Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273556

RESUMEN

Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is broadly expressed and is the only NBCe1 variant expressed in the heart, and NBCe1-C is a splice variant of NBCe1-B that is expressed in the brain. No cardiac manifestations have been reported from patients with pRTA, but studies in adult rats with virally induced reduction in cardiac NBCe1-B expression indicate that NBCe1-B loss leads to cardiac hypertrophy and prolonged QT intervals in rodents. NBCe1-null mice die shortly after weaning, so the consequence of congenital, global NBCe1 loss on the heart is unknown. To circumvent this issue, we characterized the cardiac function of NBCe1-B/C-null (KOb/c) mice that survive up to 2 months of age and which, due to the uninterrupted expression of NBCe1-A, do not exhibit the confounding acidemia of the globally null mice. In contrast to the viral knockdown model, cardiac hypertrophy was not present in KOb/c mice as assessed by heart-weight-to-body-weight ratios and cardiomyocyte cross-sectional area. However, echocardiographic analysis revealed reduced left ventricular ejection fraction, and intraventricular pressure-volume measurements demonstrated reduced load-independent contractility. We also observed increased QT length variation in KOb/c mice. Finally, using the calcium indicator Fura-2 AM, we observed a significant reduction in the amplitude of Ca2+ transients in paced KOb/c cardiomyocytes. These data indicate that congenital, global absence of NBCe1-B/C leads to impaired cardiac contractility and increased QT length variation in juvenile mice. It remains to be determined whether the cardiac phenotype in KOb/c mice is influenced by the absence of NBCe1-B/C from neuronal and endocrine tissues.


Asunto(s)
Ratones Noqueados , Simportadores de Sodio-Bicarbonato , Disfunción Ventricular Izquierda , Animales , Ratones , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Miocitos Cardíacos/metabolismo , Masculino , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Cardiomegalia/patología
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167450, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111631

RESUMEN

Defense against intracellular acidification of breast cancer tissue depends on net acid extrusion via Na+,HCO3--cotransporter NBCn1/Slc4a7 and Na+/H+-exchanger NHE1/Slc9a1. NBCn1 is increasingly recognized as breast cancer susceptibility protein and promising therapeutic target, whereas evidence for targeting NHE1 is discordant. Currently, selective small molecule inhibitors exist against NHE1 but not NBCn1. Cellular assays-with some discrepancies-link NHE1 activity to proliferation, migration, and invasion; and disrupted NHE1 expression can reduce triple-negative breast cancer growth. Studies on human breast cancer tissue associate high NHE1 expression with reduced metastasis and-in some molecular subtypes-improved patient survival. Here, we evaluate Na+/H+-exchange and therapeutic potential of the NHE1 inhibitor cariporide/HOE-642 in murine ErbB2-driven breast cancer. Ex vivo, cariporide inhibits net acid extrusion in breast cancer tissue (IC50 = 0.18 µM) and causes small decreases in steady-state intracellular pH (pHi). In vivo, we deliver cariporide orally, by osmotic minipumps, and by intra- and peritumoral injections to address the low oral bioavailability and fast metabolism. Prolonged cariporide administration in vivo upregulates NBCn1 expression, shifts pHi regulation towards CO2/HCO3--dependent mechanisms, and shows no net effect on the growth rate of ErbB2-driven primary breast carcinomas. Cariporide also does not influence proliferation markers in breast cancer tissue. Oral, but not parenteral, cariporide elevates serum glucose by ∼1.5 mM. In conclusion, acute administration of cariporide ex vivo powerfully inhibits net acid extrusion from breast cancer tissue but lowers steady-state pHi minimally. Prolonged cariporide administration in vivo is compensated via NBCn1 and we observe no discernible effect on growth of ErbB2-driven breast carcinomas.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Guanidinas , Receptor ErbB-2 , Intercambiador 1 de Sodio-Hidrógeno , Sulfonas , Guanidinas/farmacología , Femenino , Animales , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/antagonistas & inhibidores , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiador 1 de Sodio-Hidrógeno/genética , Ratones , Humanos , Sulfonas/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/antagonistas & inhibidores , Línea Celular Tumoral , Concentración de Iones de Hidrógeno
3.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201753

RESUMEN

An application of CO2/HCO3--free solution (Zero-CO2) did not increase intracellular pH (pHi) in ciliated human nasal epithelial cells (c-hNECs), leading to no increase in frequency (CBF) or amplitude (CBA) of the ciliary beating. This study demonstrated that the pHi of c-hNECs expressing carbonic anhydrase IV (CAIV) is high (7.64), while the pHi of ciliated human bronchial epithelial cells (c-hBECs) expressing no CAIV is low (7.10). An extremely high pHi of c-hNECs caused pHi, CBF and CBA to decrease upon Zero-CO2 application, while a low pHi of c-hBECs caused them to increase. An extremely high pHi was generated by a high rate of HCO3- influx via interactions between CAIV and Na+/HCO3- cotransport (NBC) in c-hNECs. An NBC inhibitor (S0859) decreased pHi, CBF and CBA and increased CBF and CBA in c-hNECs upon Zero-CO2 application. In conclusion, the interactions of CAIV and NBC maximize HCO3- influx to increase pHi in c-hNECs. This novel mechanism causes pHi to decrease, leading to no increase in CBF and CBA in c-hNECs upon Zero-CO2 application, and appears to play a crucial role in maintaining pHi, CBF and CBA in c-hNECs periodically exposed to air (0.04% CO2) with respiration.


Asunto(s)
Bicarbonatos , Dióxido de Carbono , Anhidrasa Carbónica IV , Cilios , Células Epiteliales , Mucosa Nasal , Humanos , Concentración de Iones de Hidrógeno , Dióxido de Carbono/metabolismo , Cilios/metabolismo , Bicarbonatos/metabolismo , Células Epiteliales/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/citología , Anhidrasa Carbónica IV/metabolismo , Anhidrasa Carbónica IV/genética , Células Cultivadas , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética
4.
Cell Rep ; 43(5): 114193, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38709635

RESUMEN

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Quimiocina CCL2 , Receptores CCR2 , Simportadores de Sodio-Bicarbonato , Accidente Cerebrovascular , Animales , Humanos , Masculino , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Quimiocina CCL2/metabolismo , Ratones Endogámicos C57BL , Receptores CCR2/metabolismo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
5.
Biophys J ; 123(12): 1705-1721, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760929

RESUMEN

The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO3-, CO32-, Cl-, Na+, K+, NH3, and H+, which are necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl-/HCO3- exchanger) and NBCe1 (Na+-CO32-cotransporter). Previous computational studies of the outward-facing state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed coarse-grained and atomistic molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1, and NDCBE (an Na+-CO32-/Cl- exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. The recently resolved inward-facing state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, phosphatidylcholine, and sphingomyelin in the three studied proteins, and their potential roles in the SLC4 transport function, conformational transition, and protein dimerization are discussed.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/química , Humanos , Colesterol/metabolismo , Colesterol/química
6.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674160

RESUMEN

Slc4a genes encode various types of transporters, including Na+-HCO3- cotransporters, Cl-/HCO3- exchangers, or Na+-driven Cl-/HCO3- exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl-/HCO3- exchanger, which can be driven by either Na+ or K+, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na+ or K+ drive Cl-/HCO3- exchanger activity in cells overexpressing Slc4a8 or Slc4a10. Further characterization of cation-driven Cl-/HCO3- exchange demonstrated that Slc4a8 and Slc4a10 also mediate Cl- and HCO3--dependent K+ transport. Full-atom molecular dynamics simulation on the recently solved structure of Slc4a8 supports the coordination of K+ at the Na+ binding site in S1. Sequence analysis shows that the critical residues coordinating monovalent cations are conserved among mouse Slc4a8 and Slc4a10 proteins. Together, our results suggest that Slc4a8 and Slc4a10 might transport K+ in the same direction as HCO3- ions in a similar fashion to that described for Na+ transport in the rat Slc4a8 structure.


Asunto(s)
Potasio , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Bicarbonatos/metabolismo , Sitios de Unión , Antiportadores de Cloruro-Bicarbonato/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Cloruros/metabolismo , Transporte Iónico , Simulación de Dinámica Molecular , Potasio/metabolismo , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética
7.
Am J Physiol Cell Physiol ; 326(6): C1625-C1636, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646790

RESUMEN

NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.


