Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1384284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725451

RESUMEN

Japanese spotted fever (JSF) is caused by Rickettsia japonica, mainly vectored by hard ticks. However, whether R. japonica can be transmitted by other arthropods remains unknown. Moreover, it is of interest to investigate whether other Rickettsia species cause spotted fever in endemic areas. In this study, a survey of Rickettsia species was performed in hematophagous arthropods (mosquitoes, tabanids, and ticks) from endemic areas for JSF in Hubei Province, central China. The results showed that the diversity and prevalence of Rickettsia species in mosquitoes are low, suggesting that mosquitoes may not be the vector of zoonotic Rickettsia species. A novel Rickettsia species showed a high prevalence (16.31%, 23/141) in tabanids and was named "Candidatus Rickettsia tabanidii." It is closely related to Rickettsia from fleas and mosquitoes; however, its pathogenicity in humans needs further investigation. Five Rickettsia species were identified in ticks. Rickettsia japonica, the agent of JSF, was detected only in Haemaphysalis longicornis and Haemaphysalis hystricis, suggesting that they may be the major vectors of R. japonica. Notably, two novel species were identified in H. hystricis ticks, one belonging to the spotted fever group and the other potentially belonging to the ancestral group. The latter one named "Candidatus Rickettsia hubeiensis" may provide valuable insight into the evolutionary history of Rickettsia.


Asunto(s)
Filogenia , Rickettsia , Rickettsiosis Exantemáticas , Animales , Rickettsia/aislamiento & purificación , Rickettsia/genética , Rickettsia/clasificación , China/epidemiología , Rickettsiosis Exantemáticas/microbiología , Rickettsiosis Exantemáticas/epidemiología , Garrapatas/microbiología , Humanos , Artrópodos/microbiología , ADN Bacteriano/genética , Culicidae/microbiología , ARN Ribosómico 16S/genética , Enfermedades Endémicas , Análisis de Secuencia de ADN , Siphonaptera/microbiología
2.
Trends Parasitol ; 40(4): 324-337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458883

RESUMEN

Ctenocephalides felis, the cat flea, is among the most prevalent and widely dispersed vectors worldwide. Unfortunately, research on C. felis and associated pathogens (Bartonella and Rickettsia spp.) lags behind that of other vectors and vector-borne pathogens. Therefore, we aimed to review fundamental aspects of C. felis as a vector (behavior, epidemiology, phylogenetics, immunology, and microbiome composition) with an emphasis on key techniques and research avenues employed in other vector species. Future laboratory C. felis experimental infections with Bartonella, Rickettsia, and Wolbachia species/strains should examine the vector-pathogen interface utilizing contemporary visualization, transcriptomic, and gene-editing techniques. Further environmental sampling will inform the range and prevalence of C. felis and associated pathogens, improving the accuracy of vector and pathogen modeling to improve infection/infestation risk assessment and diagnostic recommendations.


Asunto(s)
Bartonella , Enfermedades de los Gatos , Ctenocephalides , Felis , Infestaciones por Pulgas , Rickettsia felis , Rickettsia , Siphonaptera , Animales , Gatos , Ctenocephalides/microbiología , Infestaciones por Pulgas/veterinaria , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/microbiología , Biología , Rickettsia felis/genética , Siphonaptera/microbiología
3.
PLoS Negl Trop Dis ; 18(3): e0012036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452122

RESUMEN

Plague is a flea-borne fatal disease caused by the bacterium Yersinia pestis, which persists in rural Madagascar. Although fleas parasitizing rats are considered the primary vectors of Y. pestis, the human flea, Pulex irritans, is abundant in human habitations in Madagascar, and has been found naturally infected by the plague bacterium during outbreaks. While P. irritans may therefore play a role in plague transmission if present in plague endemic areas, the factors associated with infestation and human exposure within such regions are little explored. To determine the socio-ecological risk factors associated with P. irritans infestation in rural households in plague-endemic areas of Madagascar, we used a mixed-methods approach, integrating results from P. irritans sampling, a household survey instrument, and an observational checklist. Using previously published vectorial capacity data, the minimal P. irritans index required for interhuman bubonic plague transmission was modeled to determine whether household infestations were enough to pose a plague transmission risk. Socio-ecological risk factors associated with a high P. irritans index were then identified for enrolled households using generalized linear models. Household flea abundance was also modeled using the same set of predictors. A high P. irritans index occurred in approximately one third of households and was primarily associated with having a traditional dirt floor covered with a plant fiber mat. Interventions targeting home improvement and livestock housing management may alleviate flea abundance and plague risk in rural villages experiencing high P. irritans infestation. As plague-control resources are limited in developing countries such as Madagascar, identifying the household parameters and human behaviors favoring flea abundance, such as those identified in this study, are key to developing preventive measures that can be implemented at the community level.


Asunto(s)
Infestaciones por Pulgas , Peste , Siphonaptera , Yersinia pestis , Humanos , Animales , Ratas , Peste/microbiología , Madagascar/epidemiología , Siphonaptera/microbiología , Infestaciones por Pulgas/epidemiología , Factores de Riesgo
4.
Comp Immunol Microbiol Infect Dis ; 107: 102153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460359

RESUMEN

Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.


Asunto(s)
Bartonella , Ctenocephalides , Felis , Infestaciones por Pulgas , Rickettsia felis , Rickettsia , Siphonaptera , Animales , Perros , Siphonaptera/microbiología , España/epidemiología , Ctenocephalides/genética , Rickettsia felis/genética , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria , Infestaciones por Pulgas/microbiología , Bartonella/genética
5.
Vector Borne Zoonotic Dis ; 24(4): 201-213, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38422214

RESUMEN

Purpose: Flea-borne rickettsioses, collectively referred to as a term for etiological agents Rickettsia felis, Rickettsia typhi, and RFLOs (R. felis-like organisms), has become a public health concern around the world, specifically in the United States. Due to a shared arthropod vector (the cat flea) and clinical signs, discriminating between Rickettsia species has proven difficult. While the effects of microbial coinfections in the vector can result in antagonistic or synergistic interrelationships, subsequently altering potential human exposure and disease, the impact of bacterial interactions within flea populations remains poorly defined. Methods: In this study, in vitro and in vivo systems were utilized to assess rickettsial interactions in arthropods. Results: Coinfection of both R. felis and R. typhi within a tick-derived cell line indicated that the two species could infect the same cell, but distinct growth kinetics led to reduced R. felis growth over time, regardless of infection order. Sequential flea coinfections revealed the vector could acquire both Rickettsia spp. and sustain coinfection for up to 2 weeks, but rickettsial loads in coinfected fleas and feces were altered during coinfection. Conclusion: Altered rickettsial loads during coinfection suggest R. felis and R. typhi interactions may enhance the transmission potential of either agent. Thus, this study provides a functional foundation to disentangle transmission events propelled by complex interspecies relationships during vector coinfections.


Asunto(s)
Enfermedades de los Gatos , Coinfección , Ctenocephalides , Felis , Infestaciones por Pulgas , Rickettsia felis , Rickettsia , Siphonaptera , Animales , Humanos , Gatos , Rickettsia typhi , Ctenocephalides/microbiología , Coinfección/veterinaria , Siphonaptera/microbiología , Infestaciones por Pulgas/veterinaria
6.
Acta Parasitol ; 69(1): 776-784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418764

RESUMEN

INTRODUCTION: To date, a total of 2574 validated flea species have been discovered. Vermipsyllidae is a family of fleas that comprises at least eight species. Vermipsylla is a genus of the family Vermipsyllidae within the order Siphonaptera of fleas. Here a novel Vermipsylla species was described, and rickettsial agent was also detected in it. METHODS: A total of 128 fleas were collected directly from 260 pastured sheep in China. Of these, eight representative fleas (four males and four females) were identified by key morphological features. Meanwhile, 120 flea DNAs, including six flea samples for molecular taxonomy, were subjected to Rickettsia spp. DNA detection. The molecular identity of fleas was determined by amplification and sequenmce analysis of four genetic markers (the 28S rDNA genes, the 18S rDNA genes, the mitochondrial cytochrome c oxidase subunit I and subunit II). In addition, five Rickettsia-specific gene fragments were used to identify the species of the rickettsial agents. The amplified products were sequenced and phylogenetically analyzed. RESULTS: The morphological characteristics of the flea species identified in this study were similar to Vermipsylla alakurt, but presented difference in hair number of the metepimeron, the third tergum, the genitals and the tibiae of hind leg. The 18S rDNA, 28S rDNA and COII genetic markers from fleas showed the highest identity to those of V. alakurt, shared 98.45% (954/969), 95.81% (892/931) and 85.86% (571/665) similarities, respectively. However, the COI sequence showed the highest identity to that of Dorcadia ioffi with 88.48% (576/651) similarity. Rickettsia raoutii tested positive in 14.17% (17/120) flea DNA samples. CONCLUSION: Our study reports the detection of R. raoultii in V. alakurt-like fleas infesting sheep in China.


Asunto(s)
Infestaciones por Pulgas , Filogenia , Rickettsia , Enfermedades de las Ovejas , Siphonaptera , Animales , Rickettsia/aislamiento & purificación , Rickettsia/genética , Rickettsia/clasificación , Siphonaptera/microbiología , Ovinos , China , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/microbiología , Infestaciones por Pulgas/veterinaria , Infestaciones por Pulgas/parasitología , Masculino , Femenino , Infecciones por Rickettsia/veterinaria , Infecciones por Rickettsia/microbiología , ADN Ribosómico/genética , ADN Ribosómico/química , ADN Bacteriano/genética
7.
Am J Trop Med Hyg ; 110(1): 150-154, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38052087

RESUMEN

Flea-borne typhus is a vector-borne disease caused by Rickettsia typhi that occurs worldwide, except in Antarctica. In the United States, most cases are restricted to California, Hawaii, and Texas. The syndrome is characterized by nonspecific signs and symptoms: fever, headache, rash, arthralgia, cough, hepatosplenomegaly, diarrhea, and abdominal pain. Although flea-borne typhus can cause pulmonary, neurological, and renal complications, the cardiovascular system is rarely affected. We present a case of endocarditis resulting from flea-borne typhus diagnosed by blood microbial cell-free DNA testing that required valve replacement and antibiotic therapy for 6 months. In addition, we review 20 cases of presumed and confirmed cardiovascular manifestations resulting from flea-borne typhus in the literature.


Asunto(s)
Siphonaptera , Tifus Endémico Transmitido por Pulgas , Tifus Epidémico Transmitido por Piojos , Humanos , Animales , Tifus Epidémico Transmitido por Piojos/tratamiento farmacológico , Tifus Endémico Transmitido por Pulgas/diagnóstico , Rickettsia typhi , Antibacterianos/uso terapéutico , Siphonaptera/microbiología
8.
Med Vet Entomol ; 38(1): 23-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37736686

RESUMEN

Outbreaks of acute encephalitis syndrome (AES) with unknown aetiology are reported every year in Gorakhpur district, Uttar Pradesh, India, and Orientia tsutsugamushi, the rickettsial pathogen, responsible for scrub typhus has been attributed as the primary cause of AES problem. However, information on the prevalence of other rickettsial infections is lacking. Hence, this study was carried out to assess any occurrence of tick- and flea-borne rickettsial agents in villages reporting AES cases in this district. In total, 825 peridomestic small mammals were trapped, by setting 9254 Sherman traps in four villages with a trap success rate of 8.9%. The Asian house shrew, Suncus murinus, constituted the predominant animal species (56.2%) and contributed to the maximum number (87.37%) of ectoparasites. In total, 1552 ectoparasites comprising two species of ticks and one species each of flea and louse were retrieved from the trapped rodents/shrews. Rhipicephalus sanguineus, the brown dog tick, was the predominant species retrieved from the trapped rodents/shrews, and the overall infestation rate was 1.75 per animal. In total, 4428 ectoparasites comprising five tick species, three louse species and one flea species were collected from 1798 domestic animals screened. Rhipicephalus microplus was the predominant tick species collected from the domestic animals. The cat flea, Ctenocephalides felis, constituted 1.5% of the total ectoparasites. Of all the ectoparasite samples (5980) from domestic animals and rodents, tested as 1211 pools through real-time PCR assays, 64 pools were positive for 23S rRNA gene of rickettsial agents. The PCR-positive samples were subjected to multi-locus sequence typing (MLST). In BLAST and phylogenetic analysis, the ectoparasites were found to harbour Rickettsia asembonensis (n = 9), Rickettsia conorii (n = 3), Rickettsia massiliae (n = 29) and Candidatus Rickettsia senegalensis (n = 1). A total of 22 pools were detected to have multiple rickettsial agents. The prevalence of fleas and high abundance of tick vectors with natural infections of rickettsial agents indicates the risk of transmission of tick- and flea-borne rickettsial diseases in rural villages of Gorakhpur. Further epidemiological studies are required to confirm the transmission of these agents to humans.


Asunto(s)
Encefalopatía Aguda Febril , Enfermedades de los Gatos , Ctenocephalides , Enfermedades de los Perros , Rhipicephalus sanguineus , Infecciones por Rickettsia , Rickettsia , Siphonaptera , Perros , Gatos , Animales , Humanos , Siphonaptera/microbiología , Tipificación de Secuencias Multilocus/veterinaria , Musarañas/genética , Musarañas/microbiología , Encefalopatía Aguda Febril/veterinaria , Filogenia , Prevalencia , Rhipicephalus sanguineus/genética , Rickettsia/genética , Infecciones por Rickettsia/epidemiología , Infecciones por Rickettsia/veterinaria , Infecciones por Rickettsia/microbiología , Ctenocephalides/microbiología
9.
J Med Entomol ; 61(1): 201-211, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038662

RESUMEN

Plague is a zoonotic vector-borne disease caused by the bacterium Yersinia pestis. In Madagascar, it persists in identified foci, where it is a threat to public health generally from September to April. A more complete understanding of how the disease persists could guide control strategies. Fleas are the main vector for transmission between small mammal hosts and humans, and fleas likely play a role in the maintenance of plague. This study characterized the dynamics of flea populations in plague foci alongside the occurrence of human cases. From 2018 to 2020, small mammals were trapped at sites in the central Highlands of Madagascar. A total of 2,762 small mammals were captured and 5,295 fleas were collected. The analysis examines 2 plague vector species in Madagascar (Synopsyllus fonquerniei and Xenopsylla cheopis). Generalized linear models were used to relate flea abundance to abiotic factors, with adjustments for trap location and flea species. We observed significant effects of abiotic factors on the abundance, intensity, and infestation rate by the outdoor-associated flea species, S. fonquerniei, but weak seasonality for the indoor-associated flea species, X. cheopis. A difference in the timing of peak abundance was observed between the 2 flea species during and outside the plague season. While the present study did not identify a clear link between flea population dynamics and plague maintenance, as only one collected X. cheopis was infected, the results presented herein can be used by local health authorities to improve monitoring and control strategies of plague vector fleas in Madagascar.


Asunto(s)
Infestaciones por Pulgas , Peste , Siphonaptera , Yersinia pestis , Animales , Humanos , Peste/microbiología , Siphonaptera/microbiología , Insectos Vectores/microbiología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria , Mamíferos , Dinámica Poblacional
11.
Am J Trop Med Hyg ; 110(1): 142-149, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38109767

RESUMEN

Flea-borne typhus (FBT), also referred to as murine typhus, is an acute febrile disease in humans caused by the bacteria Rickettsia typhi. Currently, cases of FBT are reported for public health surveillance purposes (i.e., to detect incidence and outbreaks) in a few U.S. states. In California, healthcare providers and testing laboratories are mandated to report to their respective local public health jurisdictions whenever R. typhi or antibodies reactive to R. typhi are detected in a patient, who then report cases to state health department. In this study, we characterize the epidemiology of flea-borne typhus cases in California from 2011 to 2019. A total of 881 cases were reported during this period, with most cases reported among residents of Los Angeles and Orange Counties (97%). Demographics, animal exposures, and clinical courses for case patients were summarized. Additionally, spatiotemporal cluster analyses pointed to five areas in southern California with persistent FBT transmission.


Asunto(s)
Siphonaptera , Tifus Endémico Transmitido por Pulgas , Tifus Epidémico Transmitido por Piojos , Animales , Ratones , Humanos , Tifus Endémico Transmitido por Pulgas/diagnóstico , Rickettsia typhi , California/epidemiología , Siphonaptera/microbiología
12.
Acta Trop ; 248: 107034, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793492

RESUMEN

Rickettsia felis is an emerging flea-borne spotted fever pathogen that causes febrile illness in humans. In Vietnam, R. felis was detected in hospitalized patients, but there is no information on its presence in the Vietnamese community. This cross-sectional study aimed to determine the presence of R. felis in humans of the Central Highlands of Vietnam. A total of 158 blood and 213 serum samples were subjected to PCR and IFAT, respectively, to detect the presence of R. felis DNA and antibodies against R. felis. PCR assays detected R. felis DNA in four out of 158 blood samples, accounting for a prevalence of 2.53 % (95 % CI: 0.81 %-6.76 %). Phylogenetic analysis indicated the presence of R. felis and R. felis genotype RF2125 in the communities in the Central Highlands of Vietnam. The result of IFAT identified seven out of 213 serum samples (3.29 %, 95 % CI: 1.45 %-6.93 %) positive for antibodies against R. felis. This study was the first to demonstrate the presence of active R. felis infections in the communities in the Central Highlands of Vietnam utilizing both molecular and serological methods.


Asunto(s)
Infecciones por Rickettsia , Rickettsia felis , Rickettsia , Siphonaptera , Animales , Humanos , Rickettsia felis/genética , Infecciones por Rickettsia/microbiología , Filogenia , Estudios Transversales , Vietnam/epidemiología , Siphonaptera/microbiología , ADN , Rickettsia/genética
13.
Comp Immunol Microbiol Infect Dis ; 101: 102042, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660454

RESUMEN

The genus Bartonella (Hyphomicrobiales: Bartonellaceae) encompasses facultative intracellular α-proteobacteria that parasite erythrocytes and endothelial cells from a wide range of vertebrate hosts and can cause disease in animals and humans. Considering the large diversity of vertebrate species that may act as reservoirs and arthropod species that may be associated with Bartonella transmission, the exposure of animals and humans to these microorganisms is likely underestimated. The present study aimed to investigate the occurrence of Bartonella sp. in wild tapirs (Tapirus terrestris; Perissodactyla: Tapiridae) from two biomes in Brazil: Pantanal and Cerrado. Ninety-nine GPS-monitored wild tapirs were sampled in Pantanal (n = 61/99) and Cerrado (n = 38/99). A qPCR (quantitative real-time polymerase chain reaction) assay targeting the nuoG gene was used for the screening for Bartonella spp. DNA. Positive samples were additionally subjected to conventional PCR assays targeting five molecular markers (ribC, gltA, rpoB, groEL, ITS). Eight (8/99; 08,08%) animals were positive in the qPCR assay for Bartonella spp.: 7 from Cerrado (7/8; 87.5%) and 1 from Pantanal (1/8; 12.5%). The 5 Bartonella ribC sequences obtained from tapirs' blood samples grouped together with Bartonella henselae obtained from cats, humans, wild felids and Ctenocephalides felis (Siphonaptera: Pulicidae) fleas. To the best of author's knowledge, this is the first report of Bartonella sp. in Tapirus terrestris. This finding contributes to the understanding of the occurrence of B henselae in wild mammals from Brazil as well as expands the knowledge regarding the potential vector-borne pathogens that may affect wild tapis from Cerrado and Pantanal biomes.


Asunto(s)
Infecciones por Bartonella , Bartonella , Siphonaptera , Animales , Humanos , Bartonella/genética , Brasil/epidemiología , Células Endoteliales , Mamíferos/genética , Siphonaptera/microbiología , Perisodáctilos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/veterinaria , Infecciones por Bartonella/diagnóstico
15.
J Med Entomol ; 60(5): 1073-1080, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37410023

RESUMEN

Lagomorphs-principally rabbits and hares-have been implicated as hosts for vectors and reservoirs for pathogens associated with multiple rickettsial diseases. Western North America is home to diverse rickettsial pathogens which circulate among multiple wild and domestic hosts and tick and flea vectors. The purpose of this study was to assess lagomorphs and their ectoparasites in 2 locations in northern Baja California, Mexico, for exposure to and infection with rickettsial organisms. In total, 55 desert cottontail rabbits (Sylvilagus audubonii) (Baird) and 2 black-tailed jackrabbits (Lepus californicus) (Gray) were captured. In Mexicali, ticks were collected from 44% (14/32) of individuals, and were exclusively Haemaphysalis leporispalustrisNeumann (Acari: Ixodidae); in Ensenada, ticks were collected from 70% (16/23) individuals, and 95% were Dermacentor parumapertus. Euhoplopsyllus glacialis affinisBaker (Siphonaptera: Pulicidae) fleas were collected from 72% of rabbits and 1 jackrabbit from Mexicali, while the few fleas found on hosts in Ensenada were Echidnophaga gallinaceaWestwood (Siphonaptera: Pulicidae) and Cediopsylla inaequalis(Siphonaptera: Pulicidae). Rickettsia bellii was the only rickettsial organism detected and was identified in 88% of D. parumapertus and 67% of H. leporispalustris ticks from Ensenada. A single tissue sample from a jackrabbit was positive for R. belli (Rickettsiales: Rickettsiaceae). Hosts in Ensenada had a significantly higher prevalence of rickettsial antibodies than hosts in Mexicali (52.3% vs. 21.4%). Although R. bellii is not regarded as pathogenic in humans or other mammals, it may contribute to immunity to other rickettsiae. The marked difference in distribution of ticks, fleas, and rickettsial exposure between the 2 locations suggests that disease transmission risk may vary markedly between communities within the same region.


Asunto(s)
Infestaciones por Pulgas , Liebres , Ixodidae , Lagomorpha , Rickettsia , Siphonaptera , Garrapatas , Animales , Humanos , Conejos , México , Garrapatas/microbiología , Ixodidae/microbiología , Siphonaptera/microbiología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria
16.
Microbiol Spectr ; 11(4): e0046023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458592

RESUMEN

Increasing evidence shows that protein lysine acetylation is involved in almost every aspect of cellular physiology in bacteria. Yersinia pestis is a flea-borne pathogen responsible for millions of human deaths in three global pandemics. However, the functional role of lysine acetylation in this pathogen remains unclear. Here, we found more acetylated proteins and a higher degree of acetylation in Y. pestis grown under mammalian host (Mh) conditions than under flea vector (Fv) conditions, suggesting that protein acetylation could significantly change during fleabite transmission. Comparative acetylome analysis of mutants of YfiQ and CobB, the major acetyltransferase and deacetylase of Y. pestis, respectively, identified 23 YfiQ-dependent and 315 CobB-dependent acetylated proteins. Further results demonstrated that acetylation of Lys73 of the SlyA protein, a MarR-family transcriptional regulator, inhibits its binding to the promoter of target genes, including hmsT that encodes diguanylate cyclase responsible for the synthesis of c-di-GMP, and significantly enhances biofilm formation of Y. pestis. Our study presents the first extensive acetylome data of Y. pestis and a critical resource for the functional study of lysine acetylation in this pathogen. IMPORTANCE Yersinia pestis is the etiological agent of plague, historically responsible for three global pandemics. The 2017 plague epidemic in Madagascar was a reminder that Y. pestis remains a real threat in many parts of the world. Plague is a zoonotic disease that primarily infects rodents via fleabite, and transmission of Y. pestis from infected fleas to mammals requires rapid adaptive responses to adverse host environments to establish infection. Our study provides the first global profiling of lysine acetylation derived from mass spectrometry analysis in Y. pestis. Our data set can serve as a critical resource for the functional study of lysine acetylation in Y. pestis and provides new molecular insight into the physiological role of lysine acetylation in proteins. More importantly, we found that acetylation of Lys73 of SlyA significantly promotes biofilm formation of Y. pestis, indicating that bacteria can use lysine acetylation to fine-tune the expression of genes to improve adaptation.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Animales , Humanos , Yersinia pestis/metabolismo , Peste/microbiología , Lisina/metabolismo , Acetilación , Siphonaptera/microbiología , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mamíferos
17.
Microbiol Spectr ; 11(4): e0020323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37466430

RESUMEN

Yersinia pestis is the etiological agent of plague. Marmota himalayana of the Qinghai-Tibetan plateau is the primary host of flea-borne Y. pestis. This study is the report of isolation of Mu-like bacteriophages of Y. pestis from M. himalayana. The isolation and characterization of four Mu-like phages of Y. pestis were reported, which were named as vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 according to their morphology. Comparative genome analysis revealed that vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 are phylogenetically closest to Escherichia coli phages Mu, D108 and Shigella flexneri phage SfMu. The role of LPS core structure of Y. pestis in the phages' receptor was pinpointed. All the phages exhibit "temperature dependent infection," which is independent of the growth temperature of the host bacteria and dependent of the temperature of phage infection. The phages lyse the host bacteria at 37°C, but enter the lysogenic cycle and become prophages in the chromosome of the host bacteria at 26°C. IMPORTANCE Mu-like bacteriophages of Y. pestis were isolated from M. himalayana of the Qinghai-Tibetan plateau in China. These bacteriophages have a unique temperature dependent life cycle, follow a lytic cycle at the temperature of warm-blooded mammals (37°Ð¡), and enter the lysogenic cycle at the temperature of its flea-vector (26°Ð¡). A switch from the lysogenic to the lytic cycle occurred when lysogenic bacteria were incubated from lower temperature to higher temperature (initially incubating at 26°C and shifting to 37°C). It is speculated that the temperature dependent lifestyle of bacteriophages may affect the population dynamics and pathogenicity of Y. pestis.


Asunto(s)
Bacteriófagos , Peste , Siphonaptera , Yersinia pestis , Animales , Yersinia , Bacteriófagos/genética , Temperatura , Peste/microbiología , Yersinia pestis/genética , Siphonaptera/microbiología , Receptores de Bacteriógrafos , Mamíferos
18.
Parasit Vectors ; 16(1): 211, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349802

RESUMEN

Hedgehogs are small synanthropic mammals that live in rural areas as well as in urban and suburban areas. They can be reservoirs of several microorganisms, including certain pathogenic agents that cause human and animal public health issues. Hedgehogs are often parasitized by blood-sucking arthropods, mainly hard ticks and fleas, which in turn can also carry various vector-born microorganisms of zoonotic importance. Many biotic factors, such as urbanization and agricultural mechanization, have resulted in the destruction of the hedgehog's natural habitats, leading these animals to take refuge near human dwellings, seeking food and shelter in parks and gardens and exposing humans to zoonotic agents that can be transmitted either directly by them or indirectly by their ectoparasites. In this review, we focus on the microorganisms detected in arthropods sampled from hedgehogs worldwide. Several microorganisms have been reported in ticks collected from these animals, including various Borrelia spp., Anaplasma spp., Ehrlichia spp., and Rickettsia spp. species as well as Coxiella burnetii and Leptospira spp. As for fleas, C. burnetii, Rickettsia spp., Wolbachia spp., Mycobacterium spp. and various Bartonella species have been reported. The detection of these microorganisms in arthropods does not necessarily mean that they can be transmitted to humans and animals. While the vector capacity and competence of fleas and ticks for some of these microorganisms has been proven, in other cases the microorganisms may have simply been ingested with blood taken from an infected host. Further investigations are needed to clarify this issue. As hedgehogs are protected animals, handling them is highly regulated, making it difficult to conduct epidemiological studies on them. Their ectoparasites represent a very interesting source of information on microorganisms circulating in populations of these animals, especially vector-born ones.


Asunto(s)
Artrópodos , Bartonella , Infestaciones por Pulgas , Rickettsia , Siphonaptera , Garrapatas , Animales , Humanos , Artrópodos/microbiología , Erizos/parasitología , Mamíferos , Siphonaptera/microbiología , Garrapatas/microbiología
19.
Comp Immunol Microbiol Infect Dis ; 96: 101983, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37099997

RESUMEN

Seventy-five flea pools (one to ten fleas per pool) from 51 Andean foxes (Lycalopex culpaeus) and five South American grey foxes or chillas (Lycalopex griseus) from the Mediterranean region of Chile were analyzed for the presence of DNA of Bartonella spp. and Rickettsia spp. through quantitative real-time PCR for the nouG and gltA genes, respectively. Positive samples were further characterized by conventional PCR protocols, targeting gltA and ITS genes for Bartonella, and gltA, ompA, and ompB genes for Rickettsia. Bartonella was detected in 48 % of the Pulex irritans pools (B. rochalimae in three pools, B. berkhoffii in two pools, B. henselae in one pool), and 8 % of the Ctenocephalides felis felis pools (B. rochalimae, one pool). Rickettsia was confirmed in 11 % of P. irritans pools and 92 % of the Ct. felis pools. Characterization confirmed R. felis in all sequenced Rickettsia-positive pools. All Ct. canis pools were negative. A Ct. felis pool from a wild-found domestic ferret (Mustela putorius furo) also resulted positive for R. felis. Although opportunistic, this survey provides the first description of zoonotic pathogens naturally circulating in fleas parasitizing Chilean free-living carnivores.


Asunto(s)
Bartonella , Carnívoros , Ctenocephalides , Enfermedades de los Perros , Infestaciones por Pulgas , Mustelidae , Rickettsia felis , Rickettsia , Siphonaptera , Perros , Animales , Siphonaptera/microbiología , Bartonella/genética , Rickettsia felis/genética , Zorros , Chile/epidemiología , Hurones/genética , Enfermedades de los Perros/microbiología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/veterinaria , Rickettsia/genética , Ctenocephalides/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
20.
Appl Environ Microbiol ; 89(4): e0209122, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36939324

RESUMEN

Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Animales , Siphonaptera/microbiología , Peste/microbiología , Proventrículo , Microscopía , Insectos Vectores/microbiología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...