Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.031
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732001

RESUMEN

Lipodystrophies (LDs) are rare, complex disorders of the adipose tissue characterized by selective fat loss, altered adipokine profile and metabolic impairment. Sirtuins (SIRTs) are class III NAD+-dependent histone deacetylases linked to fat metabolism. SIRT1 plays a critical role in metabolic health by deacetylating target proteins in tissue types including liver, muscle, and adipose. Circulating SIRT1 levels have been found to be reduced in obesity and increased in anorexia nervosa and patients experiencing weight loss. We evaluated circulating SIRT1 levels in relation to fat levels in 32 lipodystrophic patients affected by congenital or acquired LDs compared to non-LD subjects (24 with anorexia nervosa, 22 normal weight, and 24 with obesity). SIRT1 serum levels were higher in LDs than normal weight subjects (mean ± SEM 4.18 ± 0.48 vs. 2.59 ± 0.20 ng/mL) and subjects with obesity (1.7 ± 0.39 ng/mL), whereas they were close to those measured in anorexia nervosa (3.44 ± 0.46 ng/mL). Our findings show that within the LD group, there was no relationship between SIRT1 levels and the amount of body fat. The mechanisms responsible for secretion and regulation of SIRT1 in LD deserve further investigation.


Asunto(s)
Lipodistrofia , Sirtuina 1 , Humanos , Sirtuina 1/sangre , Sirtuina 1/metabolismo , Femenino , Adulto , Masculino , Lipodistrofia/sangre , Lipodistrofia/metabolismo , Tejido Adiposo/metabolismo , Obesidad/sangre , Obesidad/metabolismo , Adulto Joven , Adolescente , Persona de Mediana Edad , Anorexia Nerviosa/sangre , Anorexia Nerviosa/metabolismo
2.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721924

RESUMEN

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Diálisis Peritoneal , Fibrosis Peritoneal , Alcohol Feniletílico , Ratas Sprague-Dawley , Sirtuina 1 , Animales , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/prevención & control , Sirtuina 1/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Ratas , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Diálisis Peritoneal/efectos adversos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Peritoneo/patología , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Homeostasis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Soluciones para Diálisis
3.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735943

RESUMEN

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Asunto(s)
Glucosa , Células Madre Mesenquimatosas , Mitocondrias , NAD , Osteogénesis , Sirtuina 1 , Células Madre Mesenquimatosas/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Osteogénesis/fisiología , Ratones , Humanos , Animales , Mitocondrias/metabolismo , Glucosa/metabolismo , NAD/metabolismo , Diferenciación Celular
4.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727159

RESUMEN

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Asunto(s)
Glucósidos , Lesión Pulmonar , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenoles , Sirtuina 1 , Animales , Glucósidos/farmacología , Glucósidos/uso terapéutico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Lesión Pulmonar/tratamiento farmacológico , Material Particulado/toxicidad , Material Particulado/efectos adversos , Tamaño de la Partícula , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
5.
Sci Rep ; 14(1): 10271, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704452

RESUMEN

The identification of novel screening tools is imperative to empower the early detection of colorectal cancer (CRC). The influence of the long non-coding RNA maternally expressed gene 3 (MEG3) rs941576 single nucleotide polymorphism on CRC susceptibility remains uninvestigated. This research appraised MEG3 rs941576 association with the risk and clinical features of CRC and obesity-related CRC and its impact on serum MEG3 expression and its targets miR-27a/insulin-like growth factor 1 (IGF1)/IGF binding protein 3 (IGFBP3) and miR-181a/sirtuin 1 (SIRT1), along with the potential of these markers in obesity-related CRC diagnosis. 130 CRC patients (60 non-obese and 70 obese) and 120 cancer-free controls (64 non-obese and 56 obese) were enrolled. MEG3 targets were selected using bioinformatics analysis. MEG3 rs941576 was associated with magnified CRC risk in overall (OR (95% CI) 4.69(1.51-14.57), P = 0.0018) and stratified age and gender groups, but not with obesity-related CRC risk or MEG3/downstream targets' expression. Escalated miR-27a and IGFBP3 and reduced IGF1 serum levels were concomitant with MEG3 downregulation in overall CRC patients versus controls and obese versus non-obese CRC patients. Serum miR-181a and SIRT1 were upregulated in CRC patients versus controls but weren't altered in the obese versus non-obese comparison. Serum miR-181a and miR-27a were superior in overall and obesity-related CRC diagnosis, respectively; meanwhile, IGF1 was superior in distinguishing obese from non-obese CRC patients. Only serum miR-27a was associated with obesity-related CRC risk in multivariate logistic analysis. Among overall CRC patients, MEG3 rs941576 was associated with lymph node (LN) metastasis and tumor stage, serum MEG3 was negatively correlated with tumor stage, while SIRT1 was correlated with the anatomical site. Significant correlations were recorded between MEG3 and anatomical site, SIRT1 and tumor stage, and miR-27a/IGFBP3 and LN metastasis among obese CRC patients, while IGF1 was correlated with tumor stage and LN metastasis among non-obese CRC patients. Conclusively, this study advocates MEG3 rs941576 as a novel genetic marker of CRC susceptibility and prognosis. Our findings accentuate circulating MEG3/miR-27a/IGF1/IGFBP3, especially miR-27a as valuable markers for the early detection of obesity-related CRC. This axis along with SIRT1 could benefit obesity-related CRC prognosis.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , MicroARNs , Obesidad , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante , Sirtuina 1 , Humanos , ARN Largo no Codificante/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Masculino , MicroARNs/genética , Obesidad/complicaciones , Obesidad/genética , Persona de Mediana Edad , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Sirtuina 1/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Regulación Neoplásica de la Expresión Génica , Anciano , Estudios de Casos y Controles , Factores de Riesgo
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 675-681, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708500

RESUMEN

OBJECTIVE: To investigate the role of irisin in exercise-induced improvement of renal function in type 2 diabetic rats. METHODS: Forty male SD rats aged 4-6 weeks were randomized into normal control group, type 2 diabetes mellitus model group, diabetic exercise (DE) group and diabetic irisin (DI) group (n=8). The rats in DE group were trained with treadmill running for 8 weeks, and those in DI group were given scheduled irisin injections for 8 weeks. After the treatments, blood biochemical parameters of the rats were examined, and renal histopathology was observed with HE, Masson and PAS staining. Western blotting was used to detect the protein expression levels in the rats'kidneys. RESULTS: The diabetic rats showed significantly increased levels of fasting insulin, total cholesterol, triglyceride, serum creatinine and blood urea nitrogen with lowered serum irisin level (all P < 0.05). Compared with those in DM group, total cholesterol, triglyceride, serum creatinine and blood urea nitrogen levels were decreased and serum irisin levels were increased in both DE and DI groups (all P < 0.05). The rats in DM group showed obvious structural disorders and collagen fiber deposition in the kidneys, which were significantly improved in DE group and DI group. Both regular exercises and irisin injections significantly ameliorated the reduction of FNDC5, LC3-II/I, Atg7, Beclin-1, p-AMPK, AMPK and SIRT1 protein expressions and lowered of p62 protein expression in the kidneys of the diabetic rats (all P < 0.05). CONCLUSION: Both exercise and exogenous irisin treatment improve nephropathy in type 2 diabetic rats possibly due to irisin-mediated activation of the AMPK/SIRT1 pathway in the kidneys to promote renal autophagy.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fibronectinas , Riñón , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Sirtuina 1 , Animales , Fibronectinas/metabolismo , Masculino , Ratas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Sirtuina 1/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/terapia , Beclina-1/metabolismo , Creatinina/sangre , Nitrógeno de la Urea Sanguínea , Insulina , Triglicéridos/metabolismo , Triglicéridos/sangre , Colesterol/sangre , Proteínas Quinasas Activadas por AMP/metabolismo
7.
Eur Rev Med Pharmacol Sci ; 28(8): 3112-3119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38708470

RESUMEN

OBJECTIVE: Methotrexate (MTX), a widely used chemotherapeutic and immunosuppressive agent, is associated with hepatotoxicity, leading to liver fibrosis and cirrhosis. This study explores the regenerative and reparative effects of fisetin, a flavonoid with known antioxidant and anti-inflammatory properties, on MTX-induced liver fibrosis in a rat model. MATERIALS AND METHODS: Thirty-six male Wistar albino rats were divided into normal, MTX and saline, and MTX and fisetin. Liver injury was induced in the latter two groups using a single intraperitoneal dose of MTX (20 mg/kg). Fisetin (50 mg/kg/day) or saline was administered intraperitoneally for ten days. After sacrifice, liver tissues were subjected to histopathological evaluation and biochemical analyses, including Transforming Growth Factor-ß1 (TGF-beta), sirtuins-1 (SIRT-1), malondialdehyde (MDA), cytokeratin 18, thrombospondin 1, and alanine transaminase (ALT) levels. RESULTS: MTX administration significantly increased liver injury markers, including TGF-beta, MDA, cytokeratin 18, thrombospondin 1, and ALT, while reducing SIRT-1 levels. Fisetin treatment attenuated these effects, demonstrating its potential therapeutic impact. Histopathological analysis confirmed that fisetin mitigated MTX-induced hepatocyte necrosis, fibrosis, and cellular infiltration. CONCLUSIONS: This study proves that fisetin administration can alleviate MTX-induced liver damage in rats. The reduction in oxidative stress, inflammation, and apoptosis, along with the histological improvements, suggests fisetin's potential as a therapeutic agent against MTX-induced hepatotoxicity. Further investigations and clinical studies are warranted to validate these findings and assess fisetin's translational potential in human cases of MTX-induced liver damage.


Asunto(s)
Flavonoles , Cirrosis Hepática , Metotrexato , Ratas Wistar , Sirtuina 1 , Metotrexato/efectos adversos , Animales , Masculino , Ratas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Flavonoles/farmacología , Flavonoides/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Antioxidantes/farmacología
8.
Cell Mol Life Sci ; 81(1): 204, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700532

RESUMEN

The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.


Asunto(s)
Glucólisis , Homeostasis , Ratones Noqueados , Osteoblastos , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Osteoblastos/metabolismo , Ratones , Acetilación , Huesos/metabolismo , Osteogénesis , Fémur/metabolismo
9.
J Physiol Pharmacol ; 75(2): 123-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736260

RESUMEN

Myocardial infarction (MI) is a significant global health issue and the leading cause of death. Myocardial infarction (MI) is characterized by events such as damage to heart cells and stress generated by inflammation. Punicalagin (PCN), a naturally occurring bioactive compound found in pomegranates, exhibits a diverse array of pharmacological effects against many disorders. This study aimed to assess the preventive impact of PCN, with its potential anti-inflammatory and antioxidant properties, on myocardial injury caused by isoproterenol (ISO) in rats and elucidate the possible underlying mechanisms. Experimental rats were randomly categorized into four groups: control group (fed a regular diet for 15 days), PCN group (orally administered PCN at 50 mg/kg body weight (b.w.) for 15 days), ISO group (subcutaneously administered ISO (85 mg/kg b.w.) on days 14 and 15 to induce MI), and PCN+ISO group (orally preadministered PCN (50 mg/kg b.w.) for 15 days and administered ISO (85 mg/kg b.w.) on days 14 and 15). The rat cardiac tissue was then investigated for cardiac marker, oxidative stress marker, and inflammatory marker expression levels. PCN prevented ISO-induced myocardial injury, suppressing the levels of creatine kinase-myocardial band, C-reactive protein, homocysteine, cardiac troponin T, and cardiac troponin I in the rats. Moreover, PCN treatment reversed (P<0.01) the ISO-induced increase in blood pressure, attenuated lipid peroxidation markers, and depleted both enzymatic and nonenzymatic markers in the rats. Additionally, PCN inhibited (P<0.01) ISO-induced overexpression of oxidative stress markers (p-38, p-c-Jun N-terminal kinase, and p-extracellular signal-regulated kinase 1), inflammatory markers (nuclear factor-kappa B, tumor necrosis factor-alpha, and interleukin-6), and matrix metalloproteinases and decreased the levels (P<0.01) of apoptosis proteins in the rats. Nuclear factor erythroid 2-related factor 2/silent information regulator transcript-1 (Nrf2/Sirt1) is a major cellular defense protein that regulates and scavenges oxidative toxic substances through apoptosis. Therefore, overexpression of Nrf2/Sirt1 to inhibit inflammation and oxidative stress is considered a novel target for preventing MI. PCN also significantly enhanced the expression of Nrf2/Sirt1 in ISO-induced rats. Histopathological analyses of cardiac tissue revealed that PCN treatment exhibited a protective effect on the heart tissue, mitigating damage. These findings show that by activating the Nrf2/Sirt1 pathway, PCN regulates oxidative stress, inflammation, and apoptosis, hence providing protection against ISO-induced myocardial ischemia.


Asunto(s)
Taninos Hidrolizables , Inflamación , Isoproterenol , Infarto del Miocardio , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sirtuina 1 , Animales , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/prevención & control , Infarto del Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Taninos Hidrolizables/farmacología , Sirtuina 1/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/inducido químicamente , Ratas , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Wistar , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Antioxidantes/farmacología , Miocardio/metabolismo , Miocardio/patología
10.
Aging (Albany NY) ; 16(8): 7474-7486, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38669115

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) is one of the most difficult challenges in cerebrovascular disease research. It is primarily caused by excessive autophagy induced by oxidative stress. Previously, a novel compound X5 was found, and the excellent antioxidant activity of it was verified in this study. Moreover, network pharmacological analysis suggested that compound X5 was closely associated with autophagy and the mTOR pathway. In vitro, X5 could significantly inhibit the expression of autophagy proteins Beclin-1 and LC3-ß, which are induced by H2O2, and promote the expression of SIRT1. In vivo, compound X5 significantly reduced the infarct size and improved the neurological function scores in the middle cerebral artery occlusion (MCAO) model of rats. In conclusion, ROS-induced autophagy is closely related to mTOR, SIRT1 and others, and X5 holds promise as a candidate for the treatment of CIRI.


Asunto(s)
Antioxidantes , Autofagia , Farmacología en Red , Daño por Reperfusión , Sirtuina 1 , Serina-Treonina Quinasas TOR , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Autofagia/efectos de los fármacos , Antioxidantes/farmacología , Ratas , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Masculino , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Beclina-1/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo
11.
Int Immunopharmacol ; 133: 112111, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678672

RESUMEN

BACKGROUND: Brain and muscle arnt-like protein-1 (BMAL1) deficiency is associated with myocardial dysfunction and suppressed sirtuin 1 (SIRT1). However, whether BMAL1 promotes mitophagy via SIRT1 to alleviate myocardial injury in sepsis remains unknown. METHODS: An in vitro myocardial injury model was established using lipopolysaccharide (LPS)-treated H9C2 cells. Knockdown or overexpression of genes was performed using plasmid transfection. Gene and protein expression was assessed by qRT-PCR and Western blot, respectively. Cell proliferation was evaluated using cell counting kit-8, and cellular apoptosis and reactive oxygen species (ROS) levels were analyzed using flow cytometry. An in vivo myocardial injury model of sepsis was established by cecal ligation and puncture in rats. Myocardial function was characterized by analyzing the damage-associated proteins, inflammatory factors, ejection fraction, and fraction shortening. RESULTS: sgBMAL1 significantly decreased BMAL1 levels and remarkably increased the sensitivity of H9C2 cells to LPS stimulation, consequently enhancing LPS-induced apoptosis, inflammation, and ROS levels. These effects were further attenuated by BMAL1 overexpression. BMAL1 knockdown inhibited the expression of SIRT1 and mitophagy-associated proteins. SIRT1 overexpression reversed the enhancement of shBMAL1 on cell proliferation and inflammation. In the rat model of sepsis, BMAL1 overexpression decreased the myocardial injury-associated proteins to recover the myocardial function and suppressed inflammatory activities by promoting mitophagy via SIRT1. CONCLUSION: BMAL1 enhances mitophagy dependent on SIRT1, thereby alleviating myocardial injury in sepsis.


Asunto(s)
Factores de Transcripción ARNTL , Mitofagia , Ratas Sprague-Dawley , Sepsis , Transducción de Señal , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Sepsis/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ratas , Masculino , Línea Celular , Apoptosis , Lipopolisacáridos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Autofagia , Miocardio/patología , Miocardio/metabolismo , Mitocondrias/metabolismo , Modelos Animales de Enfermedad
12.
Proc Inst Mech Eng H ; 238(5): 537-549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561625

RESUMEN

Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.


Asunto(s)
Diferenciación Celular , Dimetilpolisiloxanos , Células Madre Mesenquimatosas , Osteogénesis , Transducción de Señal , Sirtuina 1 , Propiedades de Superficie , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 1/genética , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos
13.
Sci Total Environ ; 929: 172392, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608885

RESUMEN

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.


Asunto(s)
Cadmio , Células Epiteliales , Piroptosis , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Piroptosis/efectos de los fármacos , Cadmio/toxicidad , Ratas , Células Epiteliales/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Túbulos Renales , Factor de Transcripción ReIA/metabolismo , Acetilación , Inflamasomas/metabolismo , Túbulos Renales Proximales
14.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653987

RESUMEN

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dinaminas , Mononucleótido de Nicotinamida , Oocitos , Especies Reactivas de Oxígeno , Animales , Ratones , Femenino , Oocitos/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Superóxido Dismutasa-1 , Daño del ADN/efectos de los fármacos , Estreptozocina , Oogénesis/efectos de los fármacos
15.
Int Immunopharmacol ; 132: 112061, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608474

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease characterized by the gradual degeneration of chondrocytes, involving endoplasmic reticulum (ER) stress. Esculin is a natural compound with antioxidant, anti-inflammatory and anti-tumor properties. However, its impact on ER stress in OA therapy has not been thoroughly investigated. We aim to determine the efficiency of Esculin in OA treatment and its underlying mechanism. METHODS: We utilized the tert-butyl hydroperoxide (TBHP) to establish OA model in chondrocytes. The expression of SIRT1, PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins were detected by Western blot and Real-time PCR. The apoptosis was evaluated by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. X-ray imaging, Hematoxylin & Eosin staining, Safranin O staining and immunohistochemistry were used to assess the pharmacological effects of Esculin in the anterior cruciate ligament transection (ACLT) rat OA model. RESULTS: Esculin downregulated the expression of PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins, while upregulated the expression of SIRT1 and Bcl2 in the TBHP-induced OA model in vitro. It was coincident with the results of TUNEL staining and flow cytometry. We further confirmed the protective effect of Esculin in the rat ACLT-related model. CONCLUSION: Our results suggest the potential therapeutic value of Esculin on osteoarthritis. It probably inhibits the PERK-eIF2α-ATF4-CHOP pathway by upregulating SIRT1, thereby mitigating endoplasmic reticulum stress and protecting chondrocytes from apoptosis.


Asunto(s)
Apoptosis , Condrocitos , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación , Osteoartritis , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Sirtuina 1/metabolismo , Sirtuina 1/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Ratas , Estrés Oxidativo/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Cultivadas
16.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38663003

RESUMEN

Vascular endothelial cell premature senescence plays an important part in stroke. Many microRNAs (miRNAs) are known to be involved in the pathological process of vascular endothelial cell premature senescence. The present study aimed to investigate the mechanism of hydrogen peroxide (H2O2)-induced premature senescence in human umbilical vein endothelial cells (HUVECs) and effect of miR-142-3p on hydrogen peroxide (H2O2)-induced premature senescence. HUVECs were exposed to H2O2 to establish a model premature senescence in endothelial cells. CCK-8 assay was performed to detect cell viability. Senescence-associated ß-galactosidase staining assay and senescence-related proteins p16 and p21 were used to detect changes in the degree of cell senescence. RT-qPCR and Western blot were conducted to measure mRNA and protein levels, respectively. The scratch wound-healing assay, transwell assay, and EdU assay were performed to evaluate the ability of migration and proliferation, respectively. miRNA-142-3p and silencing information regulator 2 related enzyme 1 (SIRT1) binding was verified using Targetscan software and a dual-luciferase assay. We found that miRNA-142-3p is abnormally up-regulated in HUVECs treated with H2O2. Functionally, miRNA-142-3p inhibition may mitigate the degree of HUVEC senescence and improve HUVEC migration and proliferation. Mechanistically, SIRT1 was validated to be targeted by miRNA-142-3p in HUVECs. Moreover, SIRT1 inhibition reversed the effects of miRNA-142-3p inhibition on senescent HUVECs exposed to H2O2. To our knowledge, this is the first study to show that miRNA-142-3p ameliorates H2O2-induced HUVECs premature senescence by targeting SIRT1 and may shed light on the role of the miR-142-3p/SIRT1 axis in stroke treatment.


Asunto(s)
Proliferación Celular , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno , MicroARNs , Sirtuina 1 , Humanos , Sirtuina 1/metabolismo , Sirtuina 1/genética , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Senescencia Celular/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Transducción de Señal/efectos de los fármacos
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673833

RESUMEN

Though Isoimperatorin from Angelicae dahuricae is known to have antiviral, antidiabetic, anti-inflammatory and antitumor effects, its underlying antitumor mechanism remains elusive so far. Hence, the apoptotic mechanism of Isoimperatorin was explored in hepatocellular carcinomas (HCCs). In this study, Isoimperatorin inhibited the viability of Huh7 and Hep3B HCCs and increased the subG1 apoptotic portion and also abrogated the expression of pro-poly-ADP ribose polymerase (pro-PARP) and pro-caspase 3 in Huh7 and Hep3B cells. Also, Isoimperatorin abrogated the expression of cyclin D1, cyclin E1, CDK2, CDK4, CDK6 and increased p21 as G1 phase arrest-related proteins in Huh7 and Hep3B cells. Interestingly, Isoimperatorin reduced the expression and binding of c-Myc and Sirtuin 1 (SIRT1) by Immunoprecipitation (IP), with a binding score of 0.884 in Huh7 cells. Furthermore, Isoimperatorin suppressed the overexpression of c-Myc by the proteasome inhibitor MG132 and also disturbed cycloheximide-treated c-Myc stability in Huh7 cells. Overall, these findings support the novel evidence that the pivotal role of c-Myc and SIRT1 is critically involved in Isoimperatorin-induced apoptosis in HCCs as potent molecular targets in liver cancer therapy.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Furocumarinas , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Sirtuina 1 , Humanos , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Furocumarinas/farmacología
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612458

RESUMEN

Certain genetic factors, including single-nucleotide polymorphisms (SNPs) in the SIRT1 gene, have been linked to medication-related osteonecrosis of the jaw (MRONJ). This study examined four SNPs in the SIRT1 gene and implemented multivariate statistical analysis to analyze genetic and clinical factors in MRONJ patients. Genomic DNA was isolated from peripheral blood samples of 63 patients of European origin treated for MRONJ, and four SNP genotypes in the gene encoding the SIRT-1 protein were determined by Sanger sequencing. The allele frequencies measured in the MRONJ population were compared with allele frequencies measured in the European population in the National Center for Biotechnology Information Allele Frequency Aggregator (NCBI ALFA) database. Genetic and clinical factors were examined with multivariate statistical analysis. A C:A allele distribution ratio of 77.8:22.2 was measured in the rs932658 SNP. In the ALFA project, a C:A allele distribution ratio of 59.9:40.1 was detected in the European population, which was found to be a significant difference (p = 4.5 × 10-5). Multivariate statistical analysis revealed a positive correlation (0.275) between the genotype of SNP rs932658 and the number of stages improved during appropriate MRONJ therapy. It is concluded that allele A in SNP rs932658 in the SIRT1 gene acts as a protective factor in MRONJ.


Asunto(s)
Osteonecrosis , Polimorfismo de Nucleótido Simple , Humanos , Sirtuina 1/genética , Genotipo , Alelos
19.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637827

RESUMEN

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Masculino , Niño , Animales , Ratones , Humanos , Discapacidad Intelectual/genética , Trastorno Autístico/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Genes Mitocondriales , Proteínas de Homeodominio/genética , Cerebelo/metabolismo , Autopsia , Metilación , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Life Sci ; 346: 122626, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614295

RESUMEN

AIM: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive condition with unknown aetiology that causes the lung parenchyma to scar incessantly, lowering the quality of life and hastening death. In this investigation, we studied the anti-fibrotic activity of Geneticin (a derivative of gentamycin) using in vitro and in vivo models. MAIN METHODS: The TGF-ß-mediated differentiation model was adopted to investigate (fibrotic marker's levels/expression) the anti-fibrotic activity of geneticin (GNC) in in-vitro scenarios (LL29 and DHLF cells). In vivo, the bleomycin (BLM)-induced pulmonary fibrosis model was employed by administering BLM intratracheally. Post 14 days of BLM administration, animals were treated with geneticin (6.25, 12.5, and 25 mg·kg-1) for another 14 days, and their therapeutic effect was investigated using a spectrum of techniques. KEY FINDINGS: RTqPCR and western-blot results revealed that geneticin treatment significantly attenuated the TGF-ß/BLM mediated fibrotic cascade of markers in both in-vitro and in-vivo models respectively. Further, the BLM-induced pulmonary fibrosis model revealed, that geneticin dose-dependently reduced the BLM-induced inflammatory cell infiltrations, and thickness of the alveoli walls, improved the structural distortion of the lung, and aided in improving the survival rate of the rats. Picrosirus and Masson's trichrome staining indicated that geneticin therapy reduced collagen deposition and, as a result, lung functional characteristics were improved as assessed by flexivent. Mechanistic studies have shown that geneticin reduced fibrosis by attenuating the TGF-ß/Smad through modulating the AMPK/SIRT1 signaling. SIGNIFICANCE: These findings suggest that geneticin may be a promising therapeutic agent for the treatment of pulmonary fibrosis in clinical settings.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Bleomicina , Fibrosis Pulmonar , Transducción de Señal , Sirtuina 1 , Factor de Crecimiento Transformador beta , Animales , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Ratas , Sirtuina 1/metabolismo , Sirtuina 1/genética , Masculino , Bleomicina/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Smad/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...