Asunto(s)
Adhesión Celular , Movimiento Celular , Proliferación Celular , Colon , Enterocitos , Simportadores de Sodio-Bicarbonato , Humanos , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Animales , Concentración de Iones de Hidrógeno , Células CACO-2 , Colon/metabolismo , Colon/patología , Enterocitos/metabolismo , Ratones , Ratones Noqueados , Diferenciación Celular , Ratones Endogámicos C57BL
8.
Pflugers Arch ; 476(4): 479-503, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536494

RESUMEN

Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.


Asunto(s)
Bicarbonatos , Simportadores de Sodio-Bicarbonato , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Bicarbonatos/metabolismo , Bicarbonato de Sodio , Sodio/metabolismo , Proteínas de Transporte de Membrana , Concentración de Iones de Hidrógeno
9.
Epilepsy Res ; 201: 107337, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461594

RESUMEN

Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Neocórtex , Ratas , Animales , Simportadores de Sodio-Bicarbonato/metabolismo , Espacio Extracelular/metabolismo , Neocórtex/metabolismo
10.
Br J Cancer ; 130(7): 1206-1220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310186

RESUMEN

BACKGROUND: Na+,HCO3--cotransporter NBCn1/Slc4a7 accelerates murine breast carcinogenesis. Lack of specific pharmacological tools previously restricted therapeutic targeting of NBCn1 and identification of NBCn1-dependent functions in human breast cancer. METHODS: We develop extracellularly-targeted anti-NBCn1 antibodies, screen for functional activity on cells, and evaluate (a) mechanisms of intracellular pH regulation in human primary breast carcinomas, (b) proliferation, cell death, and tumor growth consequences of NBCn1 in triple-negative breast cancer, and (c) association of NBCn1-mediated Na+,HCO3--cotransport with human breast cancer metastasis. RESULTS: We identify high-affinity (KD ≈ 0.14 nM) anti-NBCn1 antibodies that block human NBCn1-mediated Na+,HCO3--cotransport in cells, without cross-reactivity towards human NBCe1 or murine NBCn1. These anti-NBCn1 antibodies abolish Na+,HCO3--cotransport activity in freshly isolated primary organoids from human breast carcinomas and lower net acid extrusion effectively in primary breast cancer tissue from patients with macrometastases in axillary lymph nodes. Inhibitory anti-NBCn1 antibodies decelerate tumor growth in vivo by ~50% in a patient-derived xenograft model of triple-negative breast cancer and pH-dependently reduce colony formation, cause G2/M-phase cell cycle accumulation, and increase apoptosis of metastatic triple-negative breast cancer cells in vitro. CONCLUSIONS: Inhibitory anti-NBCn1 antibodies block net acid extrusion in human breast cancer tissue, particularly from patients with disseminated disease, and pH-dependently limit triple-negative breast cancer growth.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/genética , Apoptosis , Concentración de Iones de Hidrógeno , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
11.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067105

RESUMEN

Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP.


Asunto(s)
Acidosis , Neocórtex , Ratones , Animales , Astrocitos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Ratones Noqueados , Neocórtex/metabolismo , Iones/metabolismo , Sodio/metabolismo , Acidosis/metabolismo , Adenosina Trifosfato/metabolismo
12.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37459438

RESUMEN

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Asunto(s)
Convulsiones , Simportadores de Sodio-Bicarbonato , Niño , Ratones , Humanos , Animales , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Convulsiones/genética , Mutación/genética , Neurotransmisores , Ácido gamma-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo
13.
J Physiol ; 601(16): 3667-3686, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37384821

RESUMEN

The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.


Asunto(s)
Astrocitos , Simportadores , Animales , Ratones , Astrocitos/fisiología , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/metabolismo , Iones/metabolismo , Ratones Noqueados , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores/metabolismo
14.
J Cell Sci ; 136(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039101

RESUMEN

Finely tuned regulation of transport protein localization is vital for epithelial function. The Na+-HCO3- co-transporter NBCn1 (also known as SLC4A7) is a key contributor to epithelial pH homeostasis, yet the regulation of its subcellular localization is not understood. Here, we show that a predicted N-terminal ß-sheet and short C-terminal α-helical motif are essential for NBCn1 plasma membrane localization in epithelial cells. This localization was abolished by cell-cell contact disruption, and co-immunoprecipitation (co-IP) and proximity ligation (PLA) revealed NBCn1 interaction with E-cadherin and DLG1, linking it to adherens junctions and the Scribble complex. NBCn1 also interacted with RhoA and localized to lamellipodia and filopodia in migrating cells. Finally, analysis of native and GFP-tagged NBCn1 localization, subcellular fractionation, co-IP with Arl13B and CEP164, and PLA of NBCn1 and tubulin in mitotic spindles led to the surprising conclusion that NBCn1 additionally localizes to centrosomes and primary cilia in non-dividing, polarized epithelial cells, and to the spindle, centrosomes and midbodies during mitosis. We propose that NBCn1 traffics between lateral junctions, the leading edge and cell division machinery in Rab11 endosomes, adding new insight to the role of NBCn1 in cell cycle progression.


Asunto(s)
Membrana Celular , Centrosoma , Cilios , Simportadores de Sodio-Bicarbonato , Huso Acromático , Humanos , Animales , Ratas , Membrana Celular/química , Cilios/química , Centrosoma/química , Huso Acromático/química , Simportadores de Sodio-Bicarbonato/análisis , Simportadores de Sodio-Bicarbonato/metabolismo , Ciclo Celular , AMP Cíclico/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo
15.
Mol Carcinog ; 62(5): 628-640, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36727616

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-akt , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Bicarbonatos/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias de Cabeza y Cuello/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular/genética , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
16.
J Am Soc Nephrol ; 34(1): 40-54, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288904

RESUMEN

BACKGROUND: Differentiating among HCO 3- , CO 3= , and H + movements across membranes has long seemed impossible. We now seek to discriminate unambiguously among three alternate mechanisms: the inward flux of 2 HCO 3- (mechanism 1), the inward flux of 1 CO 3= (mechanism 2), and the CO 2 /HCO 3- -stimulated outward flux of 2 H + (mechanism 3). METHODS: As a test case, we use electrophysiology and heterologous expression in Xenopus oocytes to examine SLC4 family members that appear to transport "bicarbonate" ("HCO 3- "). RESULTS: First, we note that cell-surface carbonic anhydrase should catalyze the forward reaction CO 2 +OH - →HCO 3- if HCO 3- is the substrate; if it is not, the reverse reaction should occur. Monitoring changes in cell-surface pH ( Δ pH S ) with or without cell-surface carbonic anhydrase, we find that the presumed Cl-"HCO 3 " exchanger AE1 (SLC4A1) does indeed transport HCO 3- (mechanism 1) as long supposed, whereas the electrogenic Na/"HCO 3 " cotransporter NBCe1 (SLC4A4) and the electroneutral Na + -driven Cl-"HCO 3 " exchanger NDCBE (SLC4A8) do not. Second, we use mathematical simulations to show that each of the three mechanisms generates unique quantities of H + at the cell surface (measured as Δ pH S ) per charge transported (measured as change in membrane current, ΔIm ). Calibrating ΔpH S /Δ Im in oocytes expressing the H + channel H V 1, we find that our NBCe1 data align closely with predictions of CO 3= transport (mechanism 2), while ruling out HCO 3- (mechanism 1) and CO 2 /HCO 3- -stimulated H + transport (mechanism 3). CONCLUSIONS: Our surface chemistry approach makes it possible for the first time to distinguish among HCO 3- , CO 3= , and H + fluxes, thereby providing insight into molecular actions of clinically relevant acid-base transporters and carbonic-anhydrase inhibitors.


Asunto(s)
Bicarbonatos , Anhidrasas Carbónicas , Bicarbonatos/metabolismo , Anhidrasas Carbónicas/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Concentración de Iones de Hidrógeno
17.
Am J Physiol Renal Physiol ; 324(1): F12-F29, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36264886

RESUMEN

The renal response to acid-base disturbances involves phenotypic and remodeling changes in the collecting duct. This study examines whether the proximal tubule controls these responses. We examined mice with genetic deletion of proteins present only in the proximal tubule, either the A variant or both A and B variants of isoform 1 of the electrogenic Na+-bicarbonate cotransporter (NBCe1). Both knockout (KO) mice have spontaneous metabolic acidosis. We then determined the collecting duct phenotypic responses to this acidosis and the remodeling responses to exogenous acid loading. Despite the spontaneous acidosis in NBCe1-A KO mice, type A intercalated cells in the inner stripe of the outer medullary collecting duct (OMCDis) exhibited decreased height and reduced expression of H+-ATPase, anion exchanger 1, Rhesus B glycoprotein, and Rhesus C glycoprotein. Combined kidney-specific NBCe1-A/B deletion induced similar changes. Ultrastructural imaging showed decreased apical plasma membrane and increased vesicular H+-ATPase in OMCDis type A intercalated cell in NBCe1-A KO mice. Next, we examined the collecting duct remodeling response to acidosis. In wild-type mice, acid loading increased the proportion of type A intercalated cells in the connecting tubule (CNT) and OMCDis, and it decreased the proportion of non-A, non-B intercalated cells in the connecting tubule, and type B intercalated cells in the cortical collecting duct (CCD). These changes were absent in NBCe1-A KO mice. We conclude that the collecting duct phenotypic and remodeling responses depend on proximal tubule-dependent signaling mechanisms blocked by constitutive deletion of proximal tubule NBCe1 proteins.NEW & NOTEWORTHY This study shows that the proximal tubule regulates collecting duct phenotypic and remodeling responses to acidosis.


Asunto(s)
Acidosis , Túbulos Renales Colectores , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Acidosis/genética , Acidosis/metabolismo , Glicoproteínas/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Proximales/metabolismo , Ratones Noqueados , ATPasas de Translocación de Protón/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo
18.
Life Sci ; 312: 121219, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435222

RESUMEN

Two alkalinizing mechanisms coexist in cardiac myocytes to maintain intracellular pH: sodium/bicarbonate cotransporter (electroneutral isoform NBCn1 and electrogenic isoform NBCe1) and sodium/proton exchanger (NHE1). Dysfunction of these transporters has previously been reported to be responsible for the development of cardiovascular diseases. The aim of this study was to evaluate the contribution of the downregulation of the NBCe1 to the development of cardiac hypertrophy. To specifically reduce NBCe1 expression, we cloned shRNA into a cardiotropic adeno-associated vector (AAV9-shNBCe1). After 28 days of being injected with AAV9-shNBCe1, the expression and the activity of NBCe1 in the rat heart were reduced. Strikingly, downregulation of NBCe1 causes significant hypertrophic heart growth, lengthening of the action potential in isolated myocytes, an increase in the duration of the QT interval and an increase in the frequency of Ca2+ waves without any significant changes in Ca2+ transients. An increased compensatory expression of NBCn1 and NHE1 was also observed. We conclude that reduction of NBCe1 is sufficient to induce cardiac hypertrophy and modify the electrical features of the rat heart.


Asunto(s)
Bicarbonatos , Simportadores de Sodio-Bicarbonato , Ratas , Animales , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Bicarbonatos/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Sodio/metabolismo , Isoformas de Proteínas/metabolismo , Concentración de Iones de Hidrógeno
19.
Front Cell Infect Microbiol ; 12: 1002230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389147

RESUMEN

Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence in vivo. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.


Asunto(s)
Infecciones Estreptocócicas , Estreptolisinas , Humanos , Estreptolisinas/toxicidad , Estreptolisinas/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes , Queratinocitos/metabolismo , Inflamación
20.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012235

RESUMEN

Glioblastoma multiforme (GBM) is the most common and malignant brain tumour. It is characterised by transcriptionally distinct cell populations. In tumour cells, physiological pH gradients between the intracellular and extracellular compartments are reversed, compared to non-cancer cells. Intracellular pH in tumour cells is alkaline, whereas extracellular pH is acidic. Consequently, the function and/or expression of pH regulating transporters might be altered. Here, we investigated protein expression and regulation of the electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) in mesenchymal (MES)-like hypoxia-dependent and -independent cells, as well as in astrocyte-like glioblastoma cells following chemical hypoxia, acidosis and elucidated putative underlying molecular pathways. Immunoblotting, immunocytochemistry, and intracellular pH recording with the H+-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein were applied. The results show NBCe1 protein abundance and active NBCe1 transport. Hypoxia upregulated NBCe1 protein and activity in MES-like hypoxia-dependent GBM cells. This effect was positively correlated with HIF-1α protein levels, was mediated by TGF-ß signalling, and was prevented by extracellular acidosis. In MES-like hypoxia-independent GBM cells, acidosis (but not hypoxia) regulated NBCe1 activity in an HIF-1α-independent manner. These results demonstrate a cell-specific adaptation of NBCe1 expression and activity to the microenvironment challenge of hypoxia and acidosis that depends on their transcriptional signature in GBM.


Asunto(s)
Acidosis , Glioblastoma , Simportadores , Humanos , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA