Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.052
Filtrar
1.
Int J Cardiol ; 406: 132044, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614364

RESUMEN

INTRODUCTION: Tissue Fibroblast Activation Protein alpha (FAP) is overexpressed in various types of acute and chronic cardiovascular disease. A soluble form of FAP has been detected in human plasma, and low circulating FAP concentrations are associated with increased risk of death in patients with acute coronary syndrome. However, little is known about the regulation and release of FAP from fibroblasts, and whether circulating FAP concentration is associated with tissue FAP expression. This study characterizes the release of FAP in human cardiac fibroblasts (CF) and analyzes the association of circulating FAP concentrations with in vivo tissue FAP expression in patients with acute (ST-segment elevation myocardial infarction, STEMI) and chronic (severe aortic stenosis, AS) myocardial FAP expression. METHODS AND RESULTS: FAP was released from CF in a time- and concentration-dependent manner. FAP concentration was higher in supernatant of TGFß-stimulated CF, and correlated with cellular FAP concentration. Inhibition of metallo- and serine-proteases diminished FAP release in vitro. Median FAP concentrations of patients with acute (77 ng/mL) and chronic (75 ng/mL, p = 0.50 vs. STEMI) myocardial FAP expression did not correlate with myocardial nor extra-myocardial nor total FAP volume (P ≥ 0.61 in all cases) measured by whole-body FAP-targeted positron emission tomography. CONCLUSION: We describe a time- and concentration dependent, protease-mediated release of FAP from cardiac fibroblasts. Circulating FAP concentrations were not associated with increased in vivo tissue FAP expression determined by molecular imaging in patients with both chronic and acute myocardial FAP expression. These data suggest that circulating FAP and tissue FAP expression provide complementary, non-interchangeable information.


Asunto(s)
Endopeptidasas , Gelatinasas , Proteínas de la Membrana , Imagen Molecular , Miocardio , Serina Endopeptidasas , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/sangre , Serina Endopeptidasas/biosíntesis , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/sangre , Masculino , Gelatinasas/metabolismo , Gelatinasas/biosíntesis , Gelatinasas/sangre , Femenino , Anciano , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Imagen Molecular/métodos , Fibroblastos/metabolismo , Células Cultivadas , Infarto del Miocardio con Elevación del ST/sangre , Infarto del Miocardio con Elevación del ST/metabolismo , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Biomarcadores/sangre , Biomarcadores/metabolismo
2.
Retina ; 42(2): 236-243, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050927

RESUMEN

PURPOSE: Retinal manifestations have been described in COVID-19 patients, but it is unknown whether SARS-CoV-2, the causal agent in COVID-19, can directly infect posterior ocular tissues. Here, we investigate SARS-CoV-2 host factor gene expression levels and their distribution across retinal and choroidal cell types. METHODS: Query of single-cell RNA sequencing data from human retina and choroid. RESULTS: We find no relevant expression of two key genes involved in SARS-CoV-2 entry, ACE2 and TMPRSS2, in retinal cell types. By contrast, scarce expression levels could be detected in choroidal vascular cells. CONCLUSION: Given the current understanding of viral host cell entry, these findings suggest a low vulnerability of the posterior eye segment to SARS-CoV-2 with a potential weak spot in the vasculature, which could play a putative causative role in ocular lesions in COVID-19 patients. This may qualify the vasculature of the human posterior eye segment as an in vivo biomarker for life-threatening vascular occlusions in COVID-19 patients.


