RESUMEN
The serotonergic and immunological hypothesis of depression proposes that certain types of excessive stress distort the relationship between the activities of the innate immune and central nervous systems, so that the stress caused by an infection, or excessive psychological stress, activate toll-like receptors such as the TLR-4, the transcription factor NF-kB, the inflammasome NLRP3, as well as the secretion of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and other factors of the innate immune response, causing first, the general symptoms of the disease which appear with any infection, but also those characteristic of depressive illness such as dysphoria and anhedonia. The evidence indicates that, if the stimulus persists or recurs within 24 hours, the indole-2, 3-dioxygenase enzyme (IDO) of the kynurenine metabolic pathway, which increases the synthesis of quinolinic acid, is activated with an associated reduction of serotonin synthesis. Quinolinic acid activates NMDA receptors in the central nervous system and stimulates the secretion of interleukins IL-6 and 1L-1ß, among others, promoting hyper-activity of the HPA axis and reinforcing a bias of the tryptophan metabolism to produce quinolinic acid, and interleukins by the innate immune system, further reducing the synthesis of serotonin and consolidating the depressive process. We discuss the evidence showing that this process can be initiated by either interleukin stimulated by an infection or some vaccines or excessive psychological stress that activates the HPA axis together with said innate immune response, causing a process of aseptic inflammation in the central nervous system.
Asunto(s)
Depresión/fisiopatología , Sistema Hipotálamo-Hipofisario/fisiopatología , Quinurenina/metabolismo , Modelos Neurológicos , Modelos Psicológicos , Sistema Hipófiso-Suprarrenal/fisiopatología , Serotonina/metabolismo , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/fisiopatología , Encéfalo/fisiopatología , Citocinas/fisiología , Depresión/inmunología , Humanos , Sistema Hipotálamo-Hipofisario/inmunología , Conducta de Enfermedad/fisiología , Inmunidad Innata , Indolamina-Pirrol 2,3,-Dioxigenasa/fisiología , Inflamación/inmunología , Inflamación/fisiopatología , Interleucinas/fisiología , Neuroglía/fisiología , Sistema Nervioso Periférico/inmunología , Sistema Nervioso Periférico/fisiopatología , Sistema Hipófiso-Suprarrenal/inmunología , Ácido Quinolínico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Serotonina/deficiencia , Aislamiento Social , Estrés Psicológico/inmunología , Estrés Psicológico/fisiopatología , Receptor Toll-Like 4/fisiología , Triptófano/metabolismo , Vacunas/efectos adversosRESUMEN
Aluminum (Al) is a neurotoxic associated with a number of chronic human diseases. We investigated the effects of Al exposure at doses similar to human dietary levels and at a high level exposure to Al on the peripheral nervous system. Wistar male rats were divided into two major groups and received orally: 1) First group - Low level - rats were subdivided and treated for 60days: a) Control - received ultrapure water; b) AlCl3 - received Al at 8.3mg/kg body weight (bw) for 60days; and 2) Second group - High level - rats were subdivided and treated for 42days: C) Control - received ultrapure water through oral gavage; d) AlCl3 - received Al at 100mg/kg bw for 42days. Von Frey hair test, plantar test, the presence of catalepsy and the spontaneous motor activity were investigated. Reactive oxygen species, lipid peroxidation and total antioxidant capacity, immunohistochemistry to investigate the nerve inflammation and, the specific presence of Al in the sciatic nerve fibers were investigated. Al exposure at a representative human dietary level promotes the development of mechanical allodynia, catalepsy, increased inflammation in the sciatic nerve, systemic oxidative stress and, is able to be retained in the sciatic nerve. The effects of low-dose Al were similar to those found in rats exposed to Al at a dose much higher (100mg/kg). Our findings suggest that Al may be considered toxic for the peripheral nervous system, thus inducing peripheral dysfunction.
Asunto(s)
Aluminio/toxicidad , Neuritis/etiología , Síndromes de Neurotoxicidad/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/etiología , Sistema Nervioso Periférico/efectos de los fármacos , Contaminantes del Agua/toxicidad , Aluminio/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Catalepsia/etiología , Relación Dosis-Respuesta a Droga , Hiperalgesia/etiología , Peroxidación de Lípido/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Neuritis/inmunología , Neuritis/metabolismo , Neuritis/fisiopatología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Sistema Nervioso Periférico/inmunología , Sistema Nervioso Periférico/fisiopatología , Enfermedades del Sistema Nervioso Periférico/inmunología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas Wistar , Especies Reactivas de Oxígeno/sangre , Especies Reactivas de Oxígeno/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/inmunología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Factores de Tiempo , Distribución Tisular , Pruebas de Toxicidad Crónica , Toxicocinética , Contaminantes del Agua/administración & dosificaciónRESUMEN
Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.
Asunto(s)
Ansiedad/inmunología , Sistema Nervioso Central/inmunología , Depresión/inmunología , Inflamación/inmunología , Microglía/inmunología , Monocitos/inmunología , Sistema Nervioso Periférico/inmunología , Estrés Psicológico/inmunología , Animales , HumanosRESUMEN
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Asunto(s)
Dopamina/metabolismo , Inmunomodulación , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Regulación de la Expresión Génica , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Trastornos Mentales/genética , Trastornos Mentales/inmunología , Trastornos Mentales/metabolismo , Redes y Vías Metabólicas , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Especificidad de Órganos , Sistema Nervioso Periférico/inmunología , Sistema Nervioso Periférico/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: Inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) are pleiotropic molecules with widespread action in autoimmune diseases. OBJECTIVE: This study characterizes the distribution of iNOS and TNF-alpha in the spinal nerve roots, dorsal root ganglia and sciatic nerve of Lewis rats during experimental autoimmune neuritis (EAN). METHODS: Macrophages and neutrophils were identified by immunofluorescence as cellular sources of iNOS and TNF-alpha at various stages of EAN induced by synthetic peptide 26. RESULTS: As the disease progressed, iNOS- and TNF-alpha-bearing cells gradually infiltrated the cauda equina, dorsal root ganglia, Th12-L3 spinal roots, and the sciatic nerve. A severer EAN profile developed when more iNOS- and TNF-alpha-bearing cells were present, and the recovery from EAN was related to the disappearance of these cells and the regeneration of nerve fibers. CONCLUSIONS: This is the first report to show iNOS- and TNF-alpha-immunoreactive cells in dorsal root ganglia during EAN, suggesting an underlying pathology for the neuropathic pain behavior in EAN. Our results suggest that the cells bearing iNOS and TNF-alpha in the different parts of the peripheral nervous system are involved in the development of the clinical signs observed at each stage of EAN.