Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 115(3): 436-452, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33326642

RESUMEN

Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.


Asunto(s)
Conjugación Genética , Fimbrias Bacterianas/fisiología , Bacterias Gramnegativas/química , Bacterias Gramnegativas/fisiología , Sistemas de Translocación de Proteínas/metabolismo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/fisiología , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/fisiología , Secuencias de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Microscopía por Crioelectrón , Bacterias Gramnegativas/ultraestructura , Infecciones por Bacterias Gramnegativas/microbiología , Helicobacter pylori/química , Helicobacter pylori/fisiología , Humanos , Legionella pneumophila/química , Legionella pneumophila/fisiología , Simulación del Acoplamiento Molecular , Sistemas de Translocación de Proteínas/química , Sistemas de Translocación de Proteínas/ultraestructura , Relación Estructura-Actividad , Sistemas de Secreción Tipo IV/ultraestructura
2.
Mol Microbiol ; 114(5): 823-838, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32738086

RESUMEN

Bacterial type IV secretion systems (T4SSs) can mediate conjugation. The T4SS from Neisseria gonorrhoeae possesses the unique ability to mediate DNA secretion into the extracellular environment. The N. gonorrhoeae T4SS can be grouped with F-type conjugative T4SSs based on homology. We tested 17 proteins important for DNA secretion by N. gonorrhoeae for protein interactions. The BACTH-TM bacterial two-hybrid system was successfully used to study periplasmic interactions. By determining if the same interactions were observed for F-plasmid T4SS proteins and when one interaction partner was replaced by the corresponding protein from the other T4SS, we aimed to identify features associated with the unique function of the N. gonorrhoeae T4SS as well as generic features of F-type T4SSs. For both systems, we observed already described interactions shared by homologs from other T4SSs as well as new and described interactions between F-type T4SS-specific proteins. Furthermore, we demonstrate, for the first-time, interactions between proteins with homology to the conserved T4SS outer membrane core proteins and F-type-specific proteins and we confirmed two of them by co-purification. The F-type-specific protein TraHN was found to localize to the outer membrane and the presence of significant amounts of TraHN in the outer membrane requires TraGN .


Asunto(s)
Conjugación Genética/fisiología , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/fisiología , Proteínas Bacterianas/metabolismo , ADN/metabolismo , ADN Bacteriano/metabolismo , Proteínas de la Membrana/metabolismo , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo
3.
Trends Microbiol ; 28(8): 682-695, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451226

RESUMEN

Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Islas Genómicas/genética , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Sistemas de Secreción Tipo IV/fisiología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/patogenicidad , Humanos , Ratones , Conformación Proteica , Estómago/microbiología , Estómago/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
4.
Microb Pathog ; 139: 103865, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31715318

RESUMEN

Brucella spp. are facultative intracellular pathogens and zoonotic agents which pose a huge threat to human health and animal husbandry. The B. melitensis, B. abortus, and B. suis cause undulant fever and influenza-like symptoms in humans. However, the effects of B. canis have not been extensively studied. The quorum sensing-dependent transcriptional regulator VjbR influences the Brucella virulence in smooth type Brucella strains, such as B. melitensis, B. abortus and rough type Brucella ovis. However, the function of VjbR in the rough-type B. canis is unknown. In the present study, we discovered that deletion of this regulator significantly affected Brucella virulence in macrophage and mice infection models. The expression levels of virB operon and the ftcR gene were significantly altered in the vjbR mutant strain. We further investigated the protective effect of different doses of the vjbR mutant in mice and the results indicated that VjbR conferred protection against the virulent B. canis strain. This study presents the first evidence that the transcriptional regulator VjbR has important function in B. canis. In addition, according to its reduced virulence and the protective immunity it induces in mice, it can be a potential live attenuated vaccine against B. canis.


Asunto(s)
Proteínas Bacterianas/genética , Brucella canis/fisiología , Brucelosis/microbiología , Regulación Bacteriana de la Expresión Génica , Mutación , Proteínas Represoras/genética , Transactivadores/genética , Sistemas de Secreción Tipo IV/fisiología , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas/inmunología , Brucelosis/inmunología , Brucelosis/prevención & control , Línea Celular , Eliminación de Gen , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Percepción de Quorum/genética , Células RAW 264.7 , Proteínas Represoras/inmunología , Proteínas Represoras/metabolismo , Transactivadores/inmunología , Transactivadores/metabolismo , Virulencia , Factores de Virulencia/genética
5.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513674

RESUMEN

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Asunto(s)
Proteínas Bacterianas/fisiología , Stenotrophomonas maltophilia/fisiología , Stenotrophomonas maltophilia/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Secuencia de Aminoácidos , Antibiosis/genética , Antibiosis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/fisiología , Modelos Moleculares , Infecciones Oportunistas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Stenotrophomonas maltophilia/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
6.
Infect Immun ; 87(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31182616

RESUMEN

The peptidoglycan in Gram-negative bacteria is a dynamic structure in constant remodeling. This dynamism, achieved through synthesis and degradation, is essential because the peptidoglycan is necessary to maintain the structure of the cell but has to have enough plasticity to allow the transport and assembly of macromolecular complexes in the periplasm and outer membrane. In addition, this remodeling has to be coordinated with the division process. Among the multiple mechanisms bacteria have to degrade the peptidoglycan are the lytic transglycosidases, enzymes of the lysozyme family that cleave the glycan chains generating gaps in the mesh structure increasing its permeability. Because these enzymes can act as autolysins, their activity has to be tightly regulated, and one of the mechanisms bacteria have evolved is the synthesis of membrane bound or periplasmic inhibitors. In the present study, we identify a periplasmic lytic transglycosidase inhibitor (PhiA) in Brucella abortus and demonstrate that it inhibits the activity of SagA, a lytic transglycosidase we have previously shown is involved in the assembly of the type IV secretion system. A phiA deletion mutant results in a strain with the incapacity to synthesize a complete lipopolysaccharide but with a higher replication rate than the wild-type parental strain, suggesting a link between peptidoglycan remodeling and speed of multiplication.


Asunto(s)
Brucella abortus/patogenicidad , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Glicósido Hidrolasas/fisiología , Lipopolisacáridos/biosíntesis , Complejos Multienzimáticos/fisiología , Peptidoglicano/metabolismo , Transferasas/fisiología , Sistemas de Secreción Tipo IV/fisiología , Virulencia
7.
Infect Immun ; 87(9)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235638

RESUMEN

Stenotrophomonas maltophilia is an emerging opportunistic and nosocomial pathogen. S. maltophilia is also a risk factor for lung exacerbations in cystic fibrosis patients. S. maltophilia attaches to various mammalian cells, and we recently documented that the bacterium encodes a type II secretion system which triggers detachment-induced apoptosis in lung epithelial cells. We have now confirmed that S. maltophilia also encodes a type IVA secretion system (VirB/VirD4 [VirB/D4] T4SS) that is highly conserved among S. maltophilia strains and, looking beyond the Stenotrophomonas genus, is most similar to the T4SS of Xanthomonas To define the role(s) of this T4SS, we constructed a mutant of strain K279a that is devoid of secretion activity due to loss of the VirB10 component. The mutant induced a higher level of apoptosis upon infection of human lung epithelial cells, indicating that a T4SS effector(s) has antiapoptotic activity. However, when we infected human macrophages, the mutant triggered a lower level of apoptosis, implying that the T4SS also elaborates a proapoptotic factor(s). Moreover, when we cocultured K279a with strains of Pseudomonas aeruginosa, the T4SS promoted the growth of S. maltophilia and reduced the numbers of heterologous bacteria, signaling that another effector(s) has antibacterial activity. In all cases, the effect of the T4SS required S. maltophilia contact with its target. Thus, S. maltophilia VirB/D4 T4SS appears to secrete multiple effectors capable of modulating death pathways. That a T4SS can have anti- and prokilling effects on different targets, including both human and bacterial cells, has, to our knowledge, not been seen before.


Asunto(s)
Apoptosis/fisiología , Pseudomonas aeruginosa/fisiología , Stenotrophomonas maltophilia/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Factores de Virulencia/fisiología , Proteínas Bacterianas/fisiología , Fibrosis Quística/complicaciones , Humanos , Macrófagos/microbiología , Stenotrophomonas maltophilia/fisiología
8.
Microbiol Spectr ; 7(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30953428

RESUMEN

The bacterial type IV secretion systems (T4SSs) are a functionally diverse superfamily of secretion systems found in many species of bacteria. Collectively, the T4SSs translocate DNA and monomeric and multimeric protein substrates to bacterial and eukaryotic cell types. T4SSs are composed of two large subfamilies, the conjugation machines and the effector translocators that transmit their cargoes through establishment of direct donor-target cell contacts, and a third small subfamily capable of importing or exporting substrates from or to the milieu. This review summarizes recent mechanistic and structural findings that are shedding new light on how T4SSs have evolved such functional diversity. Translocation signals are now known to be located C terminally or embedded internally in structural folds; these signals in combination with substrate-associated adaptor proteins mediate the docking of specific substrate repertoires to cognate VirD4-like receptors. For the Legionella pneumophila Dot/Icm system, recent work has elucidated the structural basis for adaptor-dependent substrate loading onto the VirD4-like DotL receptor. Advances in definition of T4SS machine structures now allow for detailed comparisons of nanomachines closely related to the Agrobacterium tumefaciens VirB/VirD4 T4SS with those more distantly related, e.g., the Dot/Icm and Helicobacter pylori Cag T4SSs. Finally, it is increasingly evident that T4SSs have evolved a variety of mechanisms dependent on elaboration of conjugative pili, membrane tubes, or surface adhesins to establish productive contacts with target cells. T4SSs thus have evolved extreme functional diversity through a plethora of adaptations impacting substrate selection, machine architecture, and target cell binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/fisiología , Agrobacterium tumefaciens/metabolismo , Biodiversidad , ADN Bacteriano , Helicobacter pylori/metabolismo , Legionella pneumophila/metabolismo , Transporte de Proteínas , Especificidad por Sustrato
9.
Int J Med Microbiol ; 308(7): 872-881, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29936031

RESUMEN

Microbial pathogens have developed intriguing molecular strategies to modulate and/or control host cell functions to ensure their own survival and replication. During this molecular interplay between microbes and their respective hosts especially secreted virulence factors play a major role. These factors not only include a plethora of cytotoxins but also sophisticated effector proteins targeting intracellular decision points leading to inhibition of defense responses - and/or even to cell death. To be effective, most of these secreted factors have to get across the cytoplasmic membrane and reach their targets in the cytoplasm. Apparently, pathogens use multiple mechanisms to deliver virulence factors to their cytoplasmic destination. Here, we exemplarily discuss the recently emerging scenario of parallel strategies for the intracellular deployment of toxins and effector proteins of Gram-negative pathogens with a special focus on pathogenic Escherichia coli. These pathogens employ various nanomachines such as the type III secretion system (T3SS), cell-penetrating effector proteins (CPE), and the wrapping of virulence factors in outer membrane vesicles (OMV) for protection and parallel delivery. As intracellular delivery remains a major problem in drug development, potential therapeutic applications based on these bacterial strategies will be briefly discussed.


Asunto(s)
Toxinas Bacterianas/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/transmisión , Interacciones Huésped-Patógeno/fisiología , Sistemas de Secreción Tipo III/fisiología , Sistemas de Secreción Tipo IV/fisiología , Sistemas de Secreción Tipo VI/fisiología , Infecciones por Escherichia coli/microbiología , Humanos , Transporte de Proteínas/fisiología , Factores de Virulencia/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-29774203

RESUMEN

Legionella pneumophila (Lp) exhibits different morphologies with varying degrees of virulence. Despite their detection in environmental sources of outbreaks and in respiratory tract secretions and lung autopsies from patients, the filamentous morphotype of Lp remains poorly studied. We previously demonstrated that filamentous Lp invades lung epithelial cells (LECs) and replicates intracellularly in a Legionella containing vacuole. Filamentous Lp activates ß1integrin and E-cadherin receptors at the surface of LECs leading to the formation of actin-rich cell membrane structures we termed hooks and membrane wraps. These structures entrap segments of an Lp filament on host cell surface and mediate bacterial internalization. Here we investigated the molecular mechanisms responsible for the actin rearrangements needed for the formation and elongation of these membrane wraps and bacterial internalization. We combined genetic and pharmacological approaches to assess the contribution of signaling downstream of ß1integrin and E-cadherin receptors, and Lp Dot/Icm secretion system- translocated effectors toward the invasion process. Our studies demonstrate a multi-stage mechanism of LEC invasion by filamentous Lp. Bacterial attachment to host cells depends on signaling downstream of ß1integrin and E-cadherin activation, leading to Rho GTPases-dependent activation of cellular actin nucleating proteins, Arp2/3 and mDia. This mediates the formation of primordial membrane wraps that entrap the filamentous bacteria on the cell surface. Following this, in a second phase of the invasion process the Dot/Icm translocated effector VipA mediates rapid membrane wrap elongation, leading to the engulfment of the filamentous bacteria by the LECs. Our findings provide the first description of Rho GTPases and a Dot/Icm effector VipA regulating the actin dynamics needed for the invasion of epithelial cells by Lp.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Legionella pneumophila/fisiología , Sistemas de Secreción Tipo IV/fisiología , Proteínas de Unión al GTP rho/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/genética , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Endocitosis/fisiología , Forminas , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Enfermedad de los Legionarios/microbiología , Vacuolas/microbiología , Proteínas de Unión al GTP rho/genética
11.
J Bacteriol ; 200(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29311273

RESUMEN

Bacterial conjugation, a mechanism of horizontal gene transfer, is the major means by which antibiotic resistance spreads among bacteria (1, 2). Conjugative plasmids are transferred from one bacterium to another through a type IV secretion system (T4SS) in the form of single-stranded DNA covalently attached to a protein called relaxase. The relaxase is fully functional both in a donor cell (prior to conjugation) and recipient cell (after conjugation). Here, we demonstrate that the protein substrate has to unfold for efficient translocation through the conjugative T4SS. Furthermore, we present various relaxase modifications that preserve the function of the relaxase but block substrate translocation. This study brings us a step closer to deciphering the complete mechanism of T4SS substrate translocation, which is vital for the development of new therapies against multidrug-resistant pathogenic bacteria.IMPORTANCE Conjugation is the principal means by which antibiotic resistance genes spread from one bacterium to another (1, 2). During conjugation, a covalent complex of single-stranded DNA and a protein termed relaxase is transported by a type IV secretion system. To date, it is not known whether the relaxase requires unfolding prior to transport. In this report, we use functional assays to monitor the transport of wild-type relaxase and variants containing unfolding-resistant domains and show that these domains reduce conjugation and protein transport dramatically. Mutations that lower the free energy of unfolding in these domains do not block translocation and can even promote it. We thus conclude that the unfolding of the protein substrate is required during transport.


Asunto(s)
Proteínas Bacterianas/metabolismo , Conjugación Genética/fisiología , Desplegamiento Proteico , Sistemas de Secreción Tipo IV/fisiología , Proteínas Bacterianas/química , Escherichia coli , Plásmidos , Tetrahidrofolato Deshidrogenasa/metabolismo
12.
Nat Rev Microbiol ; 15(10): 591-605, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28713154

RESUMEN

Legionella pneumophila and Coxiella burnetii are two evolutionarily related intracellular pathogens that use the Dot/Icm type IV secretion system to translocate effectors into host cells. These effectors are essential for the establishment of membrane-bound compartments known as replication vacuoles, which enable the survival and replication of bacteria inside host cells. The effectors interfere with diverse signalling pathways to co-opt host processes, such as vesicle trafficking, ubiquitylation, gene expression and lipid metabolism, to promote pathogen survival. In this Review, we explore Dot/Icm effectors from L. pneumophila and C. burnetii as key virulence factors, and we examine the biochemical and cell biological functions of these effectors and their roles in our understanding of bacterial virulence.


Asunto(s)
Coxiella burnetii/patogenicidad , Legionella pneumophila/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Vacuolas/microbiología , Transporte Biológico/fisiología , Coxiella burnetii/genética , Coxiella burnetii/metabolismo , Expresión Génica/genética , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Metabolismo de los Lípidos/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Microbiol Res ; 201: 63-74, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28602403

RESUMEN

The elucidation of the CRISPR (clustered, regularly interspaced, short palindromic repeats) adaptive immune system endogenous to most microbial life has culminated in progress in a diversity of scientific disciplines. The concurrently promising and eccentric nature of its theoretically plausible applications has wrought enthusiasm in the research community globally, potentiating advancements in human and animal health, ecological stability, and economic wellbeing, that would hitherto be considered the unattainable fancies of a futurist. It may be supposed that the tomes of science fiction are the true books of prophecy. Here, we narrate the scientific dialogue regarding CRISPR/Cas biotechnologies, from the happenstantial initial observation of the locus to the litany of intriguing contemporary endeavors. We discuss the mechanistic underpinnings in detail, and the corpulent body of literature on CRISPR-based biotech is digested into a germane and informative review. CRISPR applications such as microbiome engineering in order to enhance the human immune system beyond the fortitude of the wild type, bacterial genome editing in industrial and medical aspects, conquering antibiotic resistance, the development of novel antimicrobial techniques, the harvesting of solventogenic microbes, the development of antifungal therapies, and investigation of the genetic properties of fungi, are here represented, and the authors posit unconventional, and at times gainfully tangential, thoughts and concepts in order to encourage a reflective disposition towards this sophisticated device of nature: a panacea in progress, such that the most impassive and technical writing still carries the ring of poetry.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Hongos/metabolismo , Animales , Antiinfecciosos/farmacología , Archaea/genética , Archaea/inmunología , Archaea/virología , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Bacteriófagos/inmunología , Farmacorresistencia Microbiana , Hongos/inmunología , Hongos/patogenicidad , Edición Génica , Ingeniería Genética , Genoma Arqueal , Genoma Bacteriano , Humanos , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/fisiología , Factores de Virulencia/aislamiento & purificación , Virus/metabolismo
14.
Curr Top Microbiol Immunol ; 404: 267-308, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27885530

RESUMEN

A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotecnología , Bacterias Grampositivas/metabolismo , Proteínas Bacterianas/biosíntesis , Fermentación , Sistemas de Secreción Tipo IV/fisiología , Sistemas de Secreción Tipo VII/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-27995095

RESUMEN

Streptococcus suis type 2 (SS2) is a zoonotic pathogen causing septic infection, meningitis and pneumonia in pigs and humans. SS2 may cause streptococcal toxic shock syndrome (STSS) probably due to excessive release of inflammatory cytokines. A previous study indicated that the virD4 gene in the putative type IV-like secretion system (T4SS) within the 89K pathogenicity island specific for recent epidemic strains contributed to the development of STSS. However, the functional basis of VirD4 in STSS remains unclear. Here we show that deletion of virD4 led to reduced virulence as shown by about 65% higher LD50, lower bacterial load in liver and brain, and lower level of expression of inflammatory cytokines in mice and cell lines than its parent strain. The ΔVirD4 mutant was more easily phagocytosed, suggesting its role as an anti-phagocytic factor. Oxidative stress that mimic bacterial exposure to respiratory burst of phagocytes upregulated expression of virD4. Proteomic analysis identified 10 secreted proteins of significant differences between the parent and mutant strains under oxidative stress, including PrsA, a peptidyl-prolyl isomerase. The SS2 PrsA expressed in E. coli caused a dose-dependent cell death and increased expression of proinflammatory IL-1ß, IL-6 and TNF-α in murine macrophage cells. Our data provide novel insights into the contribution of the VirD4 factor to STSS pathogenesis, possibly via its anti-phagocytic activity, upregulation of its expression upon oxidative stress and its involvement in increased secretion of PrsA as a cell death inducer and proinflammatory effector.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Animales , Carga Bacteriana , Proteínas Bacterianas/metabolismo , Línea Celular , Ciclofilinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Escherichia coli/genética , Islas Genómicas , Humanos , Inflamación/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/genética , Fragmentos de Péptidos/metabolismo , Fagocitos , Fagocitosis , Eliminación de Secuencia , Choque Séptico/inmunología , Choque Séptico/microbiología , Streptococcus suis/genética , Streptococcus suis/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Regulación hacia Arriba
16.
PLoS One ; 11(7): e0159698, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27459495

RESUMEN

Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires' disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out by effector proteins that are translocated into the host cell through the Dot/Icm type IV secretion system. This study focuses on a pair of highly similar type IV substrates called YlfA/LegC7 and YlfB/LegC2 that were initially identified in a screen for proteins that cause growth inhibition in yeast. Analysis of truncation mutants revealed that the hydrophobic residues in the Ylf amino termini were required for localization of each protein to the membranes of host cells. Central and carboxy terminal coiled coil domains were found to mediate binding of YlfA and YlfB to themselves and to each other. In vivo, a ΔylfA ΔylfB double mutant strain of L. pneumophila was shown to be defective in establishing a vacuole that supports bacterial replication. This phenotype was subsequently correlated with a decrease in the association of endoplasmic reticulum (ER)-derived vesicles with vacuoles containing ΔylfA ΔylfB mutant bacteria. These data suggest that the Ylf proteins are membrane-associated effectors that enhance remodeling of the L. pneumophila -containing vacuole by promoting association and possibly fusion of ER-derived membrane vesicles with the bacterial compartment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/fisiología , Multimerización de Proteína , Proteínas SNARE/metabolismo , Sistemas de Secreción Tipo IV/fisiología , Vacuolas/metabolismo , Vacuolas/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular , Membrana Celular/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas SNARE/química
17.
J Bacteriol ; 198(19): 2701-18, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27432829

RESUMEN

UNLABELLED: Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis A chimeric receptor assembled from A. tumefaciens VirD4 (VirD4At) mediated transfer of a MOBQ plasmid (pML122) and A. tumefaciens effector proteins (VirE2, VirE3, and VirF) through the pKM101 transfer channel. Equivalent chimeric receptors assembled from the rickettsial VirD4 homologs similarly supported the transfer of known or candidate effectors from rickettsial species. These findings establish a proof of principle for use of the dedicated pKM101 conjugation channel, coupled with chimeric substrate receptors, to screen for translocation competency of protein effectors from recalcitrant species. Many T4SS receptors carry sequence-variable C-terminal domains (CTDs) with unknown function. While VirD4At and the TraJ/VirD4At chimera with their CTDs deleted supported pML122 transfer at wild-type levels, ΔCTD variants supported transfer of protein substrates at strongly diminished or elevated levels. We were unable to detect binding of VirD4At's CTD to the VirE2 effector, although other VirD4At domains bound this substrate in vitro We propose that CTDs evolved to govern the dynamics of substrate presentation to the T4SS either through transient substrate contacts or by controlling substrate access to other receptor domains. IMPORTANCE: Bacterial type IV secretion systems (T4SSs) display striking versatility in their capacity to translocate DNA and protein substrates to prokaryotic and eukaryotic target cells. A hexameric ATPase, the type IV coupling protein (T4CP), functions as a substrate receptor for nearly all T4SSs. Here, we report that chimeric T4CPs mediate transfer of effector proteins through the Escherichia coli pKM101-encoded conjugation system. Studies with these repurposed conjugation systems established a role for acidic C-terminal domains of T4CPs in regulating substrate translocation. Our findings advance a mechanistic understanding of T4CP receptor activity and, further, support a model in which T4SS channels function as passive conduits for any DNA or protein substrates that successfully engage with and pass through the T4CP specificity checkpoint.


Asunto(s)
Conjugación Genética/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas Recombinantes de Fusión , Sistemas de Secreción Tipo IV/fisiología , ADN Bacteriano , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Dominios Proteicos
18.
Curr Opin Microbiol ; 29: 22-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26529574

RESUMEN

Type IV secretion systems (T4SSs) are transporters that span the bacterial inner and outer membranes and deliver substrate biomolecules, including proteins and DNAs, into cells. Recent progress in structural analyses of conjugative plasmid-encoded type IVA secretion systems (T4ASSs) has revealed a unique molecular architecture. The essential virulence system, the Dot/Icm Type IVB secretion system (T4BSS) encoded by the intracellular bacterial pathogen Legionella pneumophila is distantly related to T4ASSs. Molecular and structural analyses of the Dot/Icm T4BSS have provided insights into the mechanisms of assembly and function. Here we highlight the chimeric quality of T4BSSs that possess components with similarity to many bacterial secretion systems.


Asunto(s)
Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Sistemas de Secreción Tipo IV , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Legionella pneumophila/patogenicidad , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/fisiología , Virulencia/genética
19.
J Bacteriol ; 197(20): 3245-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26381189

RESUMEN

UNLABELLED: The plasmid R1162 (RSF1010) encodes a primase essential for its replication. This primase makes up the C-terminal part of MobA, a multifunctional protein with the relaxase as a separate N-terminal domain. The primase is also translated separately as the protein RepB'. Here, we map two signals for type IV secretion onto the recently solved structure of RepB'. One signal is located internally within RepB' and consists of a long α-helix and an adjacent disordered region rich in arginines. The second signal is made up of the same α-helix and a second, arginine-rich region at the C-terminal end of the protein. Successive arginine-to-alanine substitutions revealed that either signal can be utilized by the type IV secretion complex of the plasmid R751. The internal signal also enables conjugal transfer when linked to the relaxase part of MobA. Both signals are similar to those previously identified for type IV secretion substrates in the Vir system of Agrobacterium tumefaciens. Moreover, the C-terminal arginine-rich segment of RepB' has been shown to be secreted by Vir. However, with R751, the signals require MobB, an R1162-encoded accessory protein active in conjugal transfer. The results of two-hybrid assays revealed that MobB interacts, via its membrane-associated domain, with the R751 plasmid coupling protein TraG. In addition, MobB interacts with a region of MobA just outside the RepB' domain. Therefore, MobB is likely an adaptor that is essential for recognition of the primase-associated signals by the R751 secretion machinery. IMPORTANCE: For most plasmids, type IV secretion is an intrinsic part of the mechanism for conjugal transfer. Protein relaxases, bound to the 5' end of the transferring strand, are mobilized into recipient cells by the type IV pathway. In this work, we identify and characterize two signals for secretion in the primase domain of MobA, the relaxase of the IncQ plasmid R1162 (RSF1010). We also show that the adaptor protein MobB is required for engagement of these signals with the R751 coupling protein TraG. These results clarify the location and properties of secretion signals active during the conjugal transfer of plasmid DNA.


Asunto(s)
ADN Primasa/metabolismo , Escherichia coli K12/metabolismo , Plásmidos/fisiología , Sistemas de Secreción Tipo IV/fisiología , Secuencia de Aminoácidos , Clonación Molecular , ADN Primasa/genética , ADN Bacteriano , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Transducción de Señal
20.
Trends Microbiol ; 23(5): 301-10, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25825348

RESUMEN

Conjugation, the process by which plasmid DNA is transferred from one bacterium to another, is mediated by type IV secretion systems (T4SSs). T4SSs are versatile systems that can transport not only DNA, but also toxins and effector proteins. Conjugative T4SSs comprise 12 proteins named VirB1-11 and VirD4 that assemble into a large membrane-spanning exporting machine. Before being transported, the DNA substrate is first processed on the cytoplasmic side by a complex called the relaxosome. The substrate is then targeted to the T4SS for export into a recipient cell. In this review, we describe the recent progress made in the structural biology of both the relaxosome and the T4SS.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Conjugación Genética , Bacterias Gramnegativas/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/fisiología , ADN Bacteriano/metabolismo , Bacterias Gramnegativas/metabolismo , Modelos Moleculares , Plásmidos , Sistemas de Secreción Tipo IV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...