Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Breast Cancer ; 28(2): 307-320, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32951185

RESUMEN

BACKGROUND: Non-metastatic locally advanced breast carcinoma (LABC) treatment involves neoadjuvant chemotherapy (NCT). We evaluated the association of clinical-pathological data and immunoexpression of hormone receptors, HER2 and Ki67, and new biomarkers, RPL37A, MTSS1 and HTRA1, with pathological complete response (PCR) or tumour resistance (stable disease or disease progression), disease-free survival (DFS) and cancer-specific survival (CSS). METHODS: This is a retrospective study of 333 patients with LABC who underwent NCT. Expression of MTSS1, RPL37A and HTRA1/PRSS11 was evaluated by immunohistochemistry in TMA slides. Cutoff values were established for low and high tumour expression. ROC plotter evaluated response to NCT. Chi-square test for factors related to PCR, and Kaplan-Meier test and Cox model for factors related to DFS and CSS were prformed. RESULTS: The mean follow-up was 70.0 months and PCR rate was 15.6%. At 120 months, DFS rate was 32.5% and CSS rate was 67.1%. In multivariate analysis, there was an association between: (1) necrosis presence, intense inflammatory infiltrate, ER absence, HER2 molecular subtype and high RPL3A expression with increased odds of PCR; (2) lymph node involvement (LNI), high Ki67, low RPL37A and high HTRA1 expression with increased risk for NCT non-response; (3) LNI, high proliferation, necrosis absence, low RPL37A and high HTRA1 expression with increased recurrence risk; (4) advanced LNI, ER negative tumours, high HTRA1, low RPL37A expression and desmoplasia presence with higher risk of cancer death. CONCLUSION: RPL37A is a potential biomarker for response to NCT and for prognosis. Additional studies evaluating HTRA1 and MTSS1 prognostic value are needed.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Proteínas de Microfilamentos/metabolismo , Terapia Neoadyuvante/métodos , Proteínas de Neoplasias/metabolismo , Proteínas Ribosómicas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/mortalidad , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica/métodos , Antígeno Ki-67/metabolismo , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/metabolismo , Estudios Retrospectivos , Tasa de Supervivencia
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(1): e7718, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-974272

RESUMEN

Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.


Asunto(s)
Humanos , Neoplasias Pancreáticas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Receptor Notch1/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal , Diferenciación Celular , Regulación hacia Arriba , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Receptor Notch1/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética
3.
Braz J Med Biol Res ; 52(1): e7718, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30484491

RESUMEN

Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor Notch1/metabolismo , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptor Notch1/genética , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA