Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34635581

RESUMEN

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Asunto(s)
Benzotiazoles/farmacología , Tratamiento Farmacológico de COVID-19 , Oligopéptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/genética , Animales , Benzamidinas/química , Benzotiazoles/farmacocinética , COVID-19/genética , COVID-19/virología , Línea Celular , Diseño de Fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Ésteres/química , Guanidinas/química , Humanos , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Oligopéptidos/farmacocinética , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/ultraestructura , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
2.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140562, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221341

RESUMEN

Affinity maturation of U33, a recombinant Fab inhibitor of uPA, was used to improve the affinity and the inhibitory effect compared to the parental Fab. Arginine scanning of the six CDR loops of U33 was done to identify initial binding determinants since uPA prefers arginine in its primary substrate binding pocket. Two CDR loops were selected to create an engineered affinity maturation library of U33 that was diversified around ArgL91 (CDR L3) and ArgH52 (CDR H2). Biopanning of the randomized U33 library under stringent conditions resulted in eight Fabs with improved binding properties. One of the most potent inhibitors, AB2, exhibited a 13-fold decrease in IC50 when compared to U33 largely due to a decrease in its off rate. To identify contributions of interfacial residues that might undergo structural rearrangement upon interface formation we used X-ray footprinting and mass spectrometry (XFMS). Four residues showed a pronounced decrease in solvent accessibility, and their clustering suggests that AB2 targets the active site and also engages residues in an adjacent pocket unique to human uPA. The 2.9 Å resolution crystal structure of AB2-bound to uPA shows a binding mode in which the CDR L1 loop inserts into the active site cleft and acts as a determinant of inhibition. The selectivity determinant of this binding mode is unlike previously identified inhibitory Fabs against uPA related serine proteases, MTSP-1, HGFA and FXIa. CDRs H2 and L3 loops aid in interface formation and provide critical salt-bridges to remodel loops surrounding the active site of uPA providing specificity and further evidence that antibodies can be potent and selective inhibitors of proteolytic enzymes.


Asunto(s)
Proteínas Recombinantes/ultraestructura , Serina Proteasas/química , Inhibidores de Serina Proteinasa/química , Activador de Plasminógeno de Tipo Uroquinasa/química , Secuencia de Aminoácidos/genética , Humanos , Quinuclidinas/química , Quinuclidinas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura , Serina Proteasas/genética , Inhibidores de Serina Proteinasa/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/genética
3.
Nat Commun ; 11(1): 6063, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247098

RESUMEN

Opportunistic pathogens such as Streptococcus pneumoniae secrete a giant metalloprotease virulence factor responsible for cleaving host IgA1, yet the molecular mechanism has remained unknown since their discovery nearly 30 years ago despite the potential for developing vaccines that target these enzymes to block infection. Here we show through a series of cryo-electron microscopy single particle reconstructions how the Streptococcus pneumoniae IgA1 protease facilitates IgA1 substrate recognition and how this can be inhibited. Specifically, the Streptococcus pneumoniae IgA1 protease subscribes to an active-site-gated mechanism where a domain undergoes a 10.0 Å movement to facilitate cleavage. Monoclonal antibody binding inhibits this conformational change, providing a direct means to block infection at the host interface. These structural studies explain decades of biological and biochemical studies and provides a general strategy to block Streptococcus pneumoniae IgA1 protease activity to potentially prevent infection.


