Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
J Agric Food Chem ; 72(19): 10814-10827, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710027

RESUMEN

Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/efectos de los fármacos , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602592

RESUMEN

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Asunto(s)
Nitratos , Setaria (Planta) , Especies Reactivas de Oxígeno , Nitratos/farmacología , Setaria (Planta)/genética , Peróxido de Hidrógeno , Cloruro de Sodio , Oxígeno , Transducción de Señal , Perfilación de la Expresión Génica , Nitrógeno
3.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612713

RESUMEN

Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.


Asunto(s)
Setaria (Planta) , Transcriptoma , Setaria (Planta)/genética , Senescencia de la Planta , Perfilación de la Expresión Génica , Clorofila
4.
Genes (Basel) ; 15(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674410

RESUMEN

WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Factores de Transcripción , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia de Multigenes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Estrés Fisiológico/genética
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674049

RESUMEN

DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Estrés Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/enzimología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Metilación de ADN
6.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676695

RESUMEN

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Ratones Desnudos , Setaria (Planta) , Inhibidores de Tripsina , Animales , Humanos , Ratones , Setaria (Planta)/genética , Setaria (Planta)/química , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/aislamiento & purificación , Inhibidores de Tripsina/química , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Línea Celular Tumoral , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Expresión Génica , Extractos Vegetales/química , Extractos Vegetales/farmacología , Masculino
7.
BMC Plant Biol ; 24(1): 164, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431546

RESUMEN

BACKGROUND: ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS: In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS: In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estrés Fisiológico/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
8.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542145

RESUMEN

Setaria italica is an important crop in China that plays a vital role in the Chinese dietary structure. In the last several decades, high temperature has become the most severe climate issue in the world, which causes great harm to the yield and quality formation of millet. In this study, two main cultivated varieties (ZG2 and AI88) were used to explore the photosynthesis and yield index of the whole plant under heat stress. Results implied that photosynthesis was not inhibited during the heat stress, and that the imbalance in sugar transport between different tissues may be the main factor that affects yield formation. In addition, the expression levels of seven SiSUT and twenty-four SiSWEET members were explored. Sugar transporters were heavily affected during the heat stress. The expression of SiSWEET13a was inhibited by heat stress in the stems, which may play a vital role in sugar transport between different tissues. These results provide new insights into the yield formation of crops under heat stress, which will provide guidance to crop breeding and cultivation.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Azúcares/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
9.
Theor Appl Genet ; 137(4): 84, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493242

RESUMEN

KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Variación Genética
10.
New Phytol ; 241(6): 2495-2505, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38323734

RESUMEN

Photosynthetic efficiency is reduced by the dual role of Rubisco, which acts either as a carboxylase or as an oxygenase, the latter leading to photorespiration. C4 photosynthesis evolved as a carbon-concentrating mechanism to reduce photorespiration. To engineer C4 into a C3 plant, it is essential to understand how C4 genes, such as phosphoenolpyruvate carboxylase (PEPC1), are regulated to be expressed at high levels and in a cell-specific manner. Yeast one-hybrid screening was used to show that OsPRI1, a rice bHLH transcription factor involved in iron homeostasis, binds to the Setaria viridis PEPC1 promoter. This promoter drives mesophyll-specific gene expression in rice. The role of OsPRI1 in planta was characterized using a rice line harbouring SvPEPC1pro ::GUS. We show that OsPRI1 activates the S. viridis PEPC1 promoter by binding to an N-box in the proximal promoter, and that GUS activity is highly reduced in SvPEPC1pro ::GUS lines when OsPRI1 is mutated. Cross-species comparisons showed that the SvPRI1 homolog binds to the SvPEPC1 promoter but the maize ZmPRI1 does not bind to the ZmPEPC1 promoter. Our results suggest that elements of the iron homeostasis pathway were co-opted to regulate PEPC1 gene expression during the evolution of some but not all C4 species.


Asunto(s)
Oryza , Setaria (Planta) , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Oryza/genética , Oryza/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Regiones Promotoras Genéticas/genética , Fotosíntesis/genética , Hierro
11.
Theor Appl Genet ; 137(1): 18, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206376

RESUMEN

KEY MESSAGE: Eleven QTLs for agronomic traits were identified by RTM- and MLM-GWAS, putative candidate genes were predicted and two markers for grain weight were developed and validated. Foxtail millet (Setaria italica), the second most cultivated millet crop after pearl millet, is an important grain crop in arid regions. Seven agronomic traits of 408 diverse foxtail millet accessions from 15 provinces in China were evaluated in three environments. They were clustered into two divergent groups based on genotypic data using ADMIXTURE, which was highly consistent with their geographical distribution. Two models for genome-wide association studies (GWAS), namely restricted two-stage multi-locus multi-allele (RTM)-GWAS and mixed linear model (MLM)-GWAS, were used to dissect the genetic architecture of the agronomic traits based on 13,723 SNPs. Eleven quantitative trait loci (QTLs) for seven traits were identified using two models (RTM- and MLM-GWAS). Among them, five were considered stable QTLs that were identified in at least two environments using MLM-GWAS. One putative candidate gene (SETIT_006045mg, Chr4: 744,701-746,852) that can enhance grain weight per panicle was identified based on homologous gene comparison and gene expression analysis and was validated by haplotype analysis of 330 accessions with high-depth (10×) resequencing data (unpublished). In addition, homologous gene comparison and haplotype analysis identified one putative foxtail millet ortholog (SETIT_032906mg, Chr2: 5,020,600-5,029,771) with rice affecting the target traits. Two markers (cGWP6045 and kTGW2906) were developed and validated and can be used for marker-assisted selection of foxtail millet with high grain weight. The results provide a fundamental resource for foxtail millet genetic research and breeding and demonstrate the power of integrating RTM- and MLM-GWAS approaches as a complementary strategy for investigating complex traits in foxtail millet.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fitomejoramiento , Fenotipo , Grano Comestible
12.
Theor Appl Genet ; 137(1): 22, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227064

RESUMEN

KEY MESSAGE: The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Transcriptoma , Potasio
13.
Theor Appl Genet ; 137(2): 39, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294546

RESUMEN

KEY MESSAGE: Two major genetic loci, qTN5.1 and qAB9.1, were identified and finely mapped to the 255 Kb region with one potential candidate gene for tiller number and the 521 Kb region with eight candidate genes for axillary branch number, respectively. Vegetative branching including tillering and axillary branching are vital traits affecting both the plant architecture and the biomass in cereal crops. However, the mechanism underlying the formation of vegetative branching in foxtail millet is largely unknown. Here, a foxtail millet cultivar and its bushy wild relative Setaria viridis accession were used to construct segregating populations to identify candidate genes regulating tiller number and axillary branch number. Transcriptome analysis using vegetative branching bud samples of parental accessions was performed, and key differentially expressed genes and pathways regulating vegetative branching were pointed out. Bulk segregant analysis on their F2:3 segregating population was carried out, and a major QTL for tiller number (qTN5.1) and two major QTLs for axillary branch number (qAB2.1 and qAB9.1) were detected. Fine-mapping strategy was further performed on F2:4 segregate population, and Seita.5G356600 encoding ß-glucosidase 11 was identified as the promising candidate gene for qTN5.1, and eight genes, especially Seita.9G125300 and Seita.9G125400 annotated as B-S glucosidase 44, were finally identified as candidate genes for regulating axillary branching. Findings in this study will help to elucidate the genetic basis of the vegetative branching formation of foxtail millet and lay a foundation for breeding foxtail millet varieties with ideal vegetative branching numbers.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Sitios de Carácter Cuantitativo
14.
J Exp Bot ; 75(3): 1098-1111, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37889853

RESUMEN

Climate change inflicts several stresses on plants, of which dehydration stress severely affects growth and productivity. C4 plants possess better adaptability to dehydration stress; however, the role of epigenetic modifications underlying this trait is unclear. In particular, the molecular links between histone modifiers and their regulation remain elusive. In this study, genome-wide H3K9 acetylation (H3K9ac) enrichment using ChIP-sequencing was performed in two foxtail millet cultivars with contrasting dehydration tolerances (IC403579, cv. IC4-tolerant, and IC480117, cv. IC41-sensitive). It revealed that a histone deacetylase, SiHDA9, was significantly up-regulated in the sensitive cultivar. Further characterization indicated that SiHDA9 interacts with SiHAT3.1 and SiHDA19 to form a repressor complex. SiHDA9 might be recruited through the SiHAT3.1 recognition sequence onto the upstream of dehydration-responsive genes to decrease H3K9 acetylation levels. The silencing of SiHDA9 resulted in the up-regulation of crucial genes, namely, SiRAB18, SiRAP2.4, SiP5CS2, SiRD22, SiPIP1;4, and SiLHCB2.3, which imparted dehydration tolerance in the sensitive cultivar (IC41). Overall, the study provides mechanistic insights into SiHDA9-mediated regulation of dehydration stress response in foxtail millet.


Asunto(s)
Deshidratación , Setaria (Planta) , Setaria (Planta)/genética , Regulación hacia Arriba , Fenotipo , Histona Desacetilasas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Proteínas de Plantas/genética
17.
Physiol Plant ; 175(6): e14122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148213

RESUMEN

Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.


Asunto(s)
Plantones , Setaria (Planta) , Plantones/genética , Plantones/metabolismo , Mijos/genética , Mijos/metabolismo , Sequías , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
18.
Plant Cell Rep ; 43(1): 6, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127149

RESUMEN

KEY MESSAGE: A total of 104 foxtail millet accessions were evaluated for 11 nutrients in three environments and 67 high-confidence marker-trait associations (MTAs) were identified. Six SNPs showed pleiotropic effect and associated with two or more nutrients, whereas 24 candidate genes were identified for 28 MTAs involving seven traits. Millets are known for their better nutritional profiles compared to major cereals. Foxtail millet (Setaria italica) is rich in nutrients essential to circumvent malnutrition and hidden hunger. However, the genetic determinants underlying this trait remain elusive. In this context, we evaluated 104 diverse foxtail millet accessions in three different environments (E1, E2, and E3) for 11 nutrients and genotyped with 30K SNPs. The genome-wide association study showed 67 high-confidence (Bonferroni-corrected) marker-trait associations (MTAs) for the nutrients except for phosphorus. Six pleiotropic SNPs were also identified, which were associated with two or more nutrients. Around 24 candidate genes (CGs) were identified for 28 MTAs involving seven nutrients. A total of 17 associated SNPs were present within the gene region, and five (5) were mapped in the exon of the CGs. Significant SNPs, desirable alleles and CGs identified in the present study will be useful in breeding programmes for trait improvement.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Estudio de Asociación del Genoma Completo , Grano Comestible , Fitomejoramiento , Genómica , Nutrientes
19.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958621

RESUMEN

Panicle development and grain production in crop species are essential breeding characteristics affected by the synthesis of auxin, which is influenced by flavin monooxygenase-encoding genes such as YUC (YUCCA) family members. In this trial, fourteen YUCs were identified and named uniformly in foxtail millet, an ancient crop species cultivated across the world. The phylogenetic analysis revealed that the SiYUCs were clustered into four subgroups; protein motif and gene structure analyses suggested that the closely clustered SiYUC genes were relatively conserved within each subgroup; while genome mapping analysis indicated that the SiYUC genes were unevenly distributed on foxtail millet chromosomes and colinear with other grass species. Transcription analysis revealed that the SiYUC genes differed greatly in expression pattern in different tissues and contained hormonal/light/stress-responding cis-elements. The haplotype characterization of SiYUC genes indicated many superior haplotypes of SiYUCs correlated with higher panicle and grain weight could be favorably selected by breeding. These results will be useful for the further study of the functional characteristics of SiYUC genes, particularly with regard to the marker-assisted pyramiding of beneficial haplotypes in foxtail millet breeding programs.


Asunto(s)
Setaria (Planta) , Haplotipos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Filogenia , Fitomejoramiento , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
20.
Genes (Basel) ; 14(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38002989

RESUMEN

The CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) genes encode signaling peptides that play important roles in various developmental and physiological processes. However, the systematic identification and characterization of CLE genes in foxtail millet (Setaria italica L.) remain limited. In this study, we identified and characterized 41 SiCLE genes in the foxtail millet genome. These genes were distributed across nine chromosomes and classified into four groups, with five pairs resulting from gene duplication events. SiCLE genes within the same phylogenetic group shared similar gene structure and motif patterns, while 34 genes were found to be single-exon genes. All SiCLE peptides harbored the conserved C-terminal CLE domain, with highly conserved positions in the CLE core sequences shared among foxtail millet, Arabidopsis, rice, and maize. The SiCLE genes contained various cis-elements, including five plant hormone-responsive elements. Notably, 34 SiCLE genes possessed more than three types of phytohormone-responsive elements on their promoters. Comparative analysis revealed higher collinearity between CLE genes in maize and foxtail millet, which may be because they are both C4 plants. Tissue-specific expression patterns were observed, with genes within the same group exhibiting similar and specific expression profiles. SiCLE32 and SiCLE41, classified in Group D, displayed relatively high expression levels in all tissues except panicles. Most SiCLE genes exhibited low expression levels in young panicles, while SiCLE6, SiCLE24, SiCLE25, and SiCLE34 showed higher expression in young panicles, with SiCLE24 down-regulated during later panicle development. Greater numbers of SiCLE genes exhibited higher expression in roots, with SiCLE7, SiCLE22, and SiCLE36 showing the highest levels and SiCLE36 significantly down-regulated after abscisic acid (ABA) treatment. Following treatments with ABA, 6-benzylaminopurine (6-BA), and gibberellic acid 3 (GA3), most SiCLE genes displayed down-regulation followed by subsequent recovery, while jasmonic acid (JA) and indole-3-acetic acid (IAA) treatments led to upregulation at 30 min in leaves. Moreover, identical hormone treatments elicited different expression patterns of the same genes in leaves and stems. This comprehensive study enhances our understanding of the SiCLE gene family and provides a foundation for further investigations into the functions and evolution of SiCLE genes in foxtail millet.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Filogenia , Duplicación de Gen , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...