Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Methods Mol Biol ; 2828: 185-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147978

RESUMEN

Amoeboid cells such as the protist Dictyostelium, human neutrophils, and the fungus B.d. chytrid move by extending pseudopods. The trajectories of cell movement depend on the size, rhythm, and direction of long series of pseudopods. These pseudopod properties are regulated by internal factors such as memory of previous directions and by external factors such as gradients of chemoattractants or electric currents. Here a simple method is described that defines the X, Y time coordinates of a pseudopod at the start and the end of the extension phase. The connection between the start and end of an extending pseudopod defines a vector, which is the input of different levels of analysis that defines cell movement. The primary information of the vector is its spatial length (pseudopod size), temporal length (extension time), extension rate (size divided by time), and direction. The second layer of information describes the sequence of two (or more) pseudopods: the direction of the second pseudopod relative to the direction of the first pseudopod, the start of the second pseudopod relative to the extension phase of the first pseudopod (the second starts while the first is still extending or after the first has stopped), and the alternating right/left extension of pseudopods. The third layer of information is provided by specific and detailed statistical analysis of these data and addresses question such as: is pseudopod extension in buffer in random direction or has the system internal directional memory, and how do shallow external electrical or chemical gradients bias the intrinsic pseudopod extension. The method is described for Dictyostelium, but has been used successfully for fast-moving neutrophils, slow-moving stem cells, and the fungus B.d. chytrid.


Asunto(s)
Quimiotaxis , Dictyostelium , Quimiotaxis/fisiología , Dictyostelium/fisiología , Dictyostelium/citología , Seudópodos/fisiología , Movimiento Celular/fisiología , Humanos , Tampones (Química) , Neutrófilos/citología , Neutrófilos/fisiología
2.
Methods Mol Biol ; 2828: 159-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147977

RESUMEN

Amoeboid cell motility is fundamental for a multitude of biological processes such as embryogenesis, immune responses, wound healing, and cancer metastasis. It is characterized by specific cell shape changes: the extension and retraction of membrane protrusions, known as pseudopodia. A common approach to investigate the mechanisms underlying this type of cell motility is to study phenotypic differences in the locomotion of mutant cell lines. To characterize such differences, methods are required to quantify the contour dynamics of migrating cells. AmoePy is a Python-based software package that provides tools for cell segmentation, contour detection as well as analyzing and simulating contour dynamics. First, a digital representation of the cell contour as a chain of nodes is extracted from each frame of a time-lapse microscopy recording of a moving cell. Then, the dynamics of these nodes-referred to as virtual markers-are tracked as the cell contour evolves over time. From these data, various quantities can be calculated that characterize the contour dynamics, such as the displacement of the virtual markers or the local stretching rate of the marker chain. Their dynamics is typically visualized in space-time plots, the so-called kymographs, where the temporal evolution is displayed for the different locations along the cell contour. Using AmoePy, you can straightforwardly create kymograph plots and videos from stacks of experimental bright-field or fluorescent images of motile cells. A hands-on guide on how to install and use AmoePy is provided in this chapter.


Asunto(s)
Movimiento Celular , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Lapso de Tiempo/métodos , Quimografía/métodos , Dictyostelium/citología , Dictyostelium/fisiología , Dictyostelium/crecimiento & desarrollo , Seudópodos
3.
Sci Rep ; 14(1): 18384, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117762

RESUMEN

The fundamental question of how forces are generated in a motile cell, a lamellipodium, and a comet tail is the subject of this note. It is now well established that cellular motility results from the polymerization of actin, the most abundant protein in eukaryotic cells, into an interconnected set of filaments. We portray this process in a continuum mechanics framework, claiming that polymerization promotes a mechanical swelling in a narrow zone around the nucleation loci, which ultimately results in cellular or bacterial motility. To this aim, a new paradigm in continuum multi-physics has been designed, departing from the well-known theory of Larché-Cahn chemo-transport-mechanics. In this note, we set up the theory of network growth and compare the outcomes of numerical simulations with experimental evidence.