Asunto(s)
Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Streptococcus pneumoniae/enzimología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/ultraestructura , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura
4.
Nat Struct Mol Biol ; 27(4): 323-332, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203490

RESUMEN

Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified SDD1 messenger RNA from Saccharomyces cerevisiae as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide-dependent translational stalling. In vitro translation of SDD1 mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Biosíntesis de Proteínas , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Serina Endopeptidasas/ultraestructura , Ubiquitina-Proteína Ligasas/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Péptidos/química , Péptidos/genética , ARN Mensajero/genética , Ribosomas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
5.
Biochim Biophys Acta Gen Subj ; 1864(7): 129581, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32114025

RESUMEN

BACKGROUND: In Gram-negative bacteria, type Va and Vc autotransporters are proteins that contain both a secreted virulence factor (the "passenger" domain) and a ß-barrel that aids its export. While it is known that the folding and insertion of the ß-barrel domain utilize the ß-barrel assembly machinery (BAM) complex, how the passenger domain is secreted and folded across the membrane remains to be determined. The hairpin model states that passenger domain secretion occurs independently through the fully-formed and membrane-inserted ß-barrel domain via a hairpin folding intermediate. In contrast, the BamA-assisted model states that the passenger domain is secreted through a hybrid of BamA, the essential subunit of the BAM complex, and the ß-barrel domain of the autotransporter. METHODS: To ascertain the models' plausibility, we have used molecular dynamics to simulate passenger domain secretion for two autotransporters, EspP and YadA. RESULTS: We observed that each protein's ß-barrel is unable to accommodate the secreting passenger domain in a hairpin configuration without major structural distortions. Additionally, the force required for secretion through EspP's ß-barrel is more than that through the BamA ß-barrel. CONCLUSIONS: Secretion of autotransporters most likely occurs through an incompletely formed ß-barrel domain of the autotransporter in conjunction with BamA. GENERAL SIGNIFICANCE: Secretion of virulence factors is a process used by practically all pathogenic Gram-negative bacteria. Understanding this process is a necessary step towards limiting their infectious capacity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Pliegue de Proteína , Sistemas de Secreción Tipo V/genética , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Transporte Biológico/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Humanos , Serina Endopeptidasas/genética , Serina Endopeptidasas/ultraestructura
6.
Biochem J ; 477(2): 407-429, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31899476

RESUMEN

Human HtrA3 (high-temperature requirement protease A3) is a trimeric multitasking propapoptotic serine protease associated with critical cellular functions and pathogenicity. Implicated in diseases including cancer and pre-eclampsia, its role as a tumor suppressor and potential therapeutic target cannot be ignored. Therefore, elucidating its mode of activation and regulatory switch becomes indispensable towards modulating its functions with desired effects for disease intervention. Using computational, biochemical and biophysical tools, we delineated the role of all domains, their combinations and the critical phenylalanine residues in regulating HtrA3 activity, oligomerization and specificity. Our findings underline the crucial roles of the N-terminus as well as the PDZ domain in oligomerization and formation of a catalytically competent enzyme, thus providing new insights into its structure-function coordination. Our study also reports an intricate ligand-induced allosteric switch, which redefines the existing hypothesis of HtrA3 activation besides opening up avenues for modulating protease activity favorably through suitable effector molecules.


Asunto(s)
Conformación Proteica , Serina Endopeptidasas/genética , Serina Proteasas/genética , Relación Estructura-Actividad , Regulación Alostérica/genética , Secuencia de Aminoácidos/genética , Catálisis , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Dominios PDZ/genética , Multimerización de Proteína/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura , Serina Proteasas/química , Serina Proteasas/ultraestructura
7.
Virology ; 515: 74-80, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29272748

RESUMEN

Dengue virus (DENV) is an arbovirus, which replicates in the endoplasmic reticulum. Although replicative cycle takes place in the cytoplasm, some viral proteins such as NS5 and C are translocated to the nucleus during infection in mosquitoes and mammalian cells. To localized viral proteins in DENV-infected C6/36 cells, an immunofluorescence (IF) and immunoelectron microscopy (IEM) analysis were performed. Our results indicated that C, NS1, NS3 and NS5 proteins were found in the nucleus of DENV-infected C6/36 cells. Additionally, complex structures named strand-like structures (Ss) were observed in the nucleus of infected cells. Interestingly, the NS5 protein was located in these structures. Ss were absent in mock-infected cells, suggesting that DENV induces their formation in the nucleus of infected mosquito cells.


Asunto(s)
Culicidae/virología , Virus del Dengue/ultraestructura , Dengue/virología , Proteínas no Estructurales Virales/ultraestructura , Animales , Línea Celular , Núcleo Celular/ultraestructura , Núcleo Celular/virología , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Humanos , Ratones Endogámicos BALB C , ARN Helicasas/ultraestructura , Serina Endopeptidasas/ultraestructura , Replicación Viral
8.
Arch Biochem Biophys ; 621: 6-23, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28396256

RESUMEN

Human HtrA1-4 proteins belong to the HtrA family of evolutionarily conserved serine proteases and function as important modulators of many physiological processes, including maintenance of mitochondrial homeostasis, cell signaling and apoptosis. Disturbances in their action are linked to severe diseases, including oncogenesis and neurodegeneration. The HtrA1-4 proteins share structural and functional features of other members of the HtrA protein family, however there are several significant differences in structural architecture and mechanisms of action which makes each of them unique. Our goal is to present recent studies regarding human HtrAs. We focus on their physiological functions, structure and regulation, and describe current models of activation mechanisms. Knowledge of molecular basis of the human HtrAs' action is a subject of great interest; it is crucial for understanding their relevance in cellular physiology and pathogenesis as well as for using them as targets in future therapies of diseases such as neurodegenerative disorders and cancer.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/fisiología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Transducción de Señal/fisiología , Sitios de Unión , Activación Enzimática , Humanos , Dominios PDZ/fisiología , Unión Proteica , Conformación Proteica , Serina Endopeptidasas/ultraestructura , Relación Estructura-Actividad
9.
Biochem Biophys Res Commun ; 487(2): 356-361, 2017 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28414130

RESUMEN

Enzymes belonging to the S9 family of prolyl oligopeptidases are of interest because of their pharmacological importance and have a non-catalytic ß-propeller domain. In this study, we found that the oxidation of Met203, which lies on surface of the ß-propeller domain, leads to change in the substrate specificity of eryngase, an enzyme from Pleurotus eryngii and a member of the S9 family of prolyl oligopeptidases. The activity of eryngase for L-Phe-p-nitroanilide was maintained following hydrogen peroxide treatment but was dramatically reduced for other p-nitroanilide substrates. MALDI-TOF MS analysis using tryptic peptides of eryngase indicated that the change in substrate specificity was triggered by oxidizing Met203 to methionine sulfoxide. In addition, mutations of Met203 to smaller residues provided specificities similar to those observed following oxidation of the wild-type enzyme. Substitution of Met203 with Phe significantly decreased activity, indicating that Met203 may be involved in substrate gating.


Asunto(s)
Simulación del Acoplamiento Molecular , Oxígeno/química , Pleurotus/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura , Sitios de Unión , Activación Enzimática , Modelos Químicos , Oxidación-Reducción , Prolil Oligopeptidasas , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/clasificación , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Biochem Biophys Res Commun ; 492(4): 643-651, 2017 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-28341122

RESUMEN

America is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV. The ZIKV NS3 helicase (NS3h) protein is a promising target for drug discovery due to its essential role in viral genome replication. NS3h unwinds the viral RNA to enable the replication of the viral genome by the NS5 protein. NS3h contains two important binding sites: the NTPase binding site and the RNA binding site. Here, we used molecular dynamics (MD) simulations to study the molecular behavior of ZIKV NS3h in the presence and absence of ssRNA and the potential implications for NS3h activity and inhibition. Although there is conformational variability and poor electron densities of the RNA binding loop in various apo flaviviruses NS3h crystallographic structures, the MD trajectories of NS3h-ssRNA demonstrated that the RNA binding loop becomes more stable when NS3h is occupied by RNA. Our results suggest that the presence of RNA generates important interactions with the RNA binding loop, and these interactions stabilize the loop sufficiently that it remains in a closed conformation. This closed conformation likely keeps the ssRNA bound to the protein for a sufficient duration to enable the unwinding/replication activities of NS3h to occur. In addition, conformational changes of this RNA binding loop can change the nature and location of the optimal ligand binding site, according to ligand binding site prediction results. These are important findings to help guide the design and discovery of new inhibitors of NS3h as promising compounds to treat the ZIKV infection.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , ARN Viral/química , ARN Viral/ultraestructura , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/ultraestructura , Virus Zika/enzimología , Sitios de Unión , Activación Enzimática , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura
12.
Biochem Biophys Res Commun ; 461(4): 677-80, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918021

RESUMEN

The dengue virus NS2B-NS3 protease (NS2B-NS3p), an important antiviral target for drug development, has been reported to adopt an open or closed conformation in crystal structures with different NS2B C-terminus (NS2Bc) positioning. In solution, nevertheless, NS2B-NS3p forms a mixture of open, closed and maybe other intermediate conformations, which is difficult to characterize using conventional biophysical and biochemical techniques. In this study, we developed a new strategy to analyze these conformational changes using (19)F NMR spectroscopy. Low pH or bovine pancreatic trypsin inhibitor (BPTI) binding promote the conformation change from open to closed, showing the importance of charge forces in the interaction between NS2Bc and NS3p. The mutation H51A impairs the charge interaction and the pH dependence of the conformational changes. It stabilizes the open conformation, while the addition of BPTI still converts NS2B-NS3p from open to closed conformation.


Asunto(s)
Flúor/análisis , Flúor/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura , Simulación por Computador , Conformación Proteica , Electricidad Estática
13.
Biochemistry ; 53(41): 6452-62, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25232897

RESUMEN

Self-assembling proteins represent potential scaffolds for the organization of enzymatic activities. The alkaline protease repeats-in-toxin (RTX) domain from Pseudomonas aeruginosa undergoes multiple structural transitions in the presence and absence of calcium, a native structural cofactor. In the absence of calcium, this domain is capable of spontaneous, ordered polymerization, producing amyloid-like fibrils and large two-dimensional protein sheets. This polymerization occurs under near-physiological conditions, is rapid, and can be controlled by regulating calcium in solution. Fusion of the RTX domain to a soluble protein results in the incorporation of engineered protein function into these macromolecular assemblies. Applications of this protein sequence in bacterial adherence and colonization and the generation of biomaterials are discussed.


Asunto(s)
Amiloide/química , Proteínas Bacterianas/química , Calcio/química , Metaloexopeptidasas/química , Modelos Moleculares , Pseudomonas aeruginosa/enzimología , Fosfatasa Alcalina/química , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/ultraestructura , Amiloide/genética , Amiloide/metabolismo , Amiloide/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Calcio/metabolismo , Dicroismo Circular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/ultraestructura , Cinética , Metaloexopeptidasas/genética , Metaloexopeptidasas/metabolismo , Metaloexopeptidasas/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Polimerizacion , Agregación Patológica de Proteínas , Ingeniería de Proteínas , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/ultraestructura , Secuencias Repetitivas de Aminoácido , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/ultraestructura
14.
Nat Struct Mol Biol ; 19(2): 152-7, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22245966

RESUMEN

The HtrA protein family combines chaperone and protease activities and is essential for protein quality control in many organisms. Whereas the mechanisms underlying the proteolytic function of HtrA proteins are well characterized, their chaperone activity remains poorly understood. Here we describe cryo-EM structures of Escherichia coli DegQ in its 12- and 24-mer states in complex with model substrates, providing a structural model of HtrA chaperone action. Up to six lysozyme substrates bind inside the DegQ 12-mer cage and are visualized in a close-to-native state. An asymmetric reconstruction reveals the binding of a well-ordered lysozyme to four DegQ protomers. DegQ PDZ domains are located adjacent to substrate density and their presence is required for chaperone activity. The substrate-interacting regions appear conserved in 12- and 24-mer cages, suggesting a common mechanism of chaperone function.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Chaperonas Moleculares/ultraestructura , Muramidasa/química , Muramidasa/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/ultraestructura
15.
Structure ; 19(9): 1328-37, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21893291

RESUMEN

HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing). Biochemical analysis of DegQ dodecamers revealed that the major copurified protein substrate is OmpA. Importantly, wild-type DegQ exhibited a much lower proteolytic activity, and thus higher chaperone-like activity, than DegP. Furthermore, using cryo-electron microscopy we determined high-resolution structures of DegQ 12- and 24-mers in the presence of substrate, thus revealing the structural mechanism by which DegQ moderates its proteolytic activity.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Serina Endopeptidasas/química , Dominio Catalítico , Cromatografía en Gel , Microscopía por Crioelectrón , Pruebas de Enzimas , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/ultraestructura , Propiedades de Superficie
16.
PLoS One ; 6(4): e18944, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21526129

RESUMEN

Escherichia coli DegP protein is a periplasmic protein that functions both as a protease and as a chaperone. In the absence of substrate, DegP oligomerizes as a hexameric cage but in its presence DegP reorganizes into 12 and 24-mer cages with large chambers that house the substrate for degradation or refolding. Here, we studied the factors that determine the oligomeric state adopted by DegP in the presence of substrate. Using size exclusion chromatography and electron microscopy, we found that the size of the substrate molecule is the main factor conditioning the oligomeric state adopted by the enzyme. Other factors such as temperature, a major regulatory factor of the activity of this enzyme, did not influence the oligomeric state adopted by DegP. In addition, we observed that substrate concentration exerted an effect only when large substrates (full-length proteins) were used. However, small substrate molecules (peptides) always triggered the same oligomeric state regardless of their concentration. These results clarify important aspects of the regulation of the oligomeric state of DegP.


Asunto(s)
Escherichia coli/enzimología , Proteínas de Choque Térmico/química , Proteínas Periplasmáticas/química , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Caseínas/metabolismo , Microscopía por Crioelectrón , Filtración , Proteínas de Choque Térmico/ultraestructura , Malato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Péptidos/química , Proteínas Periplasmáticas/ultraestructura , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/ultraestructura , Especificidad por Sustrato , Temperatura
17.
Nat Struct Mol Biol ; 17(8): 990-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20676100

RESUMEN

Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6 MDa). It is believed to act downstream of the 26S proteasome, cleaving tripeptides from the N termini of longer peptides, and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach. We solved the structure of the dimer by X-ray crystallography and docked it into the three-dimensional map of the holocomplex, which we obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active-site serine, coupling it to holocomplex assembly and active-site sequestration.


Asunto(s)
Aminopeptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Drosophila melanogaster/enzimología , Modelos Moleculares , Serina Endopeptidasas/química , Aminopeptidasas/metabolismo , Aminopeptidasas/ultraestructura , Animales , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/ultraestructura , Activación Enzimática , Holoenzimas/química , Holoenzimas/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/ultraestructura , Electricidad Estática , Especificidad por Sustrato , Subtilisina/química
18.
J Biol Chem ; 285(42): 32336-42, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20688909

RESUMEN

We present a body of ultrastructural, biochemical, and genetic evidence that demonstrates the oligomerization of virulence-associated autotransporter proteins EspC or EspP produced by deadly human pathogens enterohemorrhagic and enteropathogenic Escherichia coli into novel macroscopic rope-like structures (>1 cm long). The rope-like structures showed high aggregation and insolubility, stability to anionic detergents and high temperature, and binding to Congo Red and thioflavin T dyes. These are properties also exhibited by human amyloidogenic proteins. These macroscopic ropes were not observed in cultures of nonpathogenic Escherichia coli or isogenic espP or espC deletion mutants of enterohemorrhagic or enteropathogenic Escherichia coli but were produced by an Escherichia coli K-12 strain carrying a plasmid expressing espP. Purified recombinant EspP monomers were able to self-assemble into macroscopic ropes upon incubation, suggesting that no other protein was required for assembly. The ropes bound to and showed cytopathic effects on cultured epithelial cells, served as a substratum for bacterial adherence and biofilm formation, and protected bacteria from antimicrobial compounds. We hypothesize that these ropes play a biologically significant role in the survival and pathogenic scheme of these organisms.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enterohemorrágica , Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Serina Endopeptidasas , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/química , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Células HeLa , Humanos , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/ultraestructura
19.
J Alzheimers Dis ; 17(2): 281-94, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19502709

RESUMEN

Human HtrA2 is part of the HtrA family of ATP-independent serine proteases that are conserved in both prokaryotes and eukaryotes and localizes to the intermembrane space of the mitochondria. Several recent reports have suggested that HtrA2 is important for maintaining proper mitochondrial homeostasis and may play a role in Alzheimer's disease (AD), which is characterized by the presence of aggregates of the amyloid-beta peptide 1-42 (Abeta1-42). In this study, we analyzed the ability of HtrA2 to delay the aggregation of the model substrate citrate synthase (CS) and of the toxic Abeta1-42 peptide. We found that HtrA2 had a moderate ability to delay the aggregation of CS in vitro, and this activity was significantly enhanced when the PDZ domain was removed suggesting an inhibitory role for this domain on the activity. Additionally, using electron microscopy and nuclear magnetic resonance analyses, we observed that HtrA2 significantly delayed the aggregation of the Abeta1-42 peptide. Interestingly, the protease activity of HtrA2 and its PDZ domain were not essential for the delay of Abeta1-42 peptide aggregation. These results indicate that besides its protease activity, HtrA2 also performs a chaperone function and suggest a role for HtrA2 in the metabolism of intracellular Abeta and in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas Mitocondriales/fisiología , Fragmentos de Péptidos/metabolismo , Serina Endopeptidasas/fisiología , Péptidos beta-Amiloides/ultraestructura , Citrato (si)-Sintasa/metabolismo , Serina Peptidasa A2 que Requiere Temperaturas Altas , Humanos , Espectroscopía de Resonancia Magnética/métodos , Microscopía Electrónica de Transmisión/métodos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/ultraestructura , Mutagénesis Sitio-Dirigida/métodos , Dominios PDZ/genética , Dominios PDZ/fisiología , Fragmentos de Péptidos/ultraestructura , Unión Proteica/fisiología , Serina Endopeptidasas/genética , Serina Endopeptidasas/ultraestructura , Relación Estructura-Actividad , Especificidad por Sustrato/fisiología , Factores de Tiempo
20.
Proc Natl Acad Sci U S A ; 106(12): 4858-63, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19255437

RESUMEN

In the periplasm of Escherichia coli, DegP (also known as HtrA), which has both chaperone-like and proteolytic activities, prevents the accumulation of toxic misfolded and unfolded polypeptides. In solution, upon binding to denatured proteins, DegP forms large cage-like structures. Here, we show that DegP forms a range of bowl-shaped structures, independent of substrate proteins, each with a 4-, 5-, or 6-fold symmetry and all with a DegP trimer as the structural unit, on lipid membranes. These membrane-bound DegP assemblies have the capacity to recruit and process substrates in the bowl chamber, and they exhibit higher proteolytic and lower chaperone-like activities than DegP in solution. Our findings imply that DegP might regulate its dual roles during protein quality control, depending on its assembly state in the narrow bacterial envelope.


Asunto(s)
Membrana Celular/enzimología , Escherichia coli/enzimología , Proteínas de Choque Térmico/química , Proteínas Periplasmáticas/química , Serina Endopeptidasas/química , Membrana Celular/ultraestructura , Escherichia coli/citología , Escherichia coli/ultraestructura , Proteínas de Choque Térmico/ultraestructura , Lípidos/química , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/ultraestructura , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/ultraestructura , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...