Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731473

RESUMEN

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Asunto(s)
Familia de Multigenes , Péptido Sintasas , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
Commun Biol ; 7(1): 566, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745065

RESUMEN

Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.


Asunto(s)
Quinolonas , Especificidad por Sustrato , Quinolonas/química , Quinolonas/metabolismo , Dominio Catalítico , Modelos Moleculares , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Cristalografía por Rayos X , Conformación Proteica
3.
ACS Infect Dis ; 10(5): 1561-1575, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38577994

RESUMEN

DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.


Asunto(s)
Antituberculosos , Inhibidores Enzimáticos , Mycobacterium tuberculosis , Bibliotecas de Moléculas Pequeñas , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Animales , Ratones , Antituberculosos/farmacología , Antituberculosos/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Cristalografía por Rayos X , Humanos , Modelos Animales de Enfermedad
4.
Angew Chem Int Ed Engl ; 63(20): e202402663, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38467568

RESUMEN

Thielavin A (1) is a fungal depside composed of one 3-methylorsellinic acid and two 3,5-dimethylorsellinic acid units. It displays diverse biological activities. However, the mechanism underlying the assembly of the heterotrimeric structure of 1 remains to be clarified. In this study, we identified the polyketide synthase (PKS) involved in the biosynthesis of 1. This PKS, designated as ThiA, possesses an unusual domain organization with the C-methyltransferase (MT) domain situated at the C-terminus following the thioesterase (TE) domain. Our findings indicated that the TE domain is solely responsible for two rounds of ester bond formation, along with subsequent chain hydrolysis. We identified a plausible mechanism for TE-catalyzed reactions and obtained insights into how a single PKS can selectively yield a specific heterotrimeric product. In particular, the tandem acyl carrier protein domains of ThiA are critical for programmed methylation by the MT domain. Overall, this study highlighted the occurrence of highly optimized domain-domain communication within ThiA for the selective synthesis of 1, which can advance our understanding of the programming rules of fungal PKSs.


Asunto(s)
Depsidos , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Depsidos/metabolismo , Depsidos/química
5.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513027

RESUMEN

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Asunto(s)
Aciltransferasas , Proteínas Bacterianas , Evolución Molecular Dirigida , Sintasas Poliquetidas , Policétidos , Proteínas Recombinantes de Fusión , Aciltransferasas/genética , Aciltransferasas/química , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Policétidos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Serratia , Secuencias de Aminoácidos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
6.
Chemistry ; 30(4): e202302590, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37926691

RESUMEN

Three central steps during the biosynthesis of cytochalasan precursors, including reductive release, Knoevenagel cyclisation and Diels Alder cyclisation are not yet understood at a detailed molecular level. In this work we investigated the reductive release step catalysed by a hybrid polyketide synthase non-ribosomal peptide synthetase (PKS-NRPS) from the pyrichalasin H pathway. Synthetic thiolesters were used as substrate mimics for in vitro studies with the isolated reduction (R) and holo-thiolation (T) domains of the PKS-NRPS hybrid PyiS. These assays demonstrate that the PyiS R-domain mainly catalyses an NADPH-dependent reductive release of an aldehyde intermediate that quickly undergoes spontaneous Knoevenagel cyclisation. The R-domain can only process substrates that are covalently bound to the phosphopantetheine thiol of the upstream T-domain, but it shows little selectivity for the polyketide.


Asunto(s)
Sintasas Poliquetidas , Sintasas Poliquetidas/química
7.
Open Biol ; 13(8): 230096, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528731

RESUMEN

Assembly line polyketide synthases (PKSs) are a large family of multifunctional enzymes responsible for synthesizing many medicinally relevant natural products with remarkable structural variety and biological activity. The decrease in cost of genomic sequencing paired with development of computational tools like antiSMASH presents an opportunity to survey the vast diversity of assembly line PKS. Mining the genomic data in the National Center for Biotechnology Information database, our updated catalogue (https://orphanpkscatalog2022.stanford.edu/catalog) presented in this article revealed 8799 non-redundant assembly line polyketide synthase clusters across 4083 species, representing a threefold increase over the past 4 years. Additionally, 95% of the clusters are 'orphan clusters' for which natural products are neither chemically nor biologically characterized. Our analysis indicates that the diversity of assembly line PKSs remains vastly under-explored and also highlights the promise of a genomics-driven approach to natural product discovery.


Asunto(s)
Productos Biológicos , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Secuencia de Bases , Genómica
8.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2806-2817, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584133

RESUMEN

Polygonum cuspidatum polyketide synthase 1 (PcPKS1) has the catalytic activity of chalcone synthase (CHS) and benzylidene acetone synthase (BAS), which can catalyze the production of polyketides naringenin chalcone and benzylidene acetone, and then catalyze the synthesis of flavonoids or benzylidene acetone. In this study, three amino acid sites (Thr133, Ser134, Ser33) that may affect the function of PcPKS1 were identified by analyzing the sequences of PcPKS1, the BAS from Rheum palmatum and the CHS from Arabidopsis thaliana, as well as the conformation of the catalytic site of the enzyme. Molecular modification of PcPKS1 was carried out by site-directed mutagenesis, and two mutants were successfully obtained. The in vitro enzymatic reactions were carried out, and the differences in activity were detected by high performance liquid chromatography (HPLC). Finally, mutants T133LS134A and S339V with bifunctional activity were obtained. In addition to bifunctional activities of BAS and CHS, the modified PcPKS1 had much higher BAS activity than that of the wild type PcPKS1 under the conditions of pH 7.0 and pH 9.0, respectively. It provides a theoretical basis for future use of PcPKS1 in genetic engineering to regulate the biosynthesis of flavonoids and raspberry ketones.


Asunto(s)
Fallopia japonica , Secuencia de Aminoácidos , Fallopia japonica/genética , Fallopia japonica/metabolismo , Sintasas Poliquetidas/química , Acetona , Mutagénesis Sitio-Dirigida , Flavonoides/química , Flavonoides/metabolismo , Aciltransferasas/metabolismo
9.
Biochemistry ; 62(17): 2677-2688, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37556730

RESUMEN

Polyketide synthases (PKSs) are megaenzymes that form chemically diverse polyketides and are found within the genomes of nearly all classes of life. We recently discovered the type I PKS from the apicomplexan parasite Toxoplasma gondii, TgPKS2, which contains a unique putative chain release mechanism that includes ketosynthase (KS) and thioester reductase (TR) domains. Our bioinformatic analysis of the thioester reductase of TgPKS2, TgTR, suggests differences compared to other systems and hints at a possibly conserved release mechanism within the apicomplexan subclass Coccidia. To evaluate this release module, we first isolated TgTR and observed that it is capable of 4 electron (4e-) reduction of octanoyl-CoA to the primary alcohol, octanol, utilizing NADH. TgTR was also capable of generating octanol in the presence of octanal and NADH, but no reactions were observed when NADPH was supplied as a cofactor. To biochemically characterize the protein, we measured the catalytic efficiency of TgTR using a fluorescence assay and determined the TgTR binding affinity for cofactor and substrates using isothermal titration calorimetry (ITC). We additionally show that TgTR is capable of reducing an acyl carrier protein (ACP)-tethered substrate by liquid chromatography mass spectrometry and determine that TgTR binds to holo-TgACP4, its predicted cognate ACP, with a KD of 5.75 ± 0.77 µM. Finally, our transcriptional analysis shows that TgPKS2 is upregulated ∼4-fold in the parasite's cyst-forming bradyzoite stage compared to tachyzoites. Our study identifies features that distinguish TgPKS2 from well-characterized systems in bacteria and fungi and suggests it aids the T. gondii cyst stage.


Asunto(s)
NAD , Sintasas Poliquetidas , Sintasas Poliquetidas/química , NAD/metabolismo , Proteína Transportadora de Acilo , Oxidorreductasas/metabolismo
10.
Structure ; 31(9): 1109-1120.e3, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37348494

RESUMEN

The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.


Asunto(s)
Péptidos , Sintasas Poliquetidas , Sintasas Poliquetidas/química
11.
Angew Chem Int Ed Engl ; 62(34): e202304481, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37216334

RESUMEN

Modular trans-acyltransferase polyketide synthases (trans-AT PKSs) are enzymatic assembly lines that biosynthesize complex polyketide natural products. Relative to their better studied cis-AT counterparts, the trans-AT PKSs introduce remarkable chemical diversity into their polyketide products. A notable example is the lobatamide A PKS, which incorporates a methylated oxime. Here we demonstrate biochemically that this functionality is installed on-line by an unusual oxygenase-containing bimodule. Furthermore, analysis of the oxygenase crystal structure coupled with site-directed mutagenesis allows us to propose a model for catalysis, as well as identifying key protein-protein interactions that support this chemistry. Overall, our work adds oxime-forming machinery to the biomolecular toolbox available for trans-AT PKS engineering, opening the way to introducing such masked aldehyde functionalities into diverse polyketides.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Catálisis
12.
Biochemistry ; 62(11): 1589-1593, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37184546

RESUMEN

Fragment antigen-binding domains of antibodies (Fabs) are powerful probes of structure-function relationships of assembly line polyketide synthases (PKSs). We report the discovery and characterization of Fabs interrogating the structure and function of the ketosynthase-acyltransferase (KS-AT) core of Module 2 of the 6-deoxyerythronolide B synthase (DEBS). Two Fabs (AC2 and BB1) were identified to potently inhibit the catalytic activity of Module 2. Both AC2 and BB1 were found to modulate ACP-mediated reactions catalyzed by this module, albeit by distinct mechanisms. AC2 primarily affects the rate (kcat), whereas BB1 increases the KM of an ACP-mediated reaction. A third Fab, AA5, binds to the KS-AT fragment of DEBS Module 2 without altering either parameter; it is phenotypically reminiscent of a previously characterized Fab, 1B2, shown to principally recognize the N-terminal helical docking domain of DEBS Module 3. Crystal structures of AA5 and 1B2 bound to the KS-AT fragment of Module 2 were solved to 2.70 and 2.65 Å resolution, respectively, and revealed entirely distinct recognition features of the two antibodies. The new tools and insights reported here pave the way toward advancing our understanding of the structure-function relationships of DEBS Module 2, arguably the most well-studied module of an assembly line PKS.


Asunto(s)
Eritromicina , Sintasas Poliquetidas , Sintasas Poliquetidas/química , Aciltransferasas/química , Anticuerpos
13.
ACS Chem Biol ; 18(5): 1060-1065, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37074142

RESUMEN

Natural products containing the α-pyrone moiety are produced by polyketide synthases (PKSs) in bacteria, fungi, and plants. The conserved biosynthetic logic for the production of the α-pyrone moiety involves the cyclization of a triketide intermediate which also off-loads the polyketide from the activating thioester. In this study, we show that truncating a tetraketide natural product producing PKS assembly line allows for a thioesterase-independent off-loading of an α-pyrone polyketide natural product, one which we find to be natively present in the extracts of the bacterium that otherwise furnishes the tetraketide natural product. By engineering the truncated PKS in vitro, we demonstrate that a ketosynthase (KS) domain with relaxed substrate selectivity when coupled with in trans acylation of polyketide extender units can expand the chemical space of α-pyrone polyketide natural products. Findings from this study point toward heterologous intermolecular protein-protein interactions being detrimental to the efficiency of engineered PKS assembly lines.


Asunto(s)
Productos Biológicos , Policétidos , Sintasas Poliquetidas/química , Pironas/química , Bacterias
14.
Structure ; 31(6): 700-712.e4, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37059096

RESUMEN

The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.


Asunto(s)
Escherichia coli , Sintasas Poliquetidas , Sintasas Poliquetidas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo
15.
Harmful Algae ; 123: 102391, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894212

RESUMEN

The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.


Asunto(s)
Dinoflagelados , Policétidos , Dinoflagelados/genética , Dinoflagelados/metabolismo , Transcriptoma , Ecosistema , Perfilación de la Expresión Génica/métodos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo
16.
Chembiochem ; 24(9): e202200775, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36856079

RESUMEN

Bioinformatics has become an indispensable tool for natural products research in the genomic era. One of the key challenges is to accurately convert sequence data of a biosynthetic gene cluster into chemical information such as the enzymatic function or the biosynthetic product structure. Type II polyketide synthase is the most bioinformatically well-studied class of non-modular biosynthetic machinery and represents a model system to showcase bioinformatic applications in natural products research. This review takes a bioinformatics-centered perspective and summarizes the past advances and future opportunities of bioinformatics-guided research on type II polyketide synthases. How bioinformatics has contributed to deepen the chemical understanding of type II PKSs will be discussed with the focus on enzymology, evolution, structural prediction of the biosynthetic products, genome mining, and the global analyses of their polyketide products.


Asunto(s)
Productos Biológicos , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Modelos Biológicos , Productos Biológicos/química , Biología Computacional
17.
Microb Genom ; 9(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36951894

RESUMEN

Nature serves as a rich source of molecules with immense chemical diversity. Aptly named, these 'natural products' boast a wide variety of environmental, medicinal and industrial applications. Type II polyketides, in particular, confer substantial medicinal benefits, including antibacterial, antifungal, anticancer and anti-inflammatory properties. These molecules are produced by enzyme assemblies known as type II polyketide synthases (PKSs), which use domains such as the ketosynthase chain-length factor and acyl carrier protein to produce polyketides with varying lengths, cyclization patterns and oxidation states. In this work, we use a novel bioinformatic workflow to identify biosynthetic gene clusters (BGCs) that code for the core type II PKS enzymes. This method does not rely on annotation and thus was able to unearth previously 'hidden' type II PKS BGCs. This work led us to identify over 6000 putative type II PKS BGCs spanning a diverse set of microbial phyla, nearly double those found in most recent studies. Notably, many of these newly identified BGCs were found in non-actinobacteria, which are relatively underexplored as sources of type II polyketides. Results from this work lay an important foundation for future bioprospecting and engineering efforts that will enable sustainable access to diverse and structurally complex molecules with medicinally relevant properties.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Nucleótidos , Policétidos/metabolismo , Familia de Multigenes
18.
Proc Natl Acad Sci U S A ; 120(9): e2220468120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802426

RESUMEN

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.


Asunto(s)
Productos Biológicos , Escherichia coli , Escherichia coli/genética , Antraquinonas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Enediinos/química , Antibióticos Antineoplásicos
19.
J Am Chem Soc ; 145(9): 5017-5028, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36821526

RESUMEN

The decarbonylation reaction has been developed significantly in organic chemistry as an effective approach to various synthetic applications, but enzymatic precedents for this reaction are rare. Based on investigations into the hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line of barbamide, we report an on-line α-ketothioester decarbonylation reaction that leads to one-carbon truncation of the elongating skeleton. This enzymatic editing reaction occurs in the first round of lipopeptide extension and modification involving the multienzymes BarE and BarF, which successively house an NRPS module to initiate the biosynthesis and a PKS module to catalyze the first round of chain extension. Starting with processing a leucine-derived α-ketoacyl starter, the ketosynthase domain in BarE displays an unusual dual activity that results in net one-carbon chain elongation. It extrudes carbon monoxide from α-keto-isocaproyl thioester and then mediates decarboxylative condenses of the resultant isovaleryl thioester with malonyl thioester to form a diketide intermediate, followed by BarF-based O-methylation to stabilize the enol form of the ß-carbonyl and afford an unusual E-double bond. Biochemical characterization, chemical synthesis, computational analysis, and the experimental outcome of site-directed mutagenesis illustrate the extraordinary catalytic capability of this ketosynthase domain. This work furthers the appreciation of assembly line chemistry and opens the door to new approaches for skeleton editing/engineering of related molecules using synthetic biology approaches.


Asunto(s)
Sintasas Poliquetidas , Tiazoles , Sintasas Poliquetidas/química , Mutagénesis Sitio-Dirigida , Esqueleto
20.
Nucleic Acids Res ; 51(D1): D532-D538, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36416273

RESUMEN

Megasynthase enzymes such as type I modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) play a central role in microbial chemical warfare because they can evolve rapidly by shuffling parts (catalytic domains) to produce novel chemicals. If we can understand the design rules to reshuffle these parts, PKSs and NRPSs will provide a systematic and modular way to synthesize millions of molecules including pharmaceuticals, biomaterials, and biofuels. However, PKS and NRPS engineering remains difficult due to a limited understanding of the determinants of PKS and NRPS fold and function. We developed ClusterCAD to streamline and simplify the process of designing and testing engineered PKS variants. Here, we present the highly improved ClusterCAD 2.0 release, available at https://clustercad.jbei.org. ClusterCAD 2.0 boasts support for PKS-NRPS hybrid and NRPS clusters in addition to PKS clusters; a vastly enlarged database of curated PKS, PKS-NRPS hybrid, and NRPS clusters; a diverse set of chemical 'starters' and loading modules; the new Domain Architecture Cluster Search Tool; and an offline Jupyter Notebook workspace, among other improvements. Together these features massively expand the chemical space that can be accessed by enzymes engineered with ClusterCAD.


Asunto(s)
Péptido Sintasas , Sintasas Poliquetidas , Programas Informáticos , Péptido Sintasas/biosíntesis , Péptido Sintasas/química , Péptido Sintasas/genética , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Biotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...