Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Diagn Ther ; 28(4): 347-377, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38717523

RESUMEN

PURPOSE: HtrA1, HtrA2, HtrA3 and HtrA4 appear to be involved in the development of pathologies such as cancer. This systematic review reports the results of a literature search performed to compare the expression of HtrA family genes and proteins in cancer versus non-cancer tissues and cell lines, assess relationships between HtrA expression and cancer clinical features in cancer, and analyse the molecular mechanism, by which HtrA family affects cancer. METHODS: The literature search was conducted according to the PRISMA statement among four databases (PubMed, Web of Science, Embase and Scopus). RESULTS: A total of 38 articles met the inclusion criteria and involved the expression of HtrA family members and concerned the effect of HtrA expression on cancer and metastasis development or on the factor that influences it. Additionally, 31 reports were retrieved manually. Most articles highlighted that HtrA1 and HtrA3 exhibited tumour suppressor activity, while HtrA2 was associated with tumour growth and metastasis. There were too few studies to clearly define the role of the HtrA4 protease in tumours. CONCLUSION: Although the expression of serine proteases of the HtrA family was dependent on tumour type, stage and the presence of metastases, most articles indicated that HtrA1 and HtrA3 expression in tumours was downregulated compared with healthy tissue or cell lines. The expression of HtrA2 was completely study dependent. The limited number of studies on HtrA4 expression made it impossible to draw conclusions about differences in expression between healthy and tumour tissue. The conclusions drawn from the study suggest that HtrA1 and HtrA3 act as tumour suppressors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Serina Peptidasa A1 que Requiere Temperaturas Altas , Serina Peptidasa A2 que Requiere Temperaturas Altas , Neoplasias , Serina Endopeptidasas , Humanos , Neoplasias/genética , Neoplasias/patología , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
2.
Nat Commun ; 15(1): 4592, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816423

RESUMEN

The mitochondrial serine protease HtrA2 is a human homolog of the Escherichia coli Deg-proteins exhibiting chaperone and proteolytic roles. HtrA2 is involved in both apoptotic regulation via its ability to degrade inhibitor-of-apoptosis proteins (IAPs), as well as in cellular maintenance as part of the cellular protein quality control machinery, by preventing the possible toxic accumulation of aggregated proteins. In this study, we use advanced solution NMR spectroscopy methods combined with biophysical characterization and biochemical assays to elucidate the crucial role of the substrate recognizing PDZ domain. This domain regulates the protease activity of HtrA2 by triggering an intricate allosteric network involving the regulatory loops of the protease domain. We further show that divalent metal ions can both positively and negatively modulate the activity of HtrA2, leading to a refined model of HtrA2 regulation within the apoptotic pathway.


Asunto(s)
Apoptosis , Serina Peptidasa A2 que Requiere Temperaturas Altas , Dominios PDZ , Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Humanos , Regulación Alostérica , Especificidad por Sustrato , Mitocondrias/metabolismo , Modelos Moleculares , Espectroscopía de Resonancia Magnética
3.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338855

RESUMEN

Systemic chronic inflammation (SCI) due to intrinsic immune over-activation is an important factor in the development of many noninfectious chronic diseases, such as neurodegenerative diseases and diabetes mellitus. Among these immune responses, macrophages are extensively involved in the regulation of inflammatory responses by virtue of their polarization plasticity; thus, dysregulation of macrophage polarization direction is one of the potential causes of the generation and maintenance of SCI. High-temperature demand protein A2 (HtrA2/Omi) is an important regulator of mitochondrial quality control, not only participating in the degradation of mis-accumulated proteins in the mitochondrial unfolded protein response (UPRmt) to maintain normal mitochondrial function through its enzymatic activity, but also participating in the regulation of mitochondrial dynamics-related protein interactions to maintain mitochondrial morphology. Recent studies have also reported the involvement of HtrA2/Omi as a novel inflammatory mediator in the regulation of the inflammatory response. HtrA2/Omi regulates the inflammatory response in BMDM by controlling TRAF2 stabilization in a collagen-induced arthritis mouse model; the lack of HtrA2 ameliorates pro-inflammatory cytokine expression in macrophages. In this review, we summarize the mechanisms by which HtrA2/Omi proteins are involved in macrophage polarization remodeling by influencing macrophage energy metabolism reprogramming through the regulation of inflammatory signaling pathways and mitochondrial quality control, elucidating the roles played by HtrA2/Omi proteins in inflammatory responses. In conclusion, interfering with HtrA2/Omi may become an important entry point for regulating macrophage polarization, providing new research space for developing HtrA2/Omi-based therapies for SCI.


Asunto(s)
Serina Peptidasa A2 que Requiere Temperaturas Altas , Inflamación , Macrófagos , Mitocondrias , Animales , Ratones , Apoptosis , Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Inflamación/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA