Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.320
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38728177

RESUMEN

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Phaeophyceae , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Shewanella , Ubiquinona , Vibrio , Vitamina K 2 , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Vibrio/genética , Vibrio/clasificación , Vibrio/aislamiento & purificación , Ubiquinona/análogos & derivados , Shewanella/genética , Shewanella/aislamiento & purificación , Shewanella/clasificación , Phaeophyceae/microbiología , Vitamina K 2/análogos & derivados , Fosfolípidos , Hibridación de Ácido Nucleico , Agua de Mar/microbiología
2.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695908

RESUMEN

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Asunto(s)
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Adsorción , Shewanella/efectos de los fármacos , Microplásticos/toxicidad , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
3.
Metab Eng ; 83: 206-215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38710300

RESUMEN

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Asunto(s)
Ácido Aminolevulínico , Ingeniería Metabólica , Shewanella , Shewanella/genética , Shewanella/metabolismo , Ácido Aminolevulínico/metabolismo
4.
ACS Synth Biol ; 13(5): 1467-1476, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38696739

RESUMEN

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Asunto(s)
Luz , Optogenética , Regiones Promotoras Genéticas , Shewanella , Shewanella/genética , Shewanella/metabolismo , Optogenética/métodos , Transporte de Electrón , Regiones Promotoras Genéticas/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Redes Reguladoras de Genes/genética , Biología Sintética/métodos
5.
Surg Infect (Larchmt) ; 25(4): 322-328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683555

RESUMEN

Background: This study aims to elucidate the clinical characteristics of Shewanella-related surgical site infections (SSIs) and assess the risk of mortality in patients by establishing a predictive model. Patients and Methods: A retrospective analysis of medical history and laboratory data of Shewanella-related SSI patients over the past decade was conducted via the electronic medical record (EMR) system. A predictive model for mortality risk in Shewanella-related SSI patients was established using plasma interleukin-6 (IL-6) levels combined with the Howell-PIRO scoring system. Results: Over the past 10 years, 45 strains of Shewanella were isolated from specimens such as bile, drainage fluid, and whole blood in patients with digestive tract SSIs. Among them, 21 of 45 (46.67%) patients underwent malignant tumor resection of the digestive system, 14 of 45 (31.11%) underwent endoscopic retrograde cholangiopancreatography (ERCP) common bile duct exploration or the stone removal, and seven of 45 (15.56%) were trauma repair patients with fractures and abdominal injuries. Among the 45 Shewanella-related SSI patients, 10 died within 30 days of infection, six cases involved infections with more than two other types of bacteria. The combined use of IL-6 and Howell-PIRO scores for mortality risk assessment yielded an receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.9350, a positive predictive value of 92.71%, a negative predictive value of 94.58%, a diagnostic sensitivity of 95.35%, and a diagnostic specificity of 92.14%-all higher than the model using IL-6 or Howell-PIRO scores alone. Conclusions: We found that residents in coastal areas faced an increased risk of Shewanella-related SSI. Moreover, the higher the number of concurrent microbial infections occurring alongside Shewanella-related SSI, the greater the mortality rate among patients. The combined application of plasma IL-6 levels and the Howell-PIRO scoring system is beneficial for assessing patient mortality risk and guiding timely and proactive clinical interventions.


Asunto(s)
Shewanella , Infección de la Herida Quirúrgica , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Shewanella/aislamiento & purificación , Femenino , Anciano , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/microbiología , Infección de la Herida Quirúrgica/mortalidad , Adulto , Anciano de 80 o más Años , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/mortalidad , Interleucina-6/sangre , Adulto Joven
6.
Appl Environ Microbiol ; 90(5): e0024624, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38597658

RESUMEN

Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.


Asunto(s)
Plásmidos , Shewanella , Plásmidos/genética , Shewanella/virología , Shewanella/genética , Inovirus/genética , Virus Satélites/genética , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación
7.
Fish Shellfish Immunol ; 149: 109588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677630

RESUMEN

In aquaculture, fluctuating water temperatures can act as a potent stressor, influencing the virulence and transmission dynamics of pathogenic bacteria, potentially triggering outbreaks and impacting fish health. The purpose of this work was to examine the impact of Shewanella spp. infection on hematological, biochemical, and antioxidant-immune parameters of Nile tilapia (Oreochromis niloticus) under different water temperatures. For this purpose, 180 fish were divided into 6 groups in triplicate (30 fish per group; 10 fish per replicate). Group 1 (G1), G2, and G3 were reared at varying water temperatures (22 °C, 28 °C, and 31 °C, respectively) without infection. While G4, G5, and G6 were IP-injected with 0.2 mL of Shewanella spp. (0.14 × 105) and reared at 22 °C, 28 °C, and 31 °C, respectively. Shewanella spp. infection induced significant lowering (p < 0.05) in hematological parameters (red and white blood cells, hemoglobin, and packed cell volume%) and immune-antioxidant responses (phagocytic activity%, phagocytic index, lysozyme, nitric oxide), total antioxidant capacity, catalase, and reduced glutathione, especially at 22 °C. Moreover, a significant increase (p < 0.05) in the hepato-renal function indicators (alanine aminotransferase, aspartate aminotransferase, urea, and creatinine), stress biomarkers (glucose and cortisol), malondialdehyde, and pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-α) were the consequences of the Shewanella spp. infection, especially at 22 °C. The Shewanella spp. infection exhibited marked histopathological changes in the hepatic and renal tissues. Worthily, Shewanella spp. can cause detrimental alterations in Nile tilapia's hematological, biochemical, and antioxidant-immune parameters at various water temperatures, but the major detrimental changes were observed at a water temperature of 22 °C. Consequently, we can conclude that the infection dynamics of Shewanella spp. are exaggerated at 22 °C. These outcomes could help in understanding the nature of such an infection in Nile tilapia.


Asunto(s)
Antioxidantes , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Shewanella , Temperatura , Animales , Shewanella/fisiología , Cíclidos/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Antioxidantes/metabolismo , Inmunidad Innata
8.
ACS Appl Bio Mater ; 7(5): 2734-2740, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38651321

RESUMEN

3D printing of a living bioanode holds the potential for the rapid and efficient production of bioelectrochemistry systems. However, the ink (such as sodium alginate, SA) that formed the matrix of the 3D-printed bioanode may hinder extracellular electron transfer (EET) between the microorganism and conductive materials. Here, we proposed a biomimetic design of a 3D-printed Shewanella bioanode, wherein riboflavin (RF) was modified on carbon black (CB) to serve as a redox substance for microbial EET. By introducing the medicated EET pathways, the 3D-printed bioanode obtained a maximum power density of 252 ± 12 mW/m2, which was 1.7 and 60.5 times higher than those of SA-CB (92 ± 10 mW/m2) and a bare carbon cloth anode (3.8 ± 0.4 mW/m2). Adding RF reduced the charge-transfer resistance of a 3D-printed bioanode by 75% (189.5 ± 18.7 vs 47.3 ± 7.8 Ω), indicating a significant acceleration in the EET efficiency within the bioanode. This work provided a fundamental and instrumental concept for constructing a 3D-printed bioanode.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Impresión Tridimensional , Riboflavina , Shewanella , Riboflavina/química , Riboflavina/metabolismo , Shewanella/metabolismo , Transporte de Electrón , Materiales Biocompatibles/química , Fuentes de Energía Bioeléctrica , Electrodos , Hollín/química , Tamaño de la Partícula , Tinta
9.
Am J Case Rep ; 25: e941952, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594894

RESUMEN

BACKGROUND Shewanella spp. are gram-negative facultative anaerobic, oxidase-positive, motile bacilli that are ubiquitous but commonly occur in seawater and can cause opportunistic infection. Reports on the risk factors for Shewanella infection, its severity, antibiotic susceptibility, and prognosis are limited. This report is of a 78-year-old man with alcoholic cirrhosis presenting with bacteremia and empyema due to infection with Shewanella spp. CASE REPORT A 78-year-old man with alcoholic cirrhosis (Child-Pugh B) presented to our emergency room with a high fever. He had eaten raw fish one week prior to admission. Chest computed tomography showed a right unilateral pleural effusion, and he was hospitalized with suspected empyema. Shewanella spp. was detected in the pleural effusion and blood cultures. We initiated piperacillin/tazobactam and vancomycin empirically and switched to ceftriaxone; the effusion was successfully treated using antibiotics and pleural drainage. However, on hospitalization day 53, the patient died of aspiration pneumonia. In our literature review, we extracted 125 reported cases (including our case) and found that men were disproportionately affected (81%); median age was 61.6 (56-75) years; underlying diseases included hepatobiliary disease (33%), malignancy (25%), and cardiac disease (24%); Shewanella spp. infection sites were skin and soft tissue (35%), respiratory system (18%), and hepatobiliary system (11%); and management included antibiotics (100%), drainage (16%), and debridement (16%). The survival rate was 74% with antibiotics alone. CONCLUSIONS Our case highlights that clinicians should recognize Shewanella spp. as a cause of empyema and bacteremia in patients with liver cirrhosis, and that microbiological diagnosis with antibiotic sensitivity testing and treatment should be undertaken urgently to prevent fatal sepsis.


Asunto(s)
Bacteriemia , Empiema , Derrame Pleural , Shewanella , Anciano , Animales , Humanos , Masculino , Persona de Mediana Edad , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Cirrosis Hepática Alcohólica/complicaciones , Femenino , Microbiología de Alimentos , Peces/microbiología
10.
Microb Biotechnol ; 17(4): e14469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647123

RESUMEN

Owing to the increasing need for green synthesis and environmental protection, the utilization of biological organism-derived carbons as supports for noble-metal electrocatalysts has garnered public interest. Nevertheless, the mechanism by which microorganisms generate nanometals has not been fully understood yet. In the present study, we used genetically engineered bacteria of Shewanella oneidensis MR-1 (∆SO4317, ∆SO4320, ∆SO0618 and ∆SO3745) to explore the effect of surface substances including biofilm-associated protein (bpfA), protein secreted by type I secretion systems (TISS) and type II secretion systems (T2SS), and lipopolysaccharide in microbial synthesis of metal nanoparticles. Results showed Pd/∆SO4317 (the catalyst prepared with the mutant ∆SO4317) shows better performance than other biocatalysts and commercial Pd/C, where the mass activity (MA) and specific activity (SA) of Pd/∆SO4317 are 3.1 and 2.1 times higher than those of commercial Pd/C, reaching 257.49 A g-1 and 6.85 A m-2 respectively. It has been found that the exceptional performance is attributed to the smallest particle size and the presence of abundant functional groups. Additionally, the absence of biofilms has been identified as a crucial factor in the formation of high-quality bio-Pd. Because the absence of biofilm can minimize metal agglomeration, resulting in uniform particle size dispersion. These findings provide valuable mechanical insights into the generation of biogenic metal nanoparticles and show potential industrial and environmental applications, especially in accelerating oxygen reduction reactions.


Asunto(s)
Nanopartículas del Metal , Oxidación-Reducción , Oxígeno , Paladio , Shewanella , Shewanella/genética , Shewanella/metabolismo , Paladio/metabolismo , Paladio/química , Nanopartículas del Metal/química , Oxígeno/metabolismo , Ingeniería Genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo
11.
Commun Biol ; 7(1): 498, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664541

RESUMEN

Siderophore-dependent iron uptake is a mechanism by which microorganisms scavenge and utilize iron for their survival, growth, and many specialized activities, such as pathogenicity. The siderophore biosynthetic system PubABC in Shewanella can synthesize a series of distinct siderophores, yet how it is regulated in response to iron availability remains largely unexplored. Here, by whole genome screening we identify TCS components histidine kinase (HK) BarA and response regulator (RR) SsoR as positive regulators of siderophore biosynthesis. While BarA partners with UvrY to mediate expression of pubABC post-transcriptionally via the Csr regulatory cascade, SsoR is an atypical orphan RR of the OmpR/PhoB subfamily that activates transcription in a phosphorylation-independent manner. By combining structural analysis and molecular dynamics simulations, we observe conformational changes in OmpR/PhoB-like RRs that illustrate the impact of phosphorylation on dynamic properties, and that SsoR is locked in the 'phosphorylated' state found in phosphorylation-dependent counterparts of the same subfamily. Furthermore, we show that iron homeostasis global regulator Fur, in addition to mediating transcription of its own regulon, acts as the sensor of iron starvation to increase SsoR production when needed. Overall, this study delineates an intricate, multi-tiered transcriptional and post-transcriptional regulatory network that governs siderophore biosynthesis.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Shewanella , Sideróforos , Shewanella/metabolismo , Shewanella/genética , Sideróforos/biosíntesis , Sideróforos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosforilación , Hierro/metabolismo
12.
Environ Sci Technol ; 58(17): 7457-7468, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642050

RESUMEN

Usually, CymA is irreplaceable as the electron transport hub in Shewanella oneidensis MR-1 bidirectional electron transfer. In this work, biologically self-assembled FeS nanoparticles construct an artificial electron transfer route and implement electron transfer from extracellular into periplasmic space without CymA involvement, which present similar properties to type IV pili. Bacteria are wired up into a network, and more electron transfer conduits are activated by self-assembled transmembrane FeS nanoparticles (electron conduits), thereby substantially enhancing the ammonia production. In this study, we achieved an average NH4+-N production rate of 391.8 µg·h-1·L reactor-1 with the selectivity of 98.0% and cathode efficiency of 65.4%. Additionally, the amide group in the protein-like substances located in the outer membrane was first found to be able to transfer electrons from extracellular into intracellular with c-type cytochromes. Our work provides a new viewpoint that contributes to a better understanding of the interconnections between semiconductor materials and bacteria and inspires the exploration of new electron transfer chain components.


Asunto(s)
Amoníaco , Shewanella , Amoníaco/metabolismo , Transporte de Electrón , Shewanella/metabolismo , Electrones , Electrodos , Fuentes de Energía Bioeléctrica
13.
J Hazard Mater ; 469: 133675, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508109

RESUMEN

When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.


Asunto(s)
Nitratos , Shewanella , Nitratos/metabolismo , Cromatos/metabolismo , Oxidación-Reducción , Electrones , Cromo/metabolismo , Shewanella/metabolismo , Fenazinas , Riboflavina/metabolismo
14.
Microbiol Spectr ; 12(4): e0408123, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415659

RESUMEN

Microbial reduction of organic disulfides affects the macromolecular structure and chemical reactivity of natural organic matter. Currently, the enzymatic pathways that mediate disulfide bond reduction in soil and sedimentary organic matter are poorly understood. In this study, we examined the extracellular reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) by Shewanella oneidensis strain MR-1. A transposon mutagenesis screen performed with S. oneidensis resulted in the isolation of a mutant that lost ~90% of its DTNB reduction activity. Genome sequencing of the mutant strain revealed that the transposon was inserted into the dsbD gene, which encodes for an oxidoreductase involved in cytochrome c maturation. Complementation of the mutant strain with the wild-type dsbD partially restored DTNB reduction activity. Because DsbD catalyzes a critical step in the assembly of multi-heme c-type cytochromes, we further investigated the role of extracellular electron transfer cytochromes in organic disulfide reduction. The results indicated that mutants lacking proteins in the Mtr system were severely impaired in their ability to reduce DTNB. These findings provide new insights into extracellular organic disulfide reduction and the enzymatic pathways of organic sulfur redox cycling.IMPORTANCEOrganic sulfur compounds in soils and sediments are held together by disulfide bonds. This study investigates how Shewanella oneidensis breaks apart extracellular organic sulfur compounds. The results show that an enzyme involved in the assembly of c-type cytochromes as well as proteins in the Mtr respiratory pathway is needed for S. oneidensis to transfer electrons from the cell surface to extracellular organic disulfides. These findings have important implications for understanding how organic sulfur decomposes in terrestrial ecosystems.


Asunto(s)
Ecosistema , Shewanella , Ácido Ditionitrobenzoico/metabolismo , Oxidación-Reducción , Shewanella/genética , Shewanella/metabolismo , Citocromos/metabolismo , Azufre/metabolismo , Disulfuros , Compuestos de Azufre/metabolismo
15.
Chemosphere ; 352: 141364, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336034

RESUMEN

Diverse paths generated by reactive oxygen species (ROS) can mediate contaminant transformation and fate in the soil/aquatic environments. However, the pathways for ROS production upon the oxygenation of redox-active ferrous iron minerals are underappreciated. Ferrihydrite (Fh) can be reduced to produce Fe(II) by Shewanella oneidensis MR-1, a representative strain of dissimilatory iron-reducing bacteria (DIRB). The microbial reaction formed a spent Fh product named mr-Fh that contained Fe(II). Material properties of mr-Fh were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Magnetite could be observed in all mr-Fh samples produced over 1-day incubation, which might greatly favor the Fe(II) oxygenation process to produce hydroxyl radical (•OH). The maximum amount of dissolved Fe(II) can reach 1.1 mM derived from added 1 g/L Fh together with glucose as a carbon source, much higher than the 0.5 mM generated in the case of the Luria-Bertani carbon source. This may confirm that MR-1 can effectively reduce Fh and produce biogenetic Fe(II). Furthermore, the oxygenation of Fe(II) on the mr-Fh surface can produce abundant ROS, wherein the maximum cumulative •OH content is raised to about 120 µM within 48 h at pH 5, but it is decreased to about 100 µM at pH 7 for the case of MR-1/Fh system after a 7-day incubation. Thus, MR-1-mediated Fh reduction is a critical link to enhance ROS production, and the •OH species is among them the predominant form. XPS analysis proves that a conservable amount of Fe(II) species is subject to adsorption onto mr-Fh. Here, MR-1-mediated ROS production is highly dependent on the redox activity of the form Fe(II), which should be the counterpart presented as the adsorbed Fe(II) on surfaces. Hence, our study provides new insights into understanding the mechanisms that can significantly govern ROS generation in the redox-oscillation environment.


Asunto(s)
Compuestos Férricos , Shewanella , Especies Reactivas de Oxígeno/metabolismo , Compuestos Férricos/química , Minerales/química , Hierro/química , Oxidación-Reducción , Shewanella/metabolismo , Óxido Ferrosoférrico/metabolismo , Carbono/metabolismo
16.
Chemosphere ; 352: 141505, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387660

RESUMEN

Chlorinated organic compounds are widely used as solvents, but they are pollutants that can have adverse effects on the environment and human health. Dissimilatory iron-reducing bacteria (DIRB) such as Shewanella and Geobacter have been applied to treat a wide range of halogenated organic compounds due to their specific biological properties. Until now, there has been no systematic review on the mechanisms of direct or indirect degradation of halogenated organic compounds by DIRB. This work summarizes the discussion of DIRB's ability to enhance the dechlorination of reaction systems through different pathways, both biological and biochemical. For biological dechlorination, some DIRB have self-dechlorination capabilities that directly dechlorinate by hydrolysis. Adjustment of dechlorination genes through genetic engineering can improve the dechlorination capabilities of DIRB. DIRB can also adjust the capacity for the microbial community to dechlorinate and provide nutrients to enhance the expression of dechlorination genes in other bacteria. In biochemical dechlorination, DIRB bioconverts Fe(III) to Fe(II), which is capable of dichlorination. On this basis, the DIRB-driven Fenton reaction can efficiently degrade chlorinated organics by continuously maintaining anoxic conditions to generate Fe(II) and oxic conditions to generate H2O2. DIRB can drive microbial fuel cells due to their electroactivity and have a good dechlorination capacity at low levels of energy consumption. The contribution of DIRB to the removal of pesticides, antibiotics and POPs is summarized. Then the DIRB electron transfer mechanism is discussed, which is core to their ability to dechlorinate. Finally, the prospect of future work on the removal of chlorine-containing organic pollutants by DIRB is presented, and the main challenges and further research directions are suggested.


Asunto(s)
Contaminantes Ambientales , Shewanella , Humanos , Hierro/química , Agua/metabolismo , Suelo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Contaminantes Ambientales/metabolismo , Shewanella/metabolismo , Compuestos Ferrosos/metabolismo
17.
Environ Sci Pollut Res Int ; 31(11): 16832-16845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326681

RESUMEN

Malathion, an extensively used organophosphorus pesticide, poses a high potential risk of toxicity to humans and the environment. Shewanella (S.) oneidensis MR-1 has been proposed as a strain with excellent bioremediation capabilities, capable of efficiently removing a wide range of hard-to-degrade pollutants. However, the physiological and biochemical response of S. oneidensis MR-1 to malathion is unknown. Therefore, this study aimed to examine how S. oneidensis MR-1 responds physiologically and biochemically to malathion while also investigating the biodegradation properties of the pesticide. The results showed that the 7-day degradation rates of S. oneidensis MR-1 were 84.1, 91.6, and 94.0% at malathion concentrations of 10, 20, and 30 mg/L, respectively. As the concentration of malathion increased, superoxide dismutase and catalase activities were inhibited, leading to a significant rise in malondialdehyde content. This outcome can be attributed to the excessive production of reactive oxygen species (ROS) triggered by malathion stress. In addition, ROS production stimulates the secretion of soluble polysaccharides, which alleviates oxidative stress caused by malathion. Malathion-induced oxidative damage further exacerbated the changes in the cellular properties of S. oneidensis MR-1. During the initial stages of degradation, the cell density and total intracellular protein increased significantly with increasing malathion exposure. This can be attributed to the remarkable resistance of S. oneidensis MR-1 to malathion. Based on scanning electron microscopy observations, continuous exposure to contaminants led to a reduction in biomass and protein content, resulting in reduced cell activity and ultimately leading to cell rupture. In addition, this was accompanied by a decrease in Na+/K+- ATPase and Ca2+/Mg2+-ATPase levels, suggesting that malathion-mediated oxidative stress interfered with energy metabolism in S. oneidensis MR-1. The findings of this study provide new insights into the environmental risks associated with organophosphorus pesticides, specifically malathion, and their potential for bioremediation.


Asunto(s)
Plaguicidas , Shewanella , Humanos , Biodegradación Ambiental , Malatión , Compuestos Organofosforados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plaguicidas/metabolismo , Estrés Oxidativo , Shewanella/metabolismo , Adenosina Trifosfatasas/metabolismo
18.
BMC Genomics ; 25(1): 216, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413855

RESUMEN

BACKGROUND: Shewanella xiamenensis, widely distributed in natural environments, has long been considered as opportunistic pathogen. Recently, significant changes in the resistance spectrum have been observed in S. xiamenensis, due to acquired antibiotic resistance genes. Therefore, a pan-genome analysis was conducted to illuminate the genomic changes in S. xiamenensis. RESULTS: Phylogenetic analysis revealed three major clusters and three singletons, among which close relationship between several strains was discovered, regardless of their host and niches. The "open" genomes with diversity of accessory and strain-specific genomes took advantage towards diversity environments. The purifying selection pressure was the main force on genome evolution, especially in conservative genes. Only 53 gene families were under positive selection pressure. Phenotypic resistance analysis revealed 21 strains were classified as multi-drug resistance (MDR). Ten types of antibiotic resistance genes and two heavy metal resistance operons were discovered in S. xiamenensis. Mobile genetic elements and horizontal gene transfer increased genome diversity and were closely related to MDR strains. S. xiamenensis carried a variety of virulence genes and macromolecular secretion systems, indicating their important roles in pathogenicity and adaptability. Type IV secretion system was discovered in 15 genomes with various sequence structures, indicating it was originated from different donors through horizontal gene transfer. CONCLUSIONS: This study provided with a detailed insight into the changes in the pan-genome of S. xiamenensis, highlighting its capability to acquire new mobile genetic elements and resistance genes for its adaptation to environment and pathogenicity to human and animals.


Asunto(s)
Variación Genética , Genoma Bacteriano , Shewanella , Animales , Humanos , Virulencia/genética , Filogenia , Farmacorresistencia Microbiana
19.
Environ Sci Technol ; 58(10): 4670-4679, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38411077

RESUMEN

Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.


Asunto(s)
Flavinas , Shewanella , Electroquímica , Flavinas/metabolismo , Electrones , Citocromos/metabolismo , Transporte de Electrón , Shewanella/química , Shewanella/genética , Shewanella/metabolismo
20.
J Biol Chem ; 300(3): 105689, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280427

RESUMEN

Urocanate reductase (UrdA) is a bacterial flavin-dependent enzyme that reduces urocanate to imidazole propionate, enabling bacteria to use urocanate as an alternative respiratory electron acceptor. Elevated serum levels of imidazole propionate are associated with the development of type 2 diabetes, and, since UrdA is only present in humans in gut bacteria, this enzyme has emerged as a significant factor linking the health of the gut microbiome and insulin resistance. Here, we investigated the chemistry of flavin oxidation by urocanate in the isolated FAD domain of UrdA (UrdA') using anaerobic stopped-flow experiments. This analysis unveiled the presence of a charge-transfer complex between reduced FAD and urocanate that forms within the dead time of the stopped-flow instrument (∼1 ms), with flavin oxidation subsequently occurring with a rate constant of ∼60 s-1. The pH dependence of the reaction and analysis of an Arg411Ala mutant of UrdA' are consistent with Arg411 playing a crucial role in catalysis by serving as the active site acid that protonates urocanate during hydride transfer from reduced FAD. Mutational analysis of urocanate-binding residues suggests that the twisted conformation of urocanate imposed by the active site of UrdA' facilitates urocanate reduction. Overall, this study provides valuable insight into the mechanism of urocanate reduction by UrdA.


Asunto(s)
Proteínas Bacterianas , Flavinas , Oxidorreductasas , Shewanella , Ácido Urocánico , Flavinas/metabolismo , Cinética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Ácido Urocánico/metabolismo , Shewanella/enzimología , Shewanella/genética , Dominios Proteicos , Mutación , Dominio Catalítico , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...