Asunto(s)
COVID-19/epidemiología , Infecciones Virales del Ojo/virología , Regulación Viral de la Expresión Génica , Segmento Posterior del Ojo/virología , SARS-CoV-2 , Serina Endopeptidasas/genética , Internalización del Virus , COVID-19/virología , Infecciones Virales del Ojo/epidemiología , Infecciones Virales del Ojo/patología , Humanos , Segmento Posterior del Ojo/patología , ARN Viral/genética , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/virología , Serina Endopeptidasas/biosíntesis
3.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774871

RESUMEN

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Asunto(s)
Envejecimiento/metabolismo , Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/epidemiología , Regulación Enzimológica de la Expresión Génica , Receptores Virales/biosíntesis , SARS-CoV-2/fisiología , Caracteres Sexuales , Envejecimiento/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , Susceptibilidad a Enfermedades , Femenino , Corazón/virología , Humanos , Intestino Delgado/enzimología , Intestino Delgado/virología , Riñón/enzimología , Riñón/virología , Pulmón/enzimología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/enzimología , Especificidad de Órganos , Receptores Virales/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Adulto Joven
4.
Exp Eye Res ; 214: 108864, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826419

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen for coronavirus disease 2019 (COVID-19) pandemic. Its infection depends on the binding of spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2), type II transmembrane serine protease (TMPRSS2) and neuropilin-1 (NRP1). Hydroxychloroquine has been applied as one of the COVID-19 treatment strategies. Here we aimed to evaluate hydroxychloroquine treatment on SARS-CoV-2 receptor expression in human primary pterygium and conjunctival cells and its potential influences. Expression of ACE2, TMPRSS2 and NRP1 proteins were found in the epithelial layer of both primary pterygium and conjunctiva tissues as well as in their isolated fibroblasts. High concentration of hydroxychloroquine treatment significantly reduced the viability of both primary pterygium and conjunctival cells. ACE2 protein expression was significantly decreased in both pterygium and conjunctival cells after hydroxychloroquine treatment. Hydroxychloroquine also reduced NRP1 protein expression in conjunctival cells. In contrast, TMPRSS2 protein expression showed slightly increased in conjunctival cells. Notably, ROS production and SOD2 expression was significantly elevated in both pterygium and conjunctival cells after hydroxychloroquine treatment. In summary, this study revealed the reduction of ACE2 and NRP1 expression by hydroxychloroquine in human primary pterygium and conjunctival fibroblasts; yet with the increase in TMPRSS2 expression and oxidative stress and decrease in cell viability. Implementation of hydroxychloroquine for COVID-19 treatment should be carefully considered with its potential side effects and in combination with TMPRSS2 inhibitor.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Tratamiento Farmacológico de COVID-19 , Conjuntiva/anomalías , Hidroxicloroquina/uso terapéutico , Neuropilina-1/biosíntesis , Pterigion/tratamiento farmacológico , SARS-CoV-2 , Serina Endopeptidasas/biosíntesis , Biomarcadores/metabolismo , COVID-19/metabolismo , COVID-19/virología , Comorbilidad , Humanos , Pandemias , Pterigion/diagnóstico , Pterigion/epidemiología
5.
Genes (Basel) ; 12(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34356057

RESUMEN

The virus responsible for the COVID-19 global health crisis, SARS-CoV-2, has been shown to utilize the ACE2 protein as an entry point to its target cells. The virus has been shown to rely on the actions of TMPRSS2 (a serine protease), as well as FURIN (a peptidase), for the critical priming of its spike protein. It has been postulated that variations in the sequence and expression of SARS-CoV-2's receptor (ACE2) and the two priming proteases (TMPRSS2 and FURIN) may be critical in contributing to SARS-CoV-2 infectivity. This study aims to examine the different expression levels of FURIN in various tissues and age ranges in light of ACE2 and TMPRSS2 expression levels using the LungMAP database. Furthermore, we retrieved expression quantitative trait loci (eQTLs) of the three genes and their annotation. We analyzed the frequency of the retrieved variants in data from various populations and compared it to the Egyptian population. We highlight FURIN's potential interplay with the immune response to SARS-CoV-2 and showcase a myriad of variants of the three genes that are differentially expressed across populations. Our findings provide insights into potential genetic factors that impact SARS-CoV-2 infectivity in different populations and shed light on the varying expression patterns of FURIN.


Asunto(s)
Alelos , Enzima Convertidora de Angiotensina 2 , COVID-19 , Bases de Datos de Ácidos Nucleicos , Furina , Regulación Enzimológica de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , SARS-CoV-2/metabolismo , Serina Endopeptidasas , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , COVID-19/enzimología , COVID-19/genética , Biología Computacional , Femenino , Furina/biosíntesis , Furina/genética , Humanos , Masculino , SARS-CoV-2/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética
6.
Int J Biol Sci ; 17(8): 1925-1939, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131396

RESUMEN

Background: Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) allow entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells and play essential roles in cancer therapy. However, the functions of ACE2 and TMPRSS2 in kidney cancer remain unclear, especially as kidneys are targets for SARS-CoV-2 infection. Methods: UCSC Xena project, the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases (GSE30589 and GSE59185) were searched for gene expression in human tissues, gene expression data, and clinical information. Several bioinformatics methods were utilized to analyze the correlation between ACE2 and TMPRSS2 with respect to the prognosis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). Results: ACE2 expression was significantly upregulated in tumor tissue, while its downregulation was associated with low survival in KIRC and KIRP patients. TMPRSS2 was downregulated in KIRC and KIRP, and its expression was not correlated with patient survival. According to clinical risk factor-based prediction models, ACE2 exhibits predictive accuracy for kidney cancer prognosis and is correlated with metabolism and immune infiltration. In an animal model, ACE2 expression was remarkably downregulated in SARS-CoV-2-infected cells compared to in the control. Conclusion: ACE2 expression is highly correlated with various metabolic pathways and is involved in immune infiltration.it plays a crucial role than TMPRSS2 in diagnosing and prognosis of kidney cancer patients. The overlap in ACE2 expression between kidney cancer and SARS-CoV-2 infection suggests that patients with KIRC or KIRP are at high risk of developing serious symptoms.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/complicaciones , Carcinoma de Células Renales/complicaciones , Neoplasias Renales/complicaciones , Receptores Virales/biosíntesis , SARS-CoV-2 , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Chlorocebus aethiops , Regulación hacia Abajo , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Modelos Animales , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Especificidad de Órganos , Pronóstico , Modelos de Riesgos Proporcionales , Receptores Virales/genética , Sistema Renina-Angiotensina/fisiología , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Serina Endopeptidasas/fisiología , Análisis de Matrices Tisulares , Células Vero
7.
Am J Pathol ; 191(9): 1610-1623, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111431

RESUMEN

Despite occasional reports of vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during pregnancy, the question of placental infection and its consequences for the newborn remain unanswered. Herein, we analyzed the placentas of 31 coronavirus disease 2019-positive mothers by reverse transcriptase PCR, immunohistochemistry, and in situ hybridization. Only one case of placental infection was detected, which was associated with intrauterine demise of the fetus. Differentiated primary trophoblasts were then isolated from nonpathologic human placentas at term, differentiated, and exposed to SARS-CoV-2 virions. Unlike for positive control cells Vero E6, the virus inside cytotrophoblasts and syncytiotrophoblasts or in the supernatant 4 days after infection was undetectable. As a mechanism of defense, we hypothesized that trophoblasts at term do not express angiotensin-converting enzyme 2 and transmembrane protease serine 2 (TMPRSS2), the two main host membrane receptors for SARS-CoV-2 entry. The quantification of these proteins in the placenta during pregnancy confirmed the absence of TMPRSS2 at the surface of the syncytium. Surprisingly, a transiently induced experimental expression of TMPRSS2 did not allow the entry or replication of the virus in differentiated trophoblasts. Altogether, these results underline that trophoblasts are not likely to be infected by SARS-CoV-2 at term, but raise concern about preterm infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19 , Regulación Enzimológica de la Expresión Génica , Enfermedades Placentarias , Complicaciones Infecciosas del Embarazo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/biosíntesis , Trofoblastos , Internalización del Virus , Adulto , COVID-19/enzimología , COVID-19/patología , Femenino , Humanos , Enfermedades Placentarias/enzimología , Enfermedades Placentarias/patología , Embarazo , Complicaciones Infecciosas del Embarazo/enzimología , Complicaciones Infecciosas del Embarazo/patología , Trofoblastos/enzimología , Trofoblastos/patología
8.
J Virol ; 95(15): e0032721, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33963054

RESUMEN

The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Células CACO-2 , Catepsina L/biosíntesis , Catepsina L/genética , Chlorocebus aethiops , Humanos , Proteínas de Neoplasias/genética , Sistema Renina-Angiotensina , SARS-CoV-2/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Células Vero
9.
Mol Microbiol ; 116(2): 516-537, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33892520

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/fisiología , Malonatos/metabolismo , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/fisiología , Antibacterianos/farmacología , Biomineralización/fisiología , Catalasa/biosíntesis , Decanoatos , Disacáridos/biosíntesis , Glicerol/metabolismo , Norfloxacino/farmacología , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Serina Endopeptidasas/biosíntesis , Virulencia , Factores de Virulencia/metabolismo
10.
Eur Rev Med Pharmacol Sci ; 25(5): 2409-2414, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33755980

RESUMEN

The COVID-19 (Corona Virus Disease 2019) outbreak, which seriously affected people's lives across the world, has not been effectively controlled. Previous studies have demonstrated that SARS-COV-2 (Severe acute respiratory syndrome coronavirus 2) infecting host cells mainly rely on binding to receptor proteins, namely ACE2 and TMPRSS2. COVID-19 transmission is faster than the severe acute respiratory syndrome (SARS) pneumonia outbreak in 2002. This is mainly attributed to the different pathways of virus-infected host cells, coupled with patients' atypical clinical characteristics. SARS-CoV-2 is mainly transmitted through respiratory droplets and contact, infecting lung tissues before damaging other body organs, such as the liver, brain, kidney and heart. The present study identified potential target genes for SARS-COV-2 receptors, ACE2 and TMPRSS2, in normal human lung tissue. The findings provide novel insights that will guide future drug development approaches for treatment of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Receptores Virales/genética , Serina Endopeptidasas/genética , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , Correlación de Datos , Expresión Génica , Humanos , Receptores Virales/biosíntesis , Receptores Virales/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/metabolismo
11.
Exp Eye Res ; 205: 108527, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667466

RESUMEN

The purpose of this study was to evaluate the expression of the SARS-CoV-2 receptors ACE2 and TMPRSS2 in an immortalized human conjunctival epithelial cell line and in healthy human conjunctiva excised during ocular surgery, using Western blot, confocal microscopy and immunohistochemistry. The Western blot showed that ACE2 and TMPRSS2 proteins were expressed in human immortalized conjunctival cells, and this was confirmed by confocal microscopy images, that demonstrated a marked cellular expression of the viral receptors and their co-localization on the cell membranes. Healthy conjunctival samples from 11 adult patients were excised during retinal detachment surgery. We found the expression of ACE2 and TMPRSS2 in all the conjunctival surgical specimens analyzed and their co-localization in the superficial conjunctival epithelium. The ACE2 Western blot levels and immunofluorescence staining for ACE2 were variable among specimens. These results suggest the susceptibility of the conjunctival epithelium to SARS-CoV-2 infection, even though with a possible interindividual variability.


Asunto(s)
COVID-19/genética , Conjuntiva/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Peptidil-Dipeptidasa A/genética , Serina Endopeptidasas/genética , COVID-19/metabolismo , COVID-19/patología , Células Epiteliales/patología , Humanos , Inmunohistoquímica , Peptidil-Dipeptidasa A/biosíntesis , ARN/genética , ARN/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/biosíntesis
12.
EBioMedicine ; 65: 103255, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33676899

RESUMEN

BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ésteres/farmacología , Guanidinas/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Pulmón/patología , Pulmón/virología , Proteínas de la Membrana/biosíntesis , Simulación de Dinámica Molecular , Serina Endopeptidasas/biosíntesis , Serina Proteasas/biosíntesis , Células Vero , Activación Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
13.
Mol Reprod Dev ; 88(3): 211-216, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33624358

RESUMEN

An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to an unprecedented worldwide health crisis. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2. Our objectives are to analysis the expression profile of ACE2 and TMPRSS2 in human spermatogenic cells, follicle cells, and preimplantation embryos, thereby providing mechanistic insights into viral entry and viral impact on reproduction. We found that ACE2 is mainly expressed during gametogenesis in spermatogonia and oocytes of antral follicles, granulosa cells of antral follicles and pre-ovulatory follicles, while TMPRSS2 almost has no expression in spermatogenic cells, oocytes or granulosa cells. In preimplantation embryos, ACE2 is expressed in early embryos before eight-cell stage, and trophectoderm of late blastocysts, while TMPRSS2 initiates its robust expression in late blastocyst stage. ACE2 and TMPRSS2 only show significant co-expression in trophectoderm of late blastocysts in all above cell types. We speculate that trophectoderm of late blastocysts is susceptible to SARS-CoV-2, and that the chance of SARS-CoV-2 being passed on to offspring through gametes is very low. Therefore, we propose that fertility preservation for COVID-19 patients is relatively safe and rational. We also recommend embryo cryopreservation and embryo transfer into healthy recipient mother at cleavage stage instead of blastocyst stage. Moreover, we unexpectedly found that co-expression pattern of ACE2 and TMPRSS2 in oocytes and preimplantation embryos in human, rhesus monkey and mouse are totally different, so animal models have significant limitations for evaluating transmission risk of SARS-CoV-2 in reproduction.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Blastocisto/metabolismo , Células de la Granulosa/metabolismo , Oocitos/metabolismo , Serina Endopeptidasas/biosíntesis , Espermatogonias/metabolismo , Animales , COVID-19/patología , Bases de Datos Genéticas , Transferencia de Embrión/métodos , Femenino , Preservación de la Fertilidad/métodos , Perfilación de la Expresión Génica , Humanos , Macaca mulatta , Masculino , Ratones , Técnicas Reproductivas Asistidas , SARS-CoV-2/crecimiento & desarrollo , Transcriptoma/genética , Internalización del Virus
14.
Exp Eye Res ; 205: 108501, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600811

RESUMEN

The angiotensin-converting enzyme 2 (ACE2) receptor has been proved for SARS-CoV-2 cell entry after auxiliary cellular protease priming by transmembrane protease serine 2 (TMPRSS2), but the co-effect of this molecular mechanism was unknown. Here, single-cell sequencing was performed with human conjunctiva and the results have shown that ACE2 and TMPRSS2 were highly co-expressed in the goblet cells with genes involved in immunity process. This identification of conjunctival cell types which are permissive to virus entry would help to understand the process by which SARS-CoV-2 infection was established. These finding might be suggestive for COVID-19 control and protection.


Asunto(s)
COVID-19/genética , Conjuntiva/metabolismo , Regulación de la Expresión Génica , Células Caliciformes/metabolismo , Peptidil-Dipeptidasa A/genética , Serina Endopeptidasas/genética , COVID-19/metabolismo , COVID-19/patología , Conjuntiva/patología , Células Caliciformes/patología , Humanos , Peptidil-Dipeptidasa A/biosíntesis , ARN/genética , SARS-CoV-2 , Serina Endopeptidasas/biosíntesis
16.
Nat Metab ; 3(2): 149-165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536639

RESUMEN

Infection-related diabetes can arise as a result of virus-associated ß-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human ß-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in ß-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the ß-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that ß-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.


Asunto(s)
Islotes Pancreáticos/virología , SARS-CoV-2/crecimiento & desarrollo , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , COVID-19/fisiopatología , Células Cultivadas , Diabetes Mellitus , Femenino , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiopatología , Masculino , Páncreas Exocrino/citología , Páncreas Exocrino/fisiopatología , Páncreas Exocrino/virología , Enfermedades Pancreáticas/etiología , Enfermedades Pancreáticas/virología , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Internalización del Virus , Replicación Viral
17.
Neurochem Int ; 144: 104954, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33388358

RESUMEN

Reelin, an extracellular matrix protein, is secreted by Cajal-Retzius cells and plays crucial roles in the development of brain structures and neuronal functions. Reductions in Reelin cause the brain dysfunctions associated with mental disorders, such as schizophrenia. A recent genome-wide copy number variation analysis of Japanese schizophrenia patients identified a novel deletion in RELN encoding Reelin. To clarify the pathophysiological role of the RELN deletion, we developed transgenic mice carrying the RELN deletion (Reln-del) and found abnormalities in their brain structures and social behavior. In the present study, we performed an in vitro analysis of Reelin expression, intracellular Reelin signaling, and the morphology of primary cultured cortical neurons from wild-type (WT) and Reln-del mice. Reelin protein levels were lower in Reln-del neurons than in WT neurons. Dab1 expression levels were significantly higher in Reln-del neurons than in WT neurons, suggesting that Reelin signaling was decreased in Reln-del neurons. Reelin was mainly expressed in γ-aminobutyric acid (GABA)-ergic inhibitory neurons, but not in parvalbumin (PV)-positive neurons. A small proportion of Ca2+/calmodulin-dependent protein kinase II α subunit (CaMKIIα)-positive excitatory neurons also expressed Reelin. In comparisons with WT neurons, significant decreases were observed in neurite lengths and branch points as well as in the number of postsynaptic density protein 95 (PSD95) immunoreactive puncta in Reln-del neurons. A disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3) is a protease that inactivates Reelin by cleavage at the N-t site. The knockdown of ADAMTS-3 by short hairpin RNAs suppressed Reelin cleavage in conditioned medium and reduced Dab1 expression, indicating that Reelin signaling was enhanced in the primary cultured cortical neurons of WT and heterozygous Reln-del. Accordingly, the inhibition of ADAMTS-3 may be a potential candidate in the clinical treatment of schizophrenia by enhancing Reelin signaling in the brain.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/deficiencia , Corteza Cerebral/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Eliminación de Gen , Proteínas del Tejido Nervioso/deficiencia , Neuronas/metabolismo , Esquizofrenia/metabolismo , Serina Endopeptidasas/deficiencia , Animales , Moléculas de Adhesión Celular Neuronal/biosíntesis , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Corteza Cerebral/citología , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Esquizofrenia/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Transducción de Señal/fisiología
18.
Respir Res ; 22(1): 10, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413387

RESUMEN

BACKGROUND: Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. METHODS: We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. RESULTS: ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. CONCLUSION: Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Asma/enzimología , Furina/biosíntesis , Neutrófilos/enzimología , Serina Endopeptidasas/biosíntesis , Esputo/enzimología , Adulto , Enzima Convertidora de Angiotensina 2/genética , Asma/epidemiología , Asma/genética , COVID-19/enzimología , COVID-19/epidemiología , COVID-19/genética , Estudios de Cohortes , Femenino , Furina/genética , Humanos , Masculino , Persona de Mediana Edad , Serina Endopeptidasas/genética , Índice de Severidad de la Enfermedad
19.
Head Neck Pathol ; 15(1): 225-235, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32816230

RESUMEN

To review the data regarding the expression of angiotensin converting enzyme-2 (ACE2) and transmembrane protease serine-2 (TMPRSS2) in head and neck tissue. Scopus, Cochrane Library, Medrxiv, Google Scholar and PubMED/MEDLINE were searched by four independent investigators for studies investigating ACE2 or TMPRSS2 expressions in head and neck tissues. The following outcomes were considered: sample origin (animal versus human); detection method; anatomical location and cell types. PRISMA checklist and modified population, intervention, comparison, outcome, timing and setting (PICOTS) framework were used to perform the review. Of the 24 identified studies, 17 met our inclusion criteria. Thirteen studies were conducted during the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. ACE2 and TMPRSS2 were expressed in oral, pharyngeal, sinusonasal human mucosa. The following cell types expressed ACE2: basal, apical, goblet, minor salivary, and endothelial cells. TMPRSS2 was found in goblet and apical respiratory cells. ACE2 and TMPRSS2 were found in the olfactory region, especially in sustentacular non-neural and neural stem cells. Animal studies suggested that ACE2 expression may vary regarding age. There was an important heterogeneity between studies in the methods used to detect ACE2 and TMPRSS2, leading to a potential identification bias. The SARS-CoV-2 receptors, ACE2 and TMPRSS2, are both expressed in many head and neck tissues, enabling the viral entry into the host organism.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19 , Cabeza , Cuello , Serina Endopeptidasas/biosíntesis , Animales , Humanos , SARS-CoV-2
20.
Ultrasound Obstet Gynecol ; 57(2): 248-256, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32851697

RESUMEN

OBJECTIVES: To examine the characteristics and distribution of possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target cells in the human trophectoderm (TE) and placenta. METHODS: Bioinformatics analysis was performed based on published single-cell transcriptomic datasets of early TE and first- and second-trimester human placentae. We conducted the transcriptomic analysis of 4198 early TE cells, 1260 first-trimester placental cells and 189 extravillous trophoblast cells (EVTs) from 24-week placentae (EVT_24W) using the SMART-Seq2 method. In addition, to confirm the bioinformatic results, we performed immunohistochemical staining of three first-trimester, three second-trimester and three third-trimester placentae from nine women recruited prospectively to this study. We evaluated the expression of the SARS-CoV-2-related molecules angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). RESULTS: Via bioinformatic analysis, we identified the existence of ACE2 and TMPRSS2 expression in human TE as well as in first- and second-trimester placentae. In the human TE, 54.4% of TE1 cells, 9.0% of cytotrophoblasts (CTBs), 3.2% of EVTs and 29.5% of syncytiotrophoblasts (STBs) were ACE2-positive. In addition, 90.7% of TE1 cells, 31.5% of CTBs, 22.1% of EVTs and 70.8% of STBs were TMPRSS2-positive. In placental cells, 20.4% of CTBs, 44.1% of STBs, 3.4% of EVTs from 8-week placentae (EVT_8W) and 63% of EVT_24W were ACE2-positive, while 1.6% of CTBs, 26.5% of STBs, 1.9% of EVT_8W and 20.1% of EVT_24W were TMPRSS2-positive. Pathway analysis revealed that EVT_24W cells that were positive for both ACE2 and TMPRSS2 (ACE2 + TMPRSS2-positive) were associated with morphogenesis of branching structure, extracellular matrix interaction, oxygen binding and antioxidant activity. The ACE2 + TMPRSS2-positive TE1 cells were correlated with an increased capacity for viral invasion, epithelial-cell proliferation and cell adhesion. Expression of ACE2 and TMPRSS2 was observed on immunohistochemical staining in first-, second- and third-trimester placentae. CONCLUSIONS: ACE2- and TMPRSS2-positive cells are present in the human TE and placenta in all three trimesters of pregnancy, which indicates the possibility that SARS-CoV-2 could spread via the placenta and cause intrauterine fetal infection. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Placenta/enzimología , ARN/biosíntesis , Serina Endopeptidasas/biosíntesis , Trofoblastos/enzimología , Enzima Convertidora de Angiotensina 2/genética , COVID-19/enzimología , COVID-19/virología , Femenino , Feto/metabolismo , Feto/virología , Perfilación de la Expresión Génica/métodos , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Placenta/metabolismo , Embarazo , Complicaciones Infecciosas del Embarazo/enzimología , Complicaciones Infecciosas del Embarazo/virología , Estudios Prospectivos , ARN/genética , ARN/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/genética , Análisis de la Célula Individual , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...