Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 925
Filtrar
1.
Chemistry ; 30(28): e202400271, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456538

RESUMEN

Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.


Asunto(s)
Vías Biosintéticas , Familia de Multigenes , Serina , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina/química , Serina/biosíntesis , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Aminobutiratos/química , Aminobutiratos/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química
2.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325740

RESUMEN

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Asunto(s)
Serina C-Palmitoiltransferasa , Serina , Sphingobacterium , Dominio Catalítico , Cristalización , Medición de Intercambio de Deuterio , Electrones , Hidrógeno/metabolismo , Palmitoil Coenzima A/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/enzimología , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/biosíntesis , Esfingosina/metabolismo , Estereoisomerismo , Especificidad por Sustrato
3.
Chemistry ; 30(10): e202302959, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38012090

RESUMEN

A two-enzyme cascade system containing ω-transaminase (ω-TA) and L-threonine aldolase (L-ThA) was reported for the synthesis of 3-Phenylserine starting from benzylamine, and PLP was utilized as the only cofactor in these both two enzymes reaction system. Based on the transamination results, benzylamine was optimized as an advantageous amino donor as confirmed by MD simulation results. This cascade reaction system could not only facilitate the in situ removal of the co-product benzaldehyde, enhancing the economic viability of the reaction, but also establish a novel pathway for synthesizing high-value phenyl-serine derivatives. In our study, nearly 95 % of benzylamine was converted, yielding over 54 % of 3-Phenylserine under the optimized conditions cascade reaction.


Asunto(s)
Glicina Hidroximetiltransferasa , Serina , Serina/análogos & derivados , Serina/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Bencilaminas , Fosfato de Piridoxal
4.
Int J Gynecol Cancer ; 34(4): 586-593, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989482

RESUMEN

OBJECTIVES: To evaluate the maximum tolerated dose/maximum administered dose, safety, pharmacokinetic, and efficacy profiles of ombrabulin combined with paclitaxel and carboplatin in Japanese patients with solid tumors. METHODS: Ombrabulin (25, 30, or 35 mg/m2) combined with paclitaxel (175 or 200 mg/m2) and carboplatin (AUC5 or AUC6) was administered by intravenous infusion once every 3 weeks to patients with advanced solid tumors, including cervical, ovarian, and uterine cancers. The maximum tolerated dose/maximum administered dose was defined based on the dose-limiting toxicity at cycle 1. Efficacy was assessed based on Response Evaluation Criteria In Solid Tumors (RECIST). RESULTS: In total, 18 patients were recruited for this dose escalation study. One out of six patients treated with the highest doses of combination of ombrabulin (35 mg/m2), paclitaxel (200 mg/m2), and carboplatin (AUC6) presented a dose-limiting toxicity consisting of grade 3 Escherichia urinary tract infection. This dose was defined as the maximum tolerated dose of ombrabulin. The most frequent treatment-emergent adverse events were alopecia (83.3%), neutropenia and fatigue (72.2% each), decreased appetite, nausea, diarrhea, arthralgia, and myalgia (66.7% each). The grade 3-4 treatment-emergent adverse events included neutropenia (61.1%), Escherichia urinary tract infection, drug hypersensitivity, syncope, pulmonary embolism, and hydronephrosis (one patient each). In efficacy evaluation, seven patients achieved partial response or better (38.9%), including one complete response, and seven of 18 patients had stable disease (38.9%). Pharmacokinetic profiles in this Japanese study were comparable with those observed in the previous study without Japanese patients. CONCLUSIONS: Although the maximum tolerated dose/maximum administered dose of ombrabulin (35 mg/m2) with taxane-platinum combination may be tolerable in Japanese patients in the first cycle, the dosages in the repeated treatment should be carefully selected for further study. TRIAL REGISTRATION NUMBER: NCT01293630.


Asunto(s)
Neoplasias , Neutropenia , Serina/análogos & derivados , Infecciones Urinarias , Humanos , Carboplatino , Paclitaxel/efectos adversos , Japón , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico , Infecciones Urinarias/etiología , Dosis Máxima Tolerada
5.
J Org Chem ; 87(18): 12240-12249, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36052923

RESUMEN

A general route, which provides direct access to substituted bicyclic tetramates, making use of Dieckmann cyclization of oxazolidines derived from threo-arylserines, is reported; the latter were found to be available by an efficient aldol-like reaction of glycine with some substituted benzaldehydes under alkaline conditions. The tetramates were found to release chelated metal cations acquired during chromatographic purification by mild acid wash. Some compounds in the library showed good antibacterial activity against Gram-positive bacteria. Cheminformatic analysis demonstrates that the most active compounds were Ro5-compliant and occupy a narrow region of chemical space, distinct from that occupied by other known antibiotics, with the most potent compounds having 399 < Mw < 530 Da; 3.5 < cLogP < 6.6; 594 < MSA <818 Å2; 9.6 < rel. PSA <13.3%. MIC values were shifted to higher concentrations when tested in the presence of HSA or blood, but was not completely abolished, consistent with a plasma protein binding (PPB) effect.


Asunto(s)
Benzaldehídos , Antibacterianos/química , Antibacterianos/farmacología , Glicina , Pruebas de Sensibilidad Microbiana , Serina/análogos & derivados
6.
J Org Chem ; 87(13): 8730-8743, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35732024

RESUMEN

Chiral bicyclic N,O-acetal isoserine derivatives have been synthesized by an acid-catalyzed tandem N,O-acetalization/intramolecular transcarbamoylation reaction between conveniently protected l-isoserine and 2,2,3,3-tetramethoxybutane. The delicate balance of the steric interactions between the different functional groups on each possible diastereoisomer controls their thermodynamic stability and hence the experimental product distribution. These chiral isoserine derivatives undergo diastereoselective alkylation at the α position, proceeding with either retention or inversion of the configuration depending on the relative configuration of the stereocenters. Quantum mechanical calculations revealed that a concave-face alkylation is favored due to smaller torsional and steric interactions at the bicyclic scaffold. This synthetic methodology gives access to chiral ß2,2-amino acids, attractive compounds bearing a quaternary stereocenter at the α position with applications in peptidomimetic and medicinal chemistry. Thus, enantiopure α-alkylisoserine derivatives were produced upon acidic hydrolysis of these alkylated scaffolds. In addition, α-benzylisoserine was readily transformed into a five-membered ring cyclic sulfamidate, which was ring opened regioselectively with representative nucleophiles to yield other types of enantiopure ß2,2-amino acids such as α-benzyl-α-heterofunctionalized-ß-alanines and α-benzylnorlanthionine derivatives.


Asunto(s)
Aminoácidos , Serina , Alquilación , Aminas , Aminoácidos/química , Serina/análogos & derivados , Estereoisomerismo
7.
Chembiochem ; 23(14): e202200157, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35476889

RESUMEN

Pyridoxal-5'-phosphate (PLP)-dependent enzymes have garnered interest for their ability to synthesize non-standard amino acids (nsAAs). One such class of enzymes, O-acetylserine sulfhydrylases (OASSs), catalyzes the final step in the biosynthesis of l-cysteine. Here, we examine the ß-substitution capability of the OASS from Citrullus vulgaris (CvOASS), a putative l-mimosine synthase. While the previously reported mimosine synthase activity was not reproducible in our hands, we successfully identified non-native reactivity with a variety of O-nucleophiles. Optimization of reaction conditions for carboxylate and phenolate substrates led to distinct conditions that were leveraged for the preparative-scale synthesis of nsAAs. We further show this enzyme is capable of C-C bond formation through a ß-alkylation reaction with an activated nitroalkane. To facilitate understanding of this enzyme, we determined the crystal structure of the enzyme bound to PLP as the internal aldimine at 1.55 Å, revealing key features of the active site and providing information that may guide subsequent development of CvOASS as a practical biocatalyst.


Asunto(s)
Citrullus , Citrullus/metabolismo , Cisteína Sintasa/metabolismo , Mimosina , Fosfato de Piridoxal/metabolismo , Serina/análogos & derivados
8.
J Exp Bot ; 73(8): 2525-2539, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35084469

RESUMEN

The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.


Asunto(s)
Arabidopsis , Liasas , Selenio , Arabidopsis/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Cisteína/metabolismo , Liasas/metabolismo , Ácido Selénico , Selenio/metabolismo , Serina/análogos & derivados , Compuestos de Sulfhidrilo/metabolismo , Sulfitos/metabolismo , Azufre/metabolismo
9.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885944

RESUMEN

Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30-40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.


Asunto(s)
Antineoplásicos/farmacología , GTP Fosfohidrolasas/genética , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas B-raf/genética , Quinonas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Melanoma/genética , Mutación/genética , Quinonas/química , Serina/análogos & derivados , Serina/farmacología
10.
Chem Commun (Camb) ; 57(48): 5913-5916, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34008646

RESUMEN

Here we present the readily accessible amino acid 4,5-dimethoxy-2-nitrobenzyl-l-cysteine (DNC), as an ultra-low molecular weight gelator (MW = 316 g mol-1). Sonication of DNC in water or organic solvents as well as pH adjustment in water trigger gelation. A diverse set of stimuli (UV irradiation, oxidation, heat or pH change) induce a gel-sol transition. Moreover, the photo-triggered gel-sol transition was used to obtain a controlled cysteine release from the hydrogel.


Asunto(s)
Hidrogeles/química , Nitrobencenos/química , Serina/análogos & derivados , Concentración de Iones de Hidrógeno , Estructura Molecular , Peso Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Serina/química , Solventes/química
11.
ACS Chem Neurosci ; 12(11): 1860-1872, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34003005

RESUMEN

The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission by controlling the extracellular concentration of synaptic glycine and the supply of neurotransmitter to the presynaptic terminal. Spinal cord glycinergic neurons present in the dorsal horn diminish their activity in pathological pain conditions and behave as gate keepers of the touch-pain circuitry. The pharmacological blockade of GlyT2 reduces the progression of the painful signal to rostral areas of the central nervous system by increasing glycine extracellular levels, so it has analgesic action. O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-l-serine (ALX1393) and N-[[1-(dimethylamino)cyclopentyl]methyl]-3,5-dimethoxy-4-(phenylmethoxy)benzamide (ORG25543) are two selective GlyT2 inhibitors with nanomolar affinity for the transporter and analgesic effects in pain animal models, although with deficiencies which preclude further clinical development. In this report, we performed a comparative ligand docking of ALX1393 and ORG25543 on a validated GlyT2 structural model including all ligand sites constructed by homology with the crystallized dopamine transporter from Drosophila melanogaster. Molecular dynamics simulations and energy analysis of the complex and functional analysis of a series of point mutants permitted to determine the structural determinants of ALX1393 and ORG25543 discrimination by GlyT2. The ligands establish simultaneous contacts with residues present in transmembrane domains 1, 3, 6, and 8 and block the transporter in outward-facing conformation and hence inhibit glycine transport. In addition, differential interactions of ALX1393 with the cation bound at Na1 site and ORG25543 with TM10 define the differential sites of the inhibitors and explain some of their individual features. Structural information about the interactions with GlyT2 may provide useful tools for new drug discovery.


Asunto(s)
Drosophila melanogaster , Proteínas de Transporte de Glicina en la Membrana Plasmática , Animales , Benzamidas/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Neuronas , Serina/análogos & derivados
12.
Sci Rep ; 10(1): 14886, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913258

RESUMEN

The reverse transsulfuration pathway, which is composed of cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize L-cysteine using L-serine and the sulfur atom in L-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-L-serine and L-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate L-cysteine, together with the ß-lyase activity toward L-cystine to generate L-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or L-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or ß-elimination reaction, with the former being the major reaction in the case of cystathionine.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Lactobacillus plantarum/enzimología , Catálisis , Cristalografía por Rayos X , Cistationina/metabolismo , Cistationina gamma-Liasa/química , Homocisteína/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Especificidad por Sustrato
13.
Sci Rep ; 10(1): 14657, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887901

RESUMEN

Cystathionine ß-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed ß-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H2S.


Asunto(s)
Cistationina betasintasa/metabolismo , Cisteína/biosíntesis , Sulfuro de Hidrógeno/metabolismo , Toxoplasma/enzimología , Toxoplasma/genética , Biocatálisis , Cistationina/biosíntesis , Cistationina betasintasa/genética , Cistationina gamma-Liasa/metabolismo , ADN Complementario , Genes Protozoarios , Hemo/metabolismo , Homocisteína/metabolismo , Cinética , Serina/análogos & derivados , Serina/metabolismo
14.
Org Lett ; 22(15): 5763-5767, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32790421

RESUMEN

Diastereoselectivity of l-threonine aldolase (LTA) was determined by paths of aldehydes attacking a pyridoxal phosphate-glycine complex. Thus, strategies of enhancing the syn path and blocking the anti path were performed to modify LTA. A mutant (Y31H/N305R) was constructed with a substrate preference increase from 3.32 to 42.04. Medium engineering was investigated. Consequently, the de value of l-syn-3-[4-(methylsulfonyl)phenylserine] reached 93.1% (87.2%conv). The study clarified the factors affecting diastereoselectivity of LTA and provided a theorem for rational modification of LTA's diastereoselectivity.


Asunto(s)
Aldehídos/química , Escherichia coli/química , Glicina Hidroximetiltransferasa/química , Glicina/química , Fosfato de Piridoxal/química , Serina/análogos & derivados , Computadores , Escherichia coli/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Estructura Molecular , Serina/química , Estereoisomerismo , Especificidad por Sustrato
15.
Amino Acids ; 52(6-7): 987-998, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32621203

RESUMEN

A 6-step enantioselective synthesis of (2S,3R)-3-alkyl/alkenylglutamates, including the biologically significant amino acid, (2S,3R)-3-methylglutamate, protected for Fmoc SPPS, is reported. Overall yields range from 52-65%. Key to the success of these syntheses was the development of a high-yielding 2-step synthesis of Fmoc Garner's aldehyde followed by a Horner-Wadsworth-Emmons reaction to give the corresponding Fmoc Garner's enoate in a 94% yield. The diastereoselective 1,4-addition of lithium dialkylcuprates to the Fmoc Garner's enoate was explored. Significant decomposition occurred when using lithium diethylcuprate and conditions previously reported for the 1,4-addition of lithium dialkylcuprates to Boc or Cbz-protected Garner's enoate. An optimization study of this reaction resulted in a robust set of conditions that addressed the shortcomings of previously reported conditions. Under these conditions, highly diastereoselective (> 20:1 in most cases) 1,4-addition reactions of lithium dialkyl/dialkenylcuprates to the Fmoc Garner's enoate were achieved in 76-99% yield. The resulting 1,4-addition products were easily converted into the Fmoc-(2S,3R)-3-alkyl/alkenylglutamates in two steps.


Asunto(s)
Aldehídos/química , Glutamatos/síntesis química , 3-O-Metilglucosa/síntesis química , Aminoácidos/síntesis química , Fluorenos , Serina/análogos & derivados , Serina/síntesis química , Estereoisomerismo
16.
Enzyme Microb Technol ; 137: 109551, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32423678

RESUMEN

l-Threonine aldolases (l-TAs) catalyze the aldol condensation of aldehyde and glycine, offering direct enzymatic synthesis of ß-hydroxy-α-amino acids under mild conditions. However, this method suffers from moderate yield and low stereoselectivity at the ß-carbon. Given the importance of 4-(methylsulfonyl)phenylserine for the synthesis of florfenicol and thiamphenicol, mutations of a l-threonine aldolase from Pseudomonas sp. (l-PsTA) were performed in this study by error-prone PCR and combinatorial mutation. Some beneficial mutants were obtained by screening the mutant library using a stepwise visual method. 4-(Methylsulfonyl)phenylserine was synthesized in up to 71 % diastereomeric excess (de), which are much higher than the previously reported 2 % de value, by using the newly identified mutants. The mutants V200I and C187S/V200I were found to improve the product yield and stereoselectivity for the aldol condensation of various benzaldehydes with glycine. These results show that the amino acid residues outside of the substrate-binding cavity of l-PsTA play an important role in determining its Cß-stereoseletivity.


Asunto(s)
Glicina Hidroximetiltransferasa/genética , Ingeniería de Proteínas , Serina/análogos & derivados , Tianfenicol/análogos & derivados , Tianfenicol/metabolismo , Catálisis , Glicina Hidroximetiltransferasa/metabolismo , Mutación , Pseudomonas/enzimología , Pseudomonas/genética , Serina/biosíntesis , Especificidad por Sustrato
17.
Sci Rep ; 10(1): 8422, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439945

RESUMEN

Toll-like receptors (TLRs) play crucial roles in host immune defenses. Recently, TLR-mediated autophagy is reported to promote immune responses via increasing antigen processing and presentation in antigen presenting cells. The present study examined whether the synthetic TLR4 activator (CCL-34) could induce autophagy to promote innate and adaptive immunity. In addition, the potential of CCL-34 as an immune adjuvant in vivo was also investigated. Our data using RAW264.7 cells and bone marrow-derived macrophages showed that CCL-34 induced autophagy through a TLR4-NF-κB pathway. The autophagy-related molecules (Nrf2, p62 and Beclin 1) were activated in RAW264.7 cells and bone marrow-derived macrophages under CCL-34 treatment. CCL-34-stimulated macrophages exhibited significant antigen-processing activity and induced the proliferation of antigen-specific CD4+T cells as well as the production of activated T cell-related cytokines, IL-2 and IFN-γ. Furthermore, CCL-34 immunization in mice induced infiltration of monocytes in the peritoneal cavity and elevation of antigen-specific IgG in the serum. CCL-34 treatment in vivo did not cause toxicity based on serum biochemical profiles. Notably, the antigen-specific responses induced by CCL-34 were attenuated by the autophagy inhibitor, 3-methyladenine. In summary, we demonstrated CCL-34 can induce autophagy to promote antigen-specific immune responses and act as an efficient adjuvant.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Autofagia/inmunología , Glucolípidos/farmacología , Inmunogenicidad Vacunal/inmunología , Serina/análogos & derivados , Receptor Toll-Like 4/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Beclina-1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inmunoglobulina G/sangre , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Monocitos/inmunología , Factor 2 Relacionado con NF-E2/metabolismo , Células RAW 264.7 , Serina/farmacología , Vacunas/inmunología
18.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365555

RESUMEN

O-methyl-serine dodecylamine hydrochloride (MSDH) is a detergent that accumulates selectively in lysosomes, a so-called lysosomotropic detergent, with unexpected chemical properties. At physiological pH, it spontaneously forms vesicles, which disassemble into small aggregates (probably micelles) below pH 6.4. In this study, we characterize the interaction between MSDH and liposomes at different pH and correlate the findings to toxicity in human fibroblasts. We find that the effect of MSDH on lipid membranes is highly pH-dependent. At neutral pH, the partitioning of MSDH into the liposome membrane is immediate and causes the leakage of small fluorophores, unless the ratio between MSDH and lipids is kept low. At pH 5, the partitioning of MSDH into the membrane is kinetically impeded since MSDH is charged and a high ratio between MSDH and the lipids is required to permeabilize the membrane. When transferred to cell culture conditions, the ratio between MSDH and plasma membrane lipids must therefore be low, at physiological pH, to maintain plasma membrane integrity. Transmission electron microscopy suggests that MSDH vesicles are taken up by endocytosis. As the pH of the endosomal compartment progressively drops, MSDH vesicles disassemble, leading to a high concentration of increasingly charged MSDH in small aggregates inside the lysosomes. At sufficiently high MSDH concentrations, the lysosome is permeabilized, the proteolytic content released to the cytosol and apoptotic cell death is induced.


Asunto(s)
Amidas/química , Amidas/farmacología , Detergentes/química , Detergentes/farmacología , Membrana Dobles de Lípidos/efectos adversos , Lisosomas/efectos de los fármacos , Serina/análogos & derivados , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/ultraestructura , Membrana Dobles de Lípidos/química , Lípidos/química , Serina/química , Serina/farmacología
19.
PLoS One ; 15(4): e0231583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294120

RESUMEN

Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Our previous study showed antimicrobial effects of anandamide (AEA) and arachidonoyl serine (AraS) against methicillin (MET)-resistant S. aureus (MRSA) strains, proposing the therapeutic potential of these endocannabinoid/endocannabinoid-like (EC/EC-like) agents for the treatment of MRSA. Here, we investigated the potential synergism of combinations of AEA and AraS with different types of antibiotics against MRSA grown under planktonic growth or biofilm formation. The most effective combinations under planktonic conditions were mixtures of AEA and ampicillin (AMP), and of AraS and gentamicin (GEN). The combination with the highest synergy in the biofilm formation against all tested bacterial strains was AEA and MET. Moreover, the combination of AraS and MET synergistically caused default of biofilm formation. Slime production of MRSA was also dramatically impaired by AEA or AraS combined with MET. Our data suggest the novel potential activity of combinations of EC/EC-like agents and antibiotics in the prevention of MRSA biofilm formation.


Asunto(s)
Antibacterianos/farmacología , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/uso terapéutico , Ácidos Araquidónicos/uso terapéutico , Biopelículas/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/uso terapéutico , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Endocannabinoides/uso terapéutico , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Humanos , Resistencia a la Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Alcamidas Poliinsaturadas/uso terapéutico , Serina/análogos & derivados , Serina/farmacología , Serina/uso terapéutico , Infecciones Estafilocócicas/microbiología
20.
Bioorg Med Chem Lett ; 30(9): 127074, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32151467

RESUMEN

The synthesis of 19 compounds derived from l-serine and analogs of p-substituted cinnamic acid is reported. Oxazolines 9 and oxazoles 10 have high antitubercular activity with Minimum Inhibitory Concentration (MIC) of 0.7812-25.0 µg/mL (3.21-100.3 µM), against two strains of Mycobacterium tuberculosis sensitive to first-line drugs Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB), Pyrazinamide (PZE) (H37Rv) and a clinical isolate resistant to INH, RIF and EMB (G122). The cytotoxic evaluation shows that oxazoles have low activity, finding viability>96% against the VERO cell line. The results show these compounds could be considered as future alternatives for antitubercular treatment.


Asunto(s)
Antineoplásicos/farmacología , Antituberculosos/farmacología , Serina/análogos & derivados , Serina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antituberculosos/síntesis química , Antituberculosos/química , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Serina/síntesis química , Serina/química , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...