Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.443
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38115, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728509

RESUMEN

Platelets are increasingly recognized for their multifaceted roles in inflammation beyond their traditional involvement in haemostasis. This review consolidates knowledge on platelets as critical players in inflammatory responses. This study did an extensive search of electronic databases and identified studies on platelets in inflammation, focusing on molecular mechanisms, cell interactions, and clinical implications, emphasizing recent publications. Platelets contribute to inflammation via surface receptors, release of mediators, and participation in neutrophil extracellular trap formation. They are implicated in diseases like atherosclerosis, rheumatoid arthritis, and sepsis, highlighting their interaction with immune cells as pivotal in the onset and resolution of inflammation. Platelets are central to regulating inflammation, offering new therapeutic targets for inflammatory diseases. Future research should explore specific molecular pathways of platelets in inflammation for therapeutic intervention.


Asunto(s)
Plaquetas , Inflamación , Humanos , Plaquetas/inmunología , Inflamación/inmunología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Sepsis/inmunología , Sepsis/sangre , Artritis Reumatoide/inmunología , Artritis Reumatoide/sangre , Neutrófilos/inmunología
2.
Front Immunol ; 15: 1394925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690282

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.


Asunto(s)
Metabolismo Energético , Estrés Oxidativo , Sepsis , Sirtuinas , Humanos , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Sepsis/metabolismo , Animales , Sirtuinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inmunología
3.
Front Immunol ; 15: 1355405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720891

RESUMEN

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Asunto(s)
Células Supresoras de Origen Mieloide , Sepsis , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Sepsis/inmunología , Transcriptoma , Masculino , Femenino , Diferenciación Celular/inmunología , Perfilación de la Expresión Génica
4.
Front Immunol ; 15: 1373876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715602

RESUMEN

Objective: The objective of this study was to investigate the impact of electro-acupuncture (EA) on sepsis-related intestinal injury and its relationship with macrophage polarization. Methods: A sepsis model was established using cecal ligation and puncture (CLP) to assess the effectiveness of EA. The extent of pathological injury was evaluated using Chiu's score, the expression of ZO-1 and Ocludin, and the impact on macrophage polarization was examined through flow cytometry and immunofluorescence staining. The expression of spermidine, one type of polyamine, and ornithine decarboxylase (ODC) was measured using ELISA and PCR. Once the efficacy was determined, a polyamine depletion model was created, and the role of polyamines was reassessed by evaluating efficacy and observing macrophage polarization. Results: EA treatment reduced the Chiu's score and increased the expression of ZO-1 and Ocludin in the intestinal tissue of septic mice. It inhibited the secretion of IL-1ß and TNF-α, promoted the polarization of M2-type macrophages, increased the secretion of IL-10, and upregulated the expression of Arg-1, spermidine, and ODC. However, after depleting polyamines, the beneficial effects of EA on alleviating intestinal tissue damage and modulating macrophage polarization disappeared. Conclusion: The mechanism underlying the alleviation of intestinal injury associated with CLP-induced sepsis by EA involves with the promotion of M2-type macrophage polarization mediated by spermidine expression.


Asunto(s)
Modelos Animales de Enfermedad , Electroacupuntura , Macrófagos , Poliaminas , Sepsis , Animales , Sepsis/terapia , Sepsis/metabolismo , Sepsis/inmunología , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Electroacupuntura/métodos , Poliaminas/metabolismo , Masculino , Activación de Macrófagos , Intestinos/patología , Intestinos/inmunología , Ratones Endogámicos C57BL , Citocinas/metabolismo
5.
Front Immunol ; 15: 1287415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707899

RESUMEN

Background: The dysregulated immune response to sepsis still remains unclear. Stratification of sepsis patients into endotypes based on immune indicators is important for the future development of personalized therapies. We aimed to evaluate the immune landscape of sepsis and the use of immune clusters for identifying sepsis endotypes. Methods: The indicators involved in innate, cellular, and humoral immune cells, inhibitory immune cells, and cytokines were simultaneously assessed in 90 sepsis patients and 40 healthy controls. Unsupervised k-means cluster analysis of immune indicator data were used to identify patient clusters, and a random forest approach was used to build a prediction model for classifying sepsis endotypes. Results: We depicted that the impairment of innate and adaptive immunity accompanying increased inflammation was the most prominent feature in patients with sepsis. However, using immune indicators for distinguishing sepsis from bacteremia was difficult, most likely due to the considerable heterogeneity in sepsis patients. Cluster analysis of sepsis patients identified three immune clusters with different survival rates. Cluster 1 (36.7%) could be distinguished from the other clusters as being an "effector-type" cluster, whereas cluster 2 (34.4%) was a "potential-type" cluster, and cluster 3 (28.9%) was a "dysregulation-type" cluster, which showed the lowest survival rate. In addition, we established a prediction model based on immune indicator data, which accurately classified sepsis patients into three immune endotypes. Conclusion: We depicted the immune landscape of patients with sepsis and identified three distinct immune endotypes with different survival rates. Cluster membership could be predicted with a model based on immune data.


Asunto(s)
Sepsis , Humanos , Sepsis/inmunología , Sepsis/diagnóstico , Sepsis/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Análisis por Conglomerados , Adulto , Citocinas/inmunología , Citocinas/metabolismo , Biomarcadores , Inmunidad Innata , Inmunidad Adaptativa
6.
Front Immunol ; 15: 1248907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720893

RESUMEN

Introduction: Sepsis remains a major cause of death in Intensive Care Units. Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated systemic inflammatory response. Pattern recognition receptors, such as TLRs and NLRs contribute to innate immune responses. Upon activation, some NLRs form multimeric protein complexes in the cytoplasm termed "inflammasomes" which induce gasdermin d-mediated pyroptotic cell death and the release of mature forms of IL-1ß and IL-18. The NLRP6 inflammasome is documented to be both a positive and a negative regulator of host defense in distinct infectious diseases. However, the role of NLRP6 in polymicrobial sepsis remains elusive. Methods: We have used NLRP6 KO mice and human septic spleen samples to examine the role of NLRP6 in host defense in sepsis. Results: NLRP6 KO mice display enhanced survival, reduced bacterial burden in the organs, and reduced cytokine/chemokine production. Co-housed WT and KO mice following sepsis show decreased bacterial burden in the KO mice as observed in singly housed groups. NLRP6 is upregulated in CD3, CD4, and CD8 cells of septic patients and septic mice. The KO mice showed a higher number of CD3, CD4, and CD8 positive T cell subsets and reduced T cell death in the spleen following sepsis. Furthermore, administration of recombinant IL-18, but not IL-1ß, elicited excessive inflammation and reversed the survival advantages observed in NLRP6 KO mice. Conclusion: These results unveil NLRP6 as a negative regulator of host defense during sepsis and offer novel insights for the development of new treatment strategies for sepsis.


Asunto(s)
Ratones Noqueados , Sepsis , Animales , Sepsis/inmunología , Sepsis/microbiología , Humanos , Ratones , Inflamasomas/metabolismo , Inflamasomas/inmunología , Ratones Endogámicos C57BL , Masculino , Citocinas/metabolismo , Femenino , Inmunidad Innata , Modelos Animales de Enfermedad , Bazo/inmunología , Receptores de Superficie Celular , Péptidos y Proteínas de Señalización Intracelular
7.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691831

RESUMEN

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Mucosa Intestinal , Sepsis , Linfocitos T Reguladores , Células Th17 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Células Th17/inmunología , Células Th17/efectos de los fármacos , Ratas , Medicamentos Herbarios Chinos/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Masculino , Ratas Sprague-Dawley
8.
Int Immunopharmacol ; 133: 112130, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648712

RESUMEN

Neutrophils and T lymphocytes are closely related to occurrence of immunosuppression in sepsis. Studies have shown that neutrophil apoptosis decreases and T lymphocyte apoptosis increases in sepsis immunosuppression, but the specific mechanism involved remains unclear. In the present study, we found Toll-like Receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) were significantly activated in bone marrow neutrophils of wild-type mice after LPS treatment and that they were attenuated by treatment with C29, an inhibitor of TLR2. PD-L1 activation inhibits neutrophil apoptosis, whereas programmed death protein 1 (PD-1)activation promotes apoptosis of T lymphocytes, which leads to immunosuppression. Mechanistically, when sepsis occurs, pro-inflammatory factors and High mobility group box-1 protein (HMGB1) passively released from dead cells cause the up-regulation of PD-L1 through TLR2 on neutrophils. The binding of PD-L1 and PD-1 on T lymphocytes leads to increased apoptosis of T lymphocytes and immune dysfunction, eventually resulting in the occurrence of sepsis immunosuppression. In vivo experiments showed that the HMGB1 inhibitor glycyrrhizic acid (GA) and the TLR2 inhibitor C29 could inhibit the HMGB1/TLR2/PD-L1 pathway, and improving sepsis-induced lung injury. In summary, this study shows that HMGB1 regulates PD-L1 and PD-1 signaling pathways through TLR2, which leads to immunosuppression.


Asunto(s)
Apoptosis , Antígeno B7-H1 , Proteína HMGB1 , Ratones Endogámicos C57BL , Neutrófilos , Sepsis , Linfocitos T , Receptor Toll-Like 2 , Animales , Receptor Toll-Like 2/metabolismo , Proteína HMGB1/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Antígeno B7-H1/metabolismo , Apoptosis/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ratones , Masculino , Tolerancia Inmunológica , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Lipopolisacáridos/inmunología , Transducción de Señal , Terapia de Inmunosupresión
9.
Mol Immunol ; 170: 110-118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653076

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Lipopolisacáridos , Ratones Endogámicos C57BL , Piroptosis , Sepsis , Linfocitos T Reguladores , Células Th17 , Animales , Piroptosis/efectos de los fármacos , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/inmunología , Células Th17/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/efectos de los fármacos
10.
Int Immunopharmacol ; 133: 112123, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38663314

RESUMEN

The NOD-like receptor family protein 3 (NLRP3) inflammasome is a crucial complex for the host to establish inflammatory immune responses and plays vital roles in a series of disorders, including Alzheimer's disease and acute peritonitis. However, its regulatory mechanism remains largely unclear. Zinc finger antiviral protein (ZAP), also known as zinc finger CCCH-type antiviral protein 1 (ZC3HAV1), promotes viral RNA degradation and plays vital roles in host antiviral immune responses. However, the role of ZAP in inflammation, especially in NLRP3 activation, is unclear. Here, we show that ZAP interacts with NLRP3 and promotes NLRP3 oligomerization, thus facilitating NLRP3 inflammasome activation in peritoneal macrophages of C57BL/6 mice. The shorter isoform of ZAP (ZAPS) appears to play a greater role than the full-length isoform (ZAPL) in HEK293T cells. Congruously, Zap-deficient C57BL/6 mice may be less susceptible to alum-induced peritonitis and lipopolysaccharide-induced sepsis in vivo. Therefore, we propose that ZAP is a positive regulator of NLRP3 activation and a potential therapeutic target for NLRP3-related inflammatory disorders.


Asunto(s)
Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Peritonitis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Humanos , Inflamasomas/metabolismo , Inflamasomas/inmunología , Células HEK293 , Peritonitis/inmunología , Peritonitis/inducido químicamente , Ratones , Lipopolisacáridos/inmunología , Ratones Noqueados , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Masculino , Multimerización de Proteína
11.
Aging (Albany NY) ; 16(8): 7460-7473, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38669099

RESUMEN

This study is aimed to explore the value of lymphocyte subsets in evaluating the severity and prognosis of sepsis. The counts of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and NK cells significantly decreased between day 1 and day 3 in both the survivor and the non-survivor groups. The peripheral lymphocyte subsets (PLS) at day 1 were not significantly different between the survivor and the non-survivor groups. However, at day 3, the counts of lymphocytes, CD3+ T cells, CD4+ T cells, and NK cells were remarkably lower in the non-survivor group. No significant differences in CD8+ T cells, or CD19+ B cells were observed. The PLS index was independently and significantly associated with the 28-day mortality risk in septic patients (OR: 3.08, 95% CI: 1.18-9.67). Based on these clinical parameters and the PLS index, we developed a nomograph for evaluating the individual mortality risk in sepsis. The area under the curve of prediction with the PLS index was significantly higher than that from the model with only clinical parameters (0.912 vs. 0.817). Our study suggests that the decline of PLS occurred in the early stage of sepsis. The new novel PLS index can be an independent predictor of 28-day mortality in septic patients. The prediction model based on clinical parameters and the PLS index has relatively high predicting ability.


Asunto(s)
Subgrupos Linfocitarios , Sepsis , Humanos , Sepsis/mortalidad , Sepsis/inmunología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Subgrupos Linfocitarios/inmunología , Medición de Riesgo , Pronóstico , Recuento de Linfocitos
12.
Int Immunopharmacol ; 133: 112087, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669951

RESUMEN

EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.


Asunto(s)
Proteínas de Unión al Calcio , Diferenciación Celular , Activación de Linfocitos , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T , Sepsis , Transducción de Señal , Animales , Sepsis/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Activación de Linfocitos/inmunología , Ratones , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Células Th17/inmunología , Células Cultivadas , Linfocitos T Colaboradores-Inductores/inmunología , Macrófagos/inmunología , Células TH1/inmunología , Masculino , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/inmunología
13.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678669

RESUMEN

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Asunto(s)
Flavonas , Lipopolisacáridos , Factor de Transcripción STAT1 , Factor de Transcripción STAT3 , Proteína 3 Supresora de la Señalización de Citocinas , Verapamilo , Animales , Verapamilo/farmacología , Factor de Transcripción STAT1/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Flavonas/farmacología , Flavonas/uso terapéutico , Ratones , Factor de Transcripción STAT3/metabolismo , Masculino , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Sepsis/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Células Cultivadas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
14.
JCI Insight ; 9(8)2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646937

RESUMEN

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol , Monocitos , Streptococcus pneumoniae , Animales , Femenino , Humanos , Ratones , Apolipoproteína E3/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/mortalidad , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología , Sepsis/inmunología , Sepsis/mortalidad , Sepsis/microbiología , Sepsis/metabolismo , Streptococcus pneumoniae/inmunología , Células THP-1
15.
Front Immunol ; 15: 1368099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665923

RESUMEN

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Asunto(s)
Células Progenitoras Endoteliales , Proteínas de la Membrana , Sepsis , Animales , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/inmunología , Sepsis/inmunología , Sepsis/metabolismo , Ratones , Ratones Noqueados , Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/inmunología , Células Cultivadas , Masculino
16.
PeerJ ; 12: e17205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646480

RESUMEN

Background: Sepsis can disrupt immune regulation and lead to acute respiratory distress syndrome (ARDS) frequently. Remazolam, a fast-acting hypnotic drug with superior qualities compared to other drugs, was investigated for its potential protective effects against sepsis-induced ARDS. Methods: Forty Sprague-Dawley rats were randomly divided into four groups, including the sepsis + saline group, sham operation + saline group, sham operation + remazolam group and the sepsis + remazolam group. Lung tissues of rats were extracted for HE staining to assess lung damage, and the wet weight to dry weight (W/D) ratio was calculated. The levels of proinflammatory factors, anti-inflammatory factors, CD4+ and CD8+ T cells in peripheral blood, MDA, MPO, and ATP in the lung tissue were measured by using ELISA. Western blotting was performed to determine the protein expression of HMGB1 in lung tissues. Results: In comparison to the sham operation + saline and sham operation + remazolam groups, the sepsis + saline group exhibited significantly higher values for W/D ratio, lung damage score, IL-1ß, IL-6, TNF-α, PCT, CRP, MDP and MPO, while exhibiting lower levels of CD4+ and CD8+ T lymphocytes, PaO2, PCO2, and ATP. The rats in the sepsis + saline group displayed ruptured alveolar walls and evident interstitial lung edema. However, the rats in the sepsis + remazolam group showed improved alveolar structure. Furthermore, the HMGB1 protein expression in the sepsis + remazolam group was lower than the sepsis + saline group. Conclusion: Remazolam can alleviate the inflammatory response in infected rats, thereby alleviating lung injury and improving immune function, which may be attributed to the reduction in HMGB1 protein expression.


Asunto(s)
Ratas Sprague-Dawley , Síndrome de Dificultad Respiratoria , Sepsis , Animales , Sepsis/complicaciones , Sepsis/inmunología , Sepsis/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Ratas , Masculino , Proteína HMGB1/metabolismo , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo
17.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659058

RESUMEN

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Asunto(s)
Micropartículas Derivadas de Células , Células Dendríticas , Inflamación , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Ratones , Inflamación/tratamiento farmacológico , Micropartículas Derivadas de Células/metabolismo , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Vesículas Extracelulares , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Humanos , Inmunoterapia/métodos
18.
Theranostics ; 14(6): 2589-2604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646647

RESUMEN

Background: The mechanisms underlying the increased mortality of secondary infections during the immunosuppressive phase of sepsis remain elusive. Objectives: We sought to investigate the role of Siglec-F+ neutrophils on splenic T lymphocytes in the immunosuppressed phase of sepsis and on secondary infection in PICS mice, and to elucidate the underlying mechanisms. Methods: We established a mouse model of sepsis-induced immunosuppression followed by secondary infection with LPS or E. coli. The main manifestation of immunosuppression is the functional exhaustion of splenic T lymphocytes. Treg depletion reagent Anti-IL-2, IL-10 blocker Anti-IL-10R, macrophage depletion reagent Liposomes, neutrophil depletion reagent Anti-Ly6G, neutrophil migration inhibitor SB225002, Siglec-F depletion reagent Anti-Siglec-F are all used on PICS mice. The function of neutrophil subsets was investigated by adoptive transplantation and the experiments in vitro. Results: Compared to other organs, we observed a significant reduction in pro-inflammatory cytokines in the spleen, accompanied by a marked increase in IL-10 production, primarily by infiltrating neutrophils. These infiltrating neutrophils in the spleen during the immunosuppressive phase of sepsis undergo phenotypic change in the local microenvironment, exhibiting high expression of neutrophil biomarkers such as Siglec-F, Ly6G, and Siglec-E. Depletion of neutrophils or specifically targeting Siglec-F leads to enhance the function of T lymphocytes and a notable improvement in the survival of mice with secondary infections. Conclusions: We identified Siglec-F+ neutrophils as the primary producers of IL-10, which significantly contributed to T lymphocyte suppression represents a novel finding with potential therapeutic implications.


Asunto(s)
Neutrófilos , Sepsis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Bazo , Animales , Masculino , Ratones , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/inmunología , Terapia de Inmunosupresión , Interleucina-10/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Sepsis/inmunología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Bazo/inmunología , Linfocitos T Reguladores/inmunología
19.
Nat Immunol ; 25(5): 802-819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684922

RESUMEN

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Asunto(s)
Macrófagos , Neoplasias , Sepsis , Humanos , Sepsis/inmunología , Macrófagos/inmunología , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animales , Linfocitos T/inmunología , Receptores CCR2/metabolismo , Persona de Mediana Edad , Ratones , Anciano , Quimiocinas/metabolismo , Adulto
20.
Front Immunol ; 15: 1346097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633258

RESUMEN

Introduction: A hallmark of T cell dysregulation during sepsis is the downregulation of costimulatory molecules. CD28 is one of T cell costimulatory molecules significantly altered on memory T cells during sepsis. We recently showed that treatment with a αCD28 agonist in septic immunologically experienced mice led to improved survival. Therefore, here we aimed to identify the cell subset(s) necessary for the survival benefit observed in the context of CD28 agonism, and to further investigate the mechanism by which CD28 agonism improves sepsis survival in immunologically experienced mice. Methods: Mice received specific pathogen inoculation to generate memory T cell populations similar in frequency to that of adult humans. Once these infections were cleared and the T cell response had transitioned to the memory phase, animals were rendered septic via cecal ligation and puncture in the presence or absence of an agonistic anti-CD28 mAb. Results: Results demonstrated that CD8+ T cells, and not bulk CD4+ T cells or CD25+ regulatory T cells, were necessary for the survival benefit observed in CD28 agonist-treated septic immunologically experienced mice. Upon examination of these CD8+ T cells, we found that CD28 agonism in septic immunologically experienced mice was associated with an increase in Foxp3+ CD8+ T cells as compared to vehicle-treated controls. When CD8+ T cells were depleted in septic immunologically experienced mice in the setting of CD28 agonism, a significant increase in levels of inflammatory cytokines in the blood was observed. Discussion: Taken together, these results indicate that CD28 agonism in immunologically experienced mice effectively suppresses inflammation via a CD8+-dependent mechanism to decrease mortality during sepsis.


Asunto(s)
Linfocitos T CD8-positivos , Sepsis , Animales , Humanos , Ratones , Antígenos CD28/agonistas , Linfocitos T CD8-positivos/inmunología , Sepsis/inmunología , Sepsis/mortalidad , Linfocitos T Reguladores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...