Asunto(s)
Actinas , Movimiento Celular , Actinas/metabolismo , Modelos Biológicos , Citoesqueleto de Actina/metabolismo , Seudópodos/metabolismo , Seudópodos/fisiología , Fenómenos Biomecánicos , Polimerizacion
4.
PLoS Biol ; 22(8): e3002740, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39116189

RESUMEN

In life sciences, tracking objects from movies enables researchers to quantify the behavior of single particles, organelles, bacteria, cells, and even whole animals. While numerous tools now allow automated tracking from video, a significant challenge persists in compiling, analyzing, and exploring the large datasets generated by these approaches. Here, we introduce CellTracksColab, a platform tailored to simplify the exploration and analysis of cell tracking data. CellTracksColab facilitates the compiling and analysis of results across multiple fields of view, conditions, and repeats, ensuring a holistic dataset overview. CellTracksColab also harnesses the power of high-dimensional data reduction and clustering, enabling researchers to identify distinct behavioral patterns and trends without bias. Finally, CellTracksColab also includes specialized analysis modules enabling spatial analyses (clustering, proximity to specific regions of interest). We demonstrate CellTracksColab capabilities with 3 use cases, including T cells and cancer cell migration, as well as filopodia dynamics. CellTracksColab is available for the broader scientific community at https://github.com/CellMigrationLab/CellTracksColab.


Asunto(s)
Movimiento Celular , Rastreo Celular , Programas Informáticos , Rastreo Celular/métodos , Humanos , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Seudópodos/fisiología , Linfocitos T , Ratones
5.
J Extracell Vesicles ; 13(7): e12477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988257

RESUMEN

Extracellular vesicles (EVs) are shed from the plasma membrane, but the regulation and function of these EVs remain unclear. We found that oxidative stress induced by H2O2 in Hela cells stimulated filopodia formation and the secretion of EVs. EVs were small (150 nm) and labeled for CD44, indicating that they were derived from filopodia. Filopodia-derived small EVs (sEVs) were enriched with the sphingolipid ceramide, consistent with increased ceramide in the plasma membrane of filopodia. Ceramide was colocalized with neutral sphingomyelinase 2 (nSMase2) and acid sphingomyelinase (ASM), two sphingomyelinases generating ceramide at the plasma membrane. Inhibition of nSMase2 and ASM prevented oxidative stress-induced sEV shedding but only nSMase2 inhibition prevented filopodia formation. nSMase2 was S-palmitoylated and interacted with ASM in filopodia to generate ceramide for sEV shedding. sEVs contained nSMase2 and ASM and decreased the level of these two enzymes in oxidatively stressed Hela cells. A novel metabolic labeling technique for EVs showed that oxidative stress induced secretion of fluorescent sEVs labeled with NBD-ceramide. NBD-ceramide-labeled sEVs transported ceramide to mitochondria, ultimately inducing cell death in a proportion of neuronal (N2a) cells. In conclusion, using Hela cells we provide evidence that oxidative stress induces interaction of nSMase2 and ASM at filopodia, which leads to shedding of ceramide-rich sEVs that target mitochondria and propagate cell death.


Asunto(s)
Ceramidas , Vesículas Extracelulares , Estrés Oxidativo , Seudópodos , Esfingomielina Fosfodiesterasa , Humanos , Vesículas Extracelulares/metabolismo , Ceramidas/metabolismo , Seudópodos/metabolismo , Seudópodos/efectos de los fármacos , Células HeLa , Esfingomielina Fosfodiesterasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Membrana Celular/metabolismo
6.
Cell Death Dis ; 15(7): 537, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075049

RESUMEN

It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5). In this pathway, low expression of SIAH1 (Seven in absentia homolog 1) can decrease the ubiquitination and degradation of ADRM1 (adhesion regulating molecule 1) thereby increasing its protein level, which will recruit and activate the deubiquitination enzyme UCHL5, leading to FASN undergo deubiquitination and escape from proteasomal degradation. On the other hand, the accumulation of FASN is related to its weakened ubiquitination, where SIAH1 directly acts as a ubiquitin ligase toward FASN, and low expression of SIAH1 reduces the ubiquitination and degradation of FASN. Both the two pathways are involved in the regulation of FASN in liver cancer. Our results reveal a novel mechanism for FASN accumulation due to the low expression of SIAH1 in human liver cancer and suggest an important role of FASN in filopodia formation in liver cancer cells.


Asunto(s)
Neoplasias Hepáticas , Proteínas de Microfilamentos , Proteínas Nucleares , Seudópodos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Seudópodos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Animales , Línea Celular Tumoral , Ratones Desnudos , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo I/genética , Células Hep G2 , Ratones
7.
Curr Opin Cell Biol ; 89: 102381, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905917

RESUMEN

The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.


Asunto(s)
Citoesqueleto de Actina , Actinas , Animales , Actinas/metabolismo , Actinas/química , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Seudópodos/metabolismo , Seudópodos/química , Membrana Celular/metabolismo , Membrana Celular/química
8.
Commun Biol ; 7(1): 549, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724689

RESUMEN

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas del Tejido Nervioso , Proteínas Nucleares , Seudópodos , Proteínas Supresoras de Tumor , Humanos , Animales , Células HeLa , Línea Celular , Actinas/metabolismo , Seudópodos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Membrana Celular/metabolismo
9.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719752

RESUMEN

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Asunto(s)
Adhesión Celular , Movimiento Celular , Fibroblastos , Adhesiones Focales , Proteínas con Dominio LIM , Septinas , Humanos , Septinas/metabolismo , Septinas/genética , Movimiento Celular/genética , Fibroblastos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Adhesiones Focales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular , Actinas/metabolismo , Fibras de Estrés/metabolismo
10.
Elife ; 132024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819913

RESUMEN

Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFß) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFß mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.


Asunto(s)
Células de la Granulosa , Oocitos , Proteína Smad4 , Animales , Proteína Smad4/metabolismo , Proteína Smad4/genética , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Ratones , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/fisiología , Receptor Notch2/metabolismo , Receptor Notch2/genética , Cadherinas/metabolismo , Cadherinas/genética , Seudópodos/metabolismo , Seudópodos/fisiología
11.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705228

RESUMEN

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Movimiento Celular , Neoplasias Colorrectales , Citoesqueleto , Seudópodos , Factores de Transcripción SOXC , Proteína Neuronal del Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Movimiento Celular/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Seudópodos/metabolismo , Células CACO-2 , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
12.
PLoS Comput Biol ; 20(5): e1012110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743789

RESUMEN

Filopodia are thin synaptic protrusions that have been long known to play an important role in early development. Recently, they have been found to be more abundant in the adult cortex than previously thought, and more plastic than spines (button-shaped mature synapses). Inspired by these findings, we introduce a new model of synaptic plasticity that jointly describes learning of filopodia and spines. The model assumes that filopodia exhibit strongly competitive learning dynamics -similarly to additive spike-timing-dependent plasticity (STDP). At the same time it proposes that, if filopodia undergo sufficient potentiation, they consolidate into spines. Spines follow weakly competitive learning, classically associated with multiplicative, soft-bounded models of STDP. This makes spines more stable and sensitive to the fine structure of input correlations. We show that our learning rule has a selectivity comparable to additive STDP and captures input correlations as well as multiplicative models of STDP. We also show how it can protect previously formed memories and perform synaptic consolidation. Overall, our results can be seen as a phenomenological description of how filopodia and spines could cooperate to overcome the individual difficulties faced by strong and weak competition mechanisms.


Asunto(s)
Espinas Dendríticas , Aprendizaje , Modelos Neurológicos , Plasticidad Neuronal , Seudópodos , Seudópodos/fisiología , Plasticidad Neuronal/fisiología , Espinas Dendríticas/fisiología , Aprendizaje/fisiología , Animales , Humanos , Biología Computacional , Sinapsis/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología
13.
J Cell Biol ; 223(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38748453

RESUMEN

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Asunto(s)
Citoesqueleto de Actina , Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Actinas/metabolismo , Seudópodos/metabolismo , Humanos , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
14.
Stem Cells ; 42(7): 607-622, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717908

RESUMEN

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Liposomas , Seudópodos , Liposomas/metabolismo , Humanos , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Seudópodos/metabolismo , Seudópodos/efectos de los fármacos , ADN/metabolismo , Transfección , Endocitosis/efectos de los fármacos
15.
J Med Virol ; 96(4): e29620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647027

RESUMEN

Vertical transmission has been described following monkeypox virus (MPXV) infection in pregnant women. The presence of MPXV has been reported in the placenta from infected women, but whether pathogens colonize placenta remains unexplored. We identify trophoblasts as a target cell for MPXV replication. In a pan-microscopy approach, we decipher the specific infectious cycle of MPXV and inner cellular structures in trophoblasts. We identified the formation of a specialized region for viral morphogenesis and replication in placental cells. We also reported infection-induced cellular remodeling. We found that MPXV stimulates cytoskeleton reorganization with intercellular extensions for MPXV cell spreading specifically to trophoblastic cells. Altogether, the specific infectious cycle of MPXV in trophoblast cells and these protrusions that were structurally and morphologically similar to filopodia reveal new insights into the infection of MPXV.


