matrices were analysed and compared. Beads were characterised by flow cytometry and tested for the recovery efficiencies for oocysts spiked into different matrices: river water sediment, clay sample, and filter backwash sample. Results showed that Dynabeads™ Cryptosporidium and Waterborne Crypto-Grab™ kits contained immunoglobulin IgM antibody-coated beads. In contrast, the BioPoint CryptoBead and the TCS Isolate kits contained immunoglobulin IgG antibody-coated beads. BioPoint CryptoBead was significantly coated with more antibodies and were able to capture oocysts more rapidly compared to the other beads. Recovery efficiencies of Dynabeads™, TCS Isolate® beads, and BioPoint CryptoBead ranged from 55 to 93% when tested against different sample matrices, with BioPoint CryptoBead resulting in the highest at 93% in reagent-grade water and Dynabeads™ at 55%, the lowest against clay samples. The Waterborne beads did not perform well on any samples, with recovery efficiencies ranging from 0 to 8%. Fluorescence microscopy analyses showed that both the IMS method and the sample matrix processed affect the quality of the membranes, with the cleanest samples for microscopy examination observed from BioPoint CryptoBead.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Animales , Separación Inmunomagnética/métodos , Arcilla , Agua/parasitología , Oocistos , Inmunoglobulinas
9.
Anal Chem ; 95(30): 11542-11549, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37485962

RESUMEN

The isolation and enrichment efficiency of SARS-CoV-2 virus in complex biological environments is often relatively low, presenting challenges in direct detection and an increased risk of false negatives, particularly during the early stages of infection. To address this issue, we have developed a novel approach using ultrasmall magnetosome-like nanoparticles (≤10 nm) synthesized via biomimetic mineralization of the Mms6 protein derived from magnetotactic bacteria. These nanoparticles are surface-functionalized with hydrophilic carboxylated polyethylene glycol (mPEG2000-COOH) to enhance water solubility and monodispersity. Subsequently, they are coupled with antibodies targeting the receptor-binding domain (RBD) of the virus. The resulting magnetosome-like immunomagnetic beads (Mal-IMBs) exhibit high magnetic responsiveness comparable to commercial magnetic beads, with a saturation magnetization of 90.6 emu/g. Moreover, their smaller particle size provides a significant advantage by offering a higher specific surface area, allowing for a greater number of RBD single-chain fragment variable (RBD-scFv) antibodies to be coupled, thereby enhancing immune capture ability and efficiency. To validate the practicality of Mal-IMBs, we evaluated their performance in recognizing the RBD antigens, achieving a maximum capture ability of 83 µg/mg per unit mass. Furthermore, we demonstrated the binding capability of Mal-IMBs to SARS-CoV-2 pseudovirus using fluorescence microscopy. The Mal-IMBs effectively enriched the pseudovirus at a low copy concentration of 70 copies/mL. Overall, the small Mal-IMB exhibited excellent magnetic responsiveness and binding efficiency. By employing a multisite virus binding mechanism, it significantly improves the enrichment and separation of SARS-CoV-2 in complex environments, facilitating rapid detection of COVID-19 and contributing to effective measures against its spread.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Separación Inmunomagnética/métodos , Unión Proteica , Fenómenos Magnéticos , Anticuerpos Antivirales
10.
Food Chem ; 428: 136724, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37418877

RESUMEN

As a commonly pathogenic bacterium, the rapid detection of Salmonella outbreaks and assurance of food safety require a highly efficient detection method. Herein, a novel approach to Salmonella detection using quantum dot-labeled phage-encoded RBP 55 as a fluorescent nanoprobe is reported. RBP 55, a novel phage receptor binding protein (RBP), was identified and characterized from phage STP55. RBP 55 was functionalized onto quantum dots (QDs) to form fluorescent nanoprobes. The assay was based on the combination of immunomagnetic separation and RBP 55-QDs, which formed a sandwich composite structure. The results showed a good linear correlation between the fluorescence values and the concentration of Salmonella (101-107 CFU/mL) with a low detection limit of 2 CFU/mL within 2 h. The method was used to successfully detect Salmonella in spiked food samples. This approach can be used for the simultaneous detection of multiple pathogens by labeling different phage-encoded RBPs using polychromatic QDs in the future.


Asunto(s)
Bacteriófagos , Puntos Cuánticos , Puntos Cuánticos/química , Receptores de Bacteriógrafos , Microbiología de Alimentos , Bacteriófagos/genética , Salmonella/genética , Separación Inmunomagnética/métodos , Colorantes
11.
Mikrochim Acta ; 190(6): 202, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145241

RESUMEN

A colorimetric detection method for Escherichia coli (E. coli) in water was established based on a T7 phage tail fiber protein-magnetic separation. Firstly, the tail fiber protein (TFP) was expressed and purified to specifically recognize E. coli, which was verified by using fusion protein GFP-tagged TFP (GFP-TFP) and fluorescence microscopy. Then TFP conjugated with magnetic beads were applied to capture and separate E. coli. The TFP was covalently immobilized on the surface of magnetic beads and captured E. coli as verified by scanning electron microscopy (SEM). Finally, polymyxin B was used to lyse E. coli in solution and the released intracellular ß-galactosidase (ß-gal) could hydrolyze the colorimetric substrate chlorophenol red-ß-D-galactopyranoside (CPRG), causing color change from yellow to purple. The high capture efficiencies of E. coli ranged from 88.70% to 95.65% and E. coli could be detected at a concentration of 102 CFU/mL by naked eyes. The specificity of the chromogenic substrate was evaluated using five different pathogen strains as competitors and tests with four kinds of real water samples showed recoveries of 86.00% to 92.25%. The colorimetric changes determined by visual inspection can be developed as an efficient platform for point-of-care detection of E. coli in resource-limited regions.


Asunto(s)
Bacteriófagos , Escherichia coli , Escherichia coli/química , Colorimetría/métodos , Separación Inmunomagnética/métodos , Agua
12.
Foodborne Pathog Dis ; 20(5): 186-196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172301

RESUMEN

The Gram-positive bacterium Listeria monocytogenes causes a significantly high percentage of fatalities among human foodborne illnesses. Surface proteins, specifically expressed from a wide range of L. monocytogenes serotypes under selective enrichment culture conditions, can serve as targets for the isolation of this pathogen using antibody-based methods to facilitate molecular detection. In this study, monoclonal antibodies (MAbs), previously raised against the L. monocytogenes LPXTG surface proteins LMOf2365_0639 and LMOf2365_0148, were investigated for their ability to isolate L. monocytogenes from bacterial samples with immunomagnetic separation (IMS). Only 1 out of 35 MAbs against LMOf2365_0639, M3644, was capable of capturing L. monocytogenes. Among all the 24 MAbs examined against LMOf2365_0148, 4 MAbs, M3686, M3697, M3699, and M3700, were capable of capturing L. monocytogenes cells specifically from abbreviated primary selective enrichment cultures in either Palcam or LEB/UVM1 media or from mixed samples containing target and nontarget bacteria. MAb M3686 showed a unique specificity with the capability to capture strains of seven L. monocytogenes serotypes (1/2a, 1/2b, 1/2c, 3a, 4a, 4b, and 4d). These promising MAbs were subsequently characterized by quantitative measurements of antigen-binding affinity using surface plasmon resonance analysis and epitope mapping using overlapping recombinant polypeptides. The usefulness of these MAbs to LMOf2365_0148 in bacterial capture was consistent with their high affinities with KD constants in the nanomolar range and can be explored further for the development of an automated IMS method suitable for routine isolation of L. monocytogenes from food and environmental samples.


Asunto(s)
Listeria monocytogenes , Humanos , Anticuerpos Monoclonales/metabolismo , Proteínas de la Membrana/genética , Separación Inmunomagnética/métodos , Serogrupo
13.
Food Chem ; 424: 136416, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37247600

RESUMEN

Rapid separation and identification of Salmonella enteritidis (S. enteritidis) in food is of great importance to prevent outbreaks of foodborne diseases. Herein, by using O and H antigens as targets, an epitope-based bio-panning strategy was applied to isolate specific nanobodies towards S. enteritidis. This method constitutes an efficient way to obtain specific antibody fragments and test pairwise nanobodies. On this basis, a double nanobody-based sandwich enzyme-linked immunosorbent assay (ELISA) coupled with immunomagnetic separation (IMS) was developed to rapid enrich and detect S. enteritidis in food. The detection limit of the IMS-ELISA was 3.2 × 103 CFU/mL. In addition, 1 CFU of S. enteritidis in food samples can be detected after 4-h cultivation, which was shortened by 2 h after IMS. The IMS-ELISA strategy could avoid matrix interference and shorten the enrichment culture time, which has great potential for application in monitoring bacterial contamination in food.


Asunto(s)
Separación Inmunomagnética , Anticuerpos de Dominio Único , Separación Inmunomagnética/métodos , Salmonella enteritidis , Ensayo de Inmunoadsorción Enzimática , Anticuerpos , Microbiología de Alimentos
14.
Anal Bioanal Chem ; 415(21): 5139-5149, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37204446

RESUMEN

Legionella pneumophila are pathogenic bacteria that can be found in high concentrations in artificial water systems like evaporative cooling towers, which have been the source of frequent outbreaks in recent years. Since inhaled L. pneumophila can lead to Legionnaires' disease, the development of suitable sampling and rapid analysis strategies for these bacteria in aerosols is therefore of great relevance. In this work, different concentrations of viable L. pneumophila Sg 1 were nebulized and sampled by the cyclone sampler Coriolis® µ under defined conditions in a bioaerosol chamber. To quantify intact Legionella cells, the collected bioaerosols were subsequently analyzed by immunomagnetic separation coupled with flow cytometry (IMS-FCM) on the platform rqmicro.COUNT. For analytical comparison, measurements with qPCR and cultivation were performed. Limits of detection (LOD) of 2.9 × 103 intact cells m-3 for IMS-FCM and 7.8 × 102 intact cells m-3 for qPCR indicating a comparable sensitivity as in culture (LOD = 1.5 × 103 culturable cells m-3). Over a working range of 103 - 106 cells mL-1, the analysis of nebulized and collected aerosol samples with IMS-FCM and qPCR provides higher recovery rates and more consistent results than by cultivation. Overall, IMS-FCM is a suitable culture-independent method for quantification of L. pneumophila in bioaerosols and is promising for field application due to its simplicity in sample preparation.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Separación Inmunomagnética/métodos , Citometría de Flujo , Aerosoles y Gotitas Respiratorias , Enfermedad de los Legionarios/microbiología , Microbiología del Agua
15.
Cells ; 12(6)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980290

RESUMEN

Dermal stem cells (DSCs), which are progenitor cells of melanocytes, are isolated from human foreskin and cultivated as mixed cultures containing both DSCs and fibroblasts in varying proportions. These contaminating fibroblasts may have an impact on the results of experimental studies and are a serious limitation for certain applications. The aim of the present study was to purify or enrich DSCs-an indispensable step towards future investigations. Applying different methods, we demonstrated that highly enriched DSCs with a good recovery rate can be obtained through positive selection with MACS® immunomagnetic cell sorting. These DSCs remain vital and proliferate constantly in culture, maintaining a high level of purity after enrichment. Other approaches such as treatment with Geneticin or selective detachment were not suitable to purify DSC-fibroblast co-cultures. Overall, enriched DSCs represent a novel and unique model to study the effects of UV radiation on the differentiation of DSCs into melanocytes and their potential relevance in the genesis of malignant melanoma.


Asunto(s)
Separación Inmunomagnética , Melanoma , Humanos , Cultivo Primario de Células , Separación Inmunomagnética/métodos , Células Madre , Fibroblastos
16.
Analyst ; 148(9): 1939-1947, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36916483

RESUMEN

Diagnosis of cancer by biomarkers plays an important role in human health and life. However, current laboratory techniques for detecting cancer biomarkers still require laborious and time-consuming operation by skilled operators and associated laboratory instruments. This work presents a colorimetric biosensor for the rapid and sensitive detection of carcinoembryonic antigen (CEA) based on an automated immunomagnetic separation platform and a droplet array microfluidic chip with the aid of an image analysis system. Immunomagnetic nanoparticles (MNPs) were used to capture CEA in the samples. CEA-detecting antibodies and horseradish peroxidase (HRP) were modified on polystyrene microspheres (PS), catalysing hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine (TMB) as signal outputs. Color reaction data were analyzed to establish a CEA concentration standard curve. The movement of MNPs between droplets in the microfluidic chip is achieved using an automatically programmable magnetic control system. This colorimetric biosensor has been used for the simultaneous detection of six CEA samples ranging from 100 pg mL-1 to 100 ng mL-1 with a detection limit of 14.347 pg mL-1 in 10 min, following the linear equation: y = -4.773 ln(x) + 156.26 with a correlation of R2 = 0.9924, and the entire workflow can be completed within 80 minutes. The microfluidic immunosensor designed in this paper has the advantages of low cost, automation, low sample consumption, high throughput, and promising applications in biochemistry.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Antígeno Carcinoembrionario/análisis , Separación Inmunomagnética/métodos , Microfluídica , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Anticuerpos Monoclonales , Límite de Detección , Oro
17.
Small ; 19(18): e2207154, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36772896

RESUMEN

The development of specific and sensitive immunomagnetic cell separation nanotechnologies is central to enhancing the diagnostic relevance of circulating tumor cells (CTCs) and improving cancer patient outcomes. The limited number of specific biomarkers used to enrich a phenotypically diverse set of CTCs from liquid biopsies has limited CTC yields and purity. The ultra-high molecular weight mucin, mucin16 (MUC16) is shown to physically shield key membrane proteins responsible for activating immune responses against ovarian cancer cells and may interfere with the binding of magnetic nanoparticles to popular immunomagnetic cell capture antigens. MUC16 is expressed in ≈90% of ovarian cancers and is almost universal in High Grade Serous Epithelial Ovarian Cancer. This work demonstrates that cell bound MUC16 is an effective target for rapid immunomagnetic extraction of expressor cells with near quantitative yield, high purity and viability from serum. The results provide a mechanistic insight into the effects of nanoparticle physical properties and immunomagnetic labeling on the efficiency of immunomagnetic cell isolation. The growth of these cells has also been studied after separation, demonstrating that nanoparticle size impacts cell-particle behavior and growth rate. These results present the successful isolation of "masked" CTCs enabling new strategies for the detection of cancer recurrence and select and monitor chemotherapy.


Asunto(s)
Nanopartículas , Células Neoplásicas Circulantes , Neoplasias Ováricas , Humanos , Femenino , Mucinas , Separación Inmunomagnética/métodos , Nanopartículas/química , Neoplasias Ováricas/diagnóstico , Proteínas de la Membrana/metabolismo , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Separación Celular
18.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36724265

RESUMEN

AIM: Fusobacterium nucleatum (F. nucleatum) is associated with the initiation, development, and metastasis of colorectal cancer. However, it is difficult to isolate F. nucleatum from clinical specimens. In this study, we aimed to develop an effective and rapid method for isolating F. nucleatum from human feces using polyclonal antibody (PAB)-coated immunomagnetic beads (IMBs) with selective media. METHODS AND RESULTS: IMBs conjugated with PAB were prepared and used to isolate F. nucleatum from human feces, and the bacteria were cultured with selective culture media (fastidious anaerobe agar + nalidixic acid + vancomycin). Under optimized experimental conditions, IMBs could selectively recover F. nucleatum from fecal microbiota samples spiked with Peptostreptococcus or Bacteroides fragilis. In artificial fecal samples, the detection sensitivity of IMBs for F. nucleatum was 103 CFU mL-1. In addition, IMBs combined with selective media could rapidly isolate F. nucleatum from human feces. CONCLUSIONS: This study successfully established an effective method for the rapid isolation of F. nucleatum from human feces by IMBs. The whole procedure requires 2-3 days, and has a sensitivity of 103 CFU mL-1 feces.


Asunto(s)
Fusobacterium nucleatum , Separación Inmunomagnética , Humanos , Agar , Separación Inmunomagnética/métodos , Medios de Cultivo , Bacterias Anaerobias , Heces/microbiología
19.
Small ; 19(16): e2205320, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720798

RESUMEN

Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microgeles , Células Neoplásicas Circulantes , Humanos , Separación Celular/métodos , Microfluídica , Separación Inmunomagnética/métodos , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Fenómenos Magnéticos , Técnicas Analíticas Microfluídicas/métodos
20.
Anal Chem ; 94(48): 16787-16795, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398979

RESUMEN

A portable microfluidic biosensor was developed for the detection of E. coli O157:H7 using finger actuation. The chip was assembled with three functional zones, immunomagnetic separation, nucleic acid extraction and purification, and signal detection. First, antibody-modified magnetic nanoparticles (MNPs) were used to separate the target bacteria from the sample. The captured bacteria were then lysed and silica-coated MNPs were used to absorb DNA, followed by washing and eluting to obtain purified DNA. The obtained DNA was subjected to amplification and fluorescence detection based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeat-associated protein/Cas12a reaction. The fluorescence images were collected and analyzed using a smartphone app under a 3D-printed detection device. It could quantitatively detect E. coli O157:H7 from 102 to 108 CFU/mL in 2.5 h with a limit of detection (LOD) of 10 CFU/mL. The recovery rate ranged from 104 to 120%. Overall, the biosensor realizes "sample-in and answer-out" assay for E. coli O157:H7 and eliminates the need for external pumps and skilled personnel.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Escherichia coli O157/genética , Microfluídica , Técnicas Biosensibles/métodos , Separación Inmunomagnética/métodos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...