Asunto(s)
Monkeypox virus , Seudópodos , Trofoblastos , Trofoblastos/virología , Humanos , Seudópodos/virología , Femenino , Embarazo , Monkeypox virus/fisiología , Liberación del Virus , Replicación Viral , Citoesqueleto/virología , Placenta/virología , Placenta/citología , Virión/ultraestructura , Microscopía/métodos , Línea Celular
16.
Oncogene ; 43(23): 1779-1795, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649438

RESUMEN

Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.


Asunto(s)
Actinina , Actinas , Movimiento Celular , Factores de Transcripción de Tipo Kruppel , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Animales , Actinina/genética , Actinina/metabolismo , Movimiento Celular/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Línea Celular Tumoral , Actinas/metabolismo , Actinas/genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Seudópodos/metabolismo , Seudópodos/patología , Ratones Desnudos
17.
Proc Natl Acad Sci U S A ; 121(18): e2320609121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652739

RESUMEN

Regulation of subcellular messenger (m)RNA localization is a fundamental biological mechanism, which adds a spatial dimension to the diverse layers of post-transcriptional control of gene expression. The cellular compartment in which mRNAs are located may define distinct aspects of the encoded proteins, ranging from production rate and complex formation to localized activity. Despite the detailed roles of localized mRNAs that have emerged over the past decades, the identity of factors anchoring mRNAs to subcellular domains remains ill-defined. Here, we used an unbiased method to profile the RNA-bound proteome in migrating endothelial cells (ECs) and discovered that the plasma membrane (PM)-associated scaffolding protein A-kinase anchor protein (AKAP)12 interacts with various mRNAs, including transcripts encoding kinases with Actin remodeling activity. In particular, AKAP12 targets a transcript coding for the kinase Abelson Tyrosine-Protein Kinase 2 (ABL2), which we found to be necessary for adequate filopodia formation and angiogenic sprouting. Moreover, we demonstrate that AKAP12 is necessary for anchoring ABL2 mRNA to the PM and show that in the absence of AKAP12, the translation efficiency of ABL2 mRNA is reduced. Altogether, our work identified a unique post-transcriptional function for AKAP12 and sheds light into mechanisms of spatial control of gene expression.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Biosíntesis de Proteínas , ARN Mensajero , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Animales , Células Endoteliales/metabolismo , Seudópodos/metabolismo , Seudópodos/genética , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Movimiento Celular
18.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612766

RESUMEN

Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.


Asunto(s)
Ácido Oléico , Neoplasias de la Mama Triple Negativas , Humanos , Seudópodos , Movimiento Celular , Actinas , Complejo 2-3 Proteico Relacionado con la Actina
19.
Science ; 383(6687): 1084-1092, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452066

RESUMEN

The idea of guidance toward a target is central to axon pathfinding and brain wiring in general. In this work, we show how several thousand axonal growth cones self-pattern without target-dependent guidance during neural superposition wiring in Drosophila. Ablation of all target lamina neurons or loss of target adhesion prevents the stabilization but not the development of the pattern. Intravital imaging at the spatiotemporal resolution of growth cone dynamics in intact pupae and data-driven dynamics simulations reveal a mechanism by which >30,000 filopodia do not explore potential targets, but instead simultaneously generate and navigate a dynamic filopodial meshwork that steers growth directions. Hence, a guidance mechanism can emerge from the interactions of the axons being guided, suggesting self-organization as a more general feature of brain wiring.


Asunto(s)
Orientación del Axón , Drosophila melanogaster , Conos de Crecimiento , Animales , Drosophila melanogaster/crecimiento & desarrollo , Conos de Crecimiento/fisiología , Neuronas/fisiología , Seudópodos/fisiología
20.
Open Biol ; 14(3): 230376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503329

RESUMEN

Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third ß-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.


Asunto(s)
Actinas , Proteínas Portadoras , Proteínas de Microfilamentos , Seudópodos , Actinas/metabolismo , Seudópodos/metabolismo , Unión Proteica , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA