Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
mSphere ; 9(5): e0006024, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38647313

RESUMEN

Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE: T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Enterobacter cloacae , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo VI , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Familia de Multigenes
2.
Microbiol Spectr ; 12(2): e0292823, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189292

RESUMEN

The genus Vibrio includes pathogenic bacteria able to cause disease in humans and aquatic organisms, leading to disease outbreaks and significant economic losses in the fishery industry. Despite much work on Vibrio in several marine organisms, no specific studies have been conducted on Anadara tuberculosa. This is a commercially important bivalve species, known as "piangua hembra," along Colombia's Pacific coast. Therefore, this study aimed to identify and characterize the genomes of Vibrio isolates obtained from A. tuberculosa. Bacterial isolates were obtained from 14 A. tuberculosa specimens collected from two locations along the Colombian Pacific coast, of which 17 strains were identified as Vibrio: V. parahaemolyticus (n = 12), V. alginolyticus (n = 3), V. fluvialis (n = 1), and V. natriegens (n = 1). Whole genome sequence of these isolates was done using Oxford Nanopore Technologies (ONT). The analysis revealed the presence of genes conferring resistance to ß-lactams, tetracyclines, chloramphenicol, and macrolides, indicating potential resistance to these antimicrobial agents. Genes associated with virulence were also found, suggesting the potential pathogenicity of these Vibrio isolates, as well as genes for Type III Secretion Systems (T3SS) and Type VI Secretion Systems (T6SS), which play crucial roles in delivering virulence factors and in interbacterial competition. This study represents the first genomic analysis of bacteria within A. tuberculosa, shedding light on Vibrio genetic factors and contributing to a comprehensive understanding of the pathogenic potential of these Vibrio isolates.IMPORTANCEThis study presents the first comprehensive report on the whole genome analysis of Vibrio isolates obtained from Anadara tuberculosa, a bivalve species of great significance for social and economic matters on the Pacific coast of Colombia. Research findings have significant implications for the field, as they provide crucial information on the genetic factors and possible pathogenicity of Vibrio isolates associated with A. tuberculosa. The identification of antimicrobial resistance genes and virulence factors within these isolates emphasizes the potential risks they pose to both human and animal health. Furthermore, the presence of genes associated with Type III and Type VI Secretion Systems suggests their critical role in virulence and interbacterial competition. Understanding the genetic factors that contribute to Vibrio bacterial virulence and survival strategies within their ecological niche is of utmost importance for the effective prevention and management of diseases in aquaculture practices.


Asunto(s)
Arcidae , Sistemas de Secreción Tipo VI , Vibrio parahaemolyticus , Animales , Humanos , Virulencia/genética , Factores de Virulencia/genética , Antibacterianos
3.
Microbiology (Reading) ; 169(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552221

RESUMEN

Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.


Asunto(s)
Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Percepción de Quorum/genética
4.
Elife ; 112022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36226828

RESUMEN

The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo VI , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Antibacterianos/farmacología , Islas Genómicas , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleasas/metabolismo
5.
Mol Microbiol ; 118(5): 552-569, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36164821

RESUMEN

Type 6 secretion systems (T6SSs) are specialized multiprotein complexes that inject protein effectors into prokaryotic and/or eukaryotic cells. We previously described the role of the T6SS of the phytopathogen Xanthomonas citri pv. citri as an anti-eukaryotic nanoweapon that confers resistance to predation by the amoeba Dictyostelium discoideum. Transcription of the X. citri T6SS genes is induced by a signaling cascade involving the Ser/Thr kinase PknS and the extracytoplasmic function sigma factor EcfK. Here, we used a strain overexpressing a phosphomimetic constitutively active version of EcfK (EcfKT51E ) to identify the EcfK regulon, which includes a previously uncharacterized transcription factor of the AraC-family (TagK), in addition to T6SS genes and genes encoding protein homeostasis factors. Functional studies demonstrated that TagK acts downstream of EcfK, binding directly to T6SS gene promoters and inducing T6SS expression in response to contact with amoeba cells. TagK controls a small regulon, consisting of the complete T6SS, its accessory genes and additional genes encoded within the T6SS cluster. We conclude that a singular regulatory circuit consisting of a transmembrane kinase (PknS), an alternative sigma factor (EcfK) and an AraC-type transcriptional regulator (TagK) promotes expression of the X. citri T6SS in response to a protozoan predator.


Asunto(s)
Dictyostelium , Sistemas de Secreción Tipo VI , Xanthomonas , Factor sigma/genética , Factor sigma/metabolismo , Factor de Transcripción de AraC/genética , Regulación Bacteriana de la Expresión Génica/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Células Eucariotas , Eucariontes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Sci Total Environ ; 850: 157917, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35952879

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae is a common cause of healthcare-related infections, and it is widespread in hospitals and diverse environments with potentially serious public health implications. Herein, we have reported the isolation and characterization of an environmental Brazilian Klebsiella carbapenemase (BKC-1)-producing K. pneumoniae strain (IEC1205) isolated in 2018 from a river in the Amazon region, Brazil. Antimicrobial susceptibility of this strain was evaluated by broth microdilution and demonstrated resistance to several antibiotics including ß-lactams, aminoglycosides, fluoroquinolones, and polymyxins. It has an extensively drug-resistant phenotype. Genomic analysis revealed that IEC1205 belonged to sequence type 11, clonal complex 258 and the presence of blaBKC-1 and two other ß-lactamase-encoding genes (blaCTX-M-15 and blaSHV-11). The predicted virulence was associated with biofilm formation-related genes, a type VI secretion system, siderophore production, and type I and II fimbriae formation. We have identified an IncQ1 plasmid, named pIEC1205, harboring blaBKC-1 with high similarity to previously described plasmids carrying blaBKC-1 and blaBKC-2 genes. To our knowledge, this is the first report of an environmental BKC-1-producing K. pneumoniae strain.


Asunto(s)
Infecciones por Klebsiella , Sistemas de Secreción Tipo VI , Aminoglicósidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Brasil , Carbapenémicos , Células Clonales , Farmacorresistencia Bacteriana Múltiple/genética , Fluoroquinolonas , Genómica , Humanos , Klebsiella/genética , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Plásmidos , Polimixinas , Ríos , Sideróforos , beta-Lactamasas/genética , beta-Lactamas
7.
Microbiol Spectr ; 10(4): e0157622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35876575

RESUMEN

The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.


Asunto(s)
Sistemas de Secreción Tipo VI , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chromobacterium/genética , Chromobacterium/metabolismo , Bacterias Gramnegativas/metabolismo , Humanos , Ratones , Percepción de Quorum , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
8.
Sci Rep ; 12(1): 8249, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581398

RESUMEN

Type VI Secretion System (T6SS) is a nanomolecular apparatus that allows the delivery of effector molecules through the cell envelope of a donor bacterium to prokaryotic and/or eukaryotic cells, playing a role in the bacterial competition, virulence, and host interaction. T6SS is patchily distributed in bacterial genomes, suggesting an association with horizontal gene transfer (HGT). In fact, T6SS gene loci are eventually found within genomic islands (GIs), and there are some reports in plasmids and integrative and conjugative elements (ICEs). The impact that T6SS may have on bacteria fitness and the lack of evidence on its spread mechanism led us to question whether plasmids could represent a key mechanism in the spread of T6SS in bacteria. Therefore, we performed an in-silico analysis to reveal the association between T6SS and plasmids. T6SS was mined on 30,660 plasmids from NCBI based on the presence of at least six T6SS core proteins. T6SS was identified in 330 plasmids, all belonging to the same type (T6SSi), mainly in Proteobacteria (328/330), particularly in Rhizobium and Ralstonia. Interestingly, most genomes carrying T6SS-harboring plasmids did not encode T6SS in their chromosomes, and, in general, chromosomal and plasmid T6SSs did not form separate clades.


Asunto(s)
Sistemas de Secreción Tipo VI , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Familia de Multigenes , Plásmidos/genética , Proteobacteria/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
9.
Proteins ; 90(9): 1655-1668, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35430767

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic-resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C-terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C-terminal extension (VgrG4-CTD). VgrG4-CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non-Klebsiella species. To get insights into its function, recombinant VgrG4-CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton-associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4-CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.


Asunto(s)
Klebsiella pneumoniae , Sistemas de Secreción Tipo VI , Citoesqueleto de Actina/metabolismo , Actinas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia
10.
Environ Microbiol ; 23(10): 6257-6274, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34472164

RESUMEN

The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.


Asunto(s)
Azospirillum brasilense , Chlorella , Microalgas , Sistemas de Secreción Tipo VI , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Microalgas/genética , Microalgas/metabolismo , Simbiosis , Sistemas de Secreción Tipo VI/metabolismo
11.
PLoS Negl Trop Dis ; 15(2): e0009207, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606689

RESUMEN

Campylobacter jejuni and Campylobacter coli are the leading cause of human gastroenteritis in the industrialized world and an emerging threat in developing countries. The incidence of campylobacteriosis in South America is greatly underestimated, mostly due to the lack of adequate diagnostic methods. Accordingly, there is limited genomic and epidemiological data from this region. In the present study, we performed a genome-wide analysis of the genetic diversity, virulence, and antimicrobial resistance of the largest collection of clinical C. jejuni and C. coli strains from Chile available to date (n = 81), collected in 2017-2019 in Santiago, Chile. This culture collection accounts for more than one third of the available genome sequences from South American clinical strains. cgMLST analysis identified high genetic diversity as well as 13 novel STs and alleles in both C. jejuni and C. coli. Pangenome and virulome analyses showed a differential distribution of virulence factors, including both plasmid and chromosomally encoded T6SSs and T4SSs. Resistome analysis predicted widespread resistance to fluoroquinolones, but low rates of erythromycin resistance. This study provides valuable genomic and epidemiological data and highlights the need for further genomic epidemiology studies in Chile and other South American countries to better understand molecular epidemiology and antimicrobial resistance of this emerging intestinal pathogen.


Asunto(s)
Campylobacter coli/genética , Campylobacter jejuni/genética , Farmacorresistencia Bacteriana/genética , Genómica , Factores de Virulencia/genética , Antibacterianos/farmacología , Infecciones por Campylobacter , Campylobacter coli/clasificación , Campylobacter jejuni/clasificación , Campylobacter jejuni/efectos de los fármacos , Chile , Fluoroquinolonas/farmacología , Gastroenteritis , Humanos , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Tipificación de Secuencias Multilocus , Filogenia , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo VI/genética , Virulencia/genética
12.
BMC Microbiol ; 21(1): 14, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407123

RESUMEN

BACKGROUND: The type VI protein secretion system (T6SS) is important in diverse cellular processes in Gram-negative bacteria, including interactions with other bacteria and with eukaryotic hosts. In this study we analyze the evolution of the T6SS in the genus Xanthomonas and evaluate its importance of the T6SS for virulence and in vitro motility in Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of bacterial blight in cassava (Manihot esculenta). We delineate the organization of the T6SS gene clusters in Xanthomonas and then characterize proteins of this secretion system in Xpm strain CIO151. RESULTS: We describe the presence of three different clusters in the genus Xanthomonas that vary in their organization and degree of synteny between species. Using a gene knockout strategy, we also found that vgrG and hcp are required for maximal aggressiveness of Xpm on cassava plants while clpV is important for both motility and maximal aggressiveness. CONCLUSION: We characterized the T6SS in 15 different strains in Xanthomonas and our phylogenetic analyses suggest that the T6SS might have been acquired by a very ancient event of horizontal gene transfer and maintained through evolution, hinting at their importance for the adaptation of Xanthomonas to their hosts. Finally, we demonstrated that the T6SS of Xpm is functional, and significantly contributes to virulence and motility. This is the first experimental study that demonstrates the role of the T6SS in the Xpm-cassava interaction and the T6SS organization in the genus Xanthomonas.


Asunto(s)
Biología Computacional/métodos , Sistemas de Secreción Tipo VI/genética , Xanthomonas/patogenicidad , Técnicas de Inactivación de Genes , Transferencia de Gen Horizontal , Mutación , Filogenia , Análisis de Secuencia de ADN , Virulencia , Xanthomonas/clasificación , Xanthomonas/genética , Xanthomonas/fisiología
13.
Braz J Microbiol ; 52(1): 229-243, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33410103

RESUMEN

Aeromonas are bacteria broadly spread in the environment, particularly in aquatic habitats and can induce human infections. Several virulence factors have been described associated with bacterial pathogenicity, such as the Type VI Secretion System (T6SS). This system translocates effector proteins into target cells through a bacteriophage-like contractile structure encoded by tss genes. Here, a total of 446 Aeromonas genome sequences were screened for T6SS and the proteins subjected to in silico analysis. The T6SS-encoding locus was detected in 243 genomes and its genes are encoded in a cluster containing 13 core and 5 accessory genes, in highly conserved synteny. The amino acid residues identity of T6SS proteins ranges from 78 to 98.8%. In most strains, a pair of tssD and tssI is located upstream the cluster (tssD-2, tssI-2) and another pair was detected distant from the cluster (tssD-1, tssI-1). Significant variability was seen in TssI (VgrG) C-terminal region, which was sorted in four groups based on its sequence length and protein domains. TssI containing ADP-ribosyltransferase domain are associated exclusively with TssI-1, while genes coding proteins carrying DUF4123 (a conserved domain of unknown function) were observed downstream tssI-1 or tssI-2 and escort of possible effector proteins. Genes coding proteins containing DUF1910 and DUF1911 domains were located only downstream tssI-2 and might represent a pair of toxin/immunity proteins. Nearly all strains display downstream tssI-3, that codes for a lysozyme family domain protein. These data reveal that Aeromonas T6SS cluster synteny is conserved and the low identity observed for some genes might be due to species heterogeneity or its niche/functionality.


Asunto(s)
Aeromonas/genética , Aeromonas/metabolismo , Genoma Bacteriano , Sistemas de Secreción Tipo VI/genética , Aeromonas/patogenicidad , Proteínas Bacterianas/genética , Simulación por Computador , Familia de Multigenes , Análisis de Secuencia de Proteína , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia
14.
Cell Rep ; 31(12): 107813, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579939

RESUMEN

Type VI secretion systems (T6SSs) are nanomachines used by bacteria to inject toxic effectors into competitors. The identity and mechanism of many effectors remain unknown. We characterized a Salmonella T6SS antibacterial effector called Tlde1 that is toxic in target-cell periplasm and is neutralized by its cognate immunity protein (Tldi1). Microscopy analysis reveals that cells expressing Tlde1 stop dividing and lose cell envelope integrity. Bioinformatic analysis uncovers similarities between Tlde1 and the catalytic domain of l,d-transpeptidases. Point mutations on conserved catalytic residues abrogate toxicity. Biochemical assays reveal that Tlde1 displays both l,d-carboxypeptidase activity by cleaving peptidoglycan tetrapeptides between meso-diaminopimelic acid3 and d-alanine4 and l,d-transpeptidase exchange activity by replacing d-alanine4 by a non-canonical d-amino acid. Phylogenetic analysis shows that Tlde1 homologs constitute a family of T6SS-associated effectors broadly distributed among Proteobacteria. This work expands our current knowledge about bacterial effectors used in interbacterial competition and reveals a different mechanism of bacterial antagonism.


Asunto(s)
Antibacterianos/farmacología , Peptidoglicano/metabolismo , Peptidil Transferasas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Evolución Molecular , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Proteobacteria/efectos de los fármacos , Proteobacteria/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo
15.
Curr Microbiol ; 76(10): 1105-1111, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31289847

RESUMEN

Xanthomonas citri pv. citri (X. citri pv. citri) is the causal agent of Asiatic citrus canker and infects economically important citrus crops. X. citri pv. citri contains one type VI secretion system (T6SS) required for resistance to predation by the soil amoeba Dictyostelium discoideum and induced by the ECF sigma factor EcfK in the presence of amoeba. In this work, we describe the analysis of T6SS gene expression during interaction with host plants. We show that T6SS genes and the cognate positive regulator ecfK are upregulated during growth in the plant surface (epiphytic) and maintain low expression levels during growth inside plant mesophyll. In addition, expression of the virulence-associated T3SS is also induced during epiphytic growth and shows a temporal induction pattern during growth inside plant leaves. The T6SS is not required for adhesion to leaf surface and biofilm formation during the first stages of plant colonization nor for killing of yeasts cells. Since the phyllosphere is colonized by eukaryotic predators of bacteria, induction of the X. citri pv. citri anti-amoeba T6SS during epiphytic growth suggests the presence of an environmental signal that triggers the resistance phenotype.


Asunto(s)
Citrus/microbiología , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo VI/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Hojas de la Planta/microbiología , Factor sigma/genética , Factor sigma/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Virulencia , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
16.
BMC Genomics ; 20(1): 506, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31215404

RESUMEN

BACKGROUND: Klebsiella pneumoniae (KP) is an opportunistic pathogen that mainly causes respiratory and urinary tract infections. The frequent occurrence of simultaneously virulent and multiple drug-resistant isolates led WHO to include this species in the list of top priorities for research and development of therapeutic alternatives. The comprehensive knowledge of the molecular mechanisms underlying KP virulence may lead to the proposal of more efficient and specific drugs. One of its virulence factors is the Type VI Secretion System (T6SS), which contributes to bacterial competition, cell invasion and in vivo colonisation. Despite the few studies showing the involvement of T6SS in KP pathogenesis, little is known concerning the regulation of its expression. The understanding of regulatory mechanisms may give more clues about the function of the system and the possibilities of future interference in this process. This work aimed to standardise the annotation of T6SS genes in KP strains and identify mechanisms of their transcriptional regulation through computational predictions. RESULTS: We analyzed the genomes of Kp52.145, HS11286 and NTUH-K2044 strains to perform a broad prediction and re-annotation of T6SS genes through similarity searches, comparative and linear discriminant analysis. 38 genes were found in Kp52.145, while 29 in HS11286 and 30 in NTUH-K2044. Genes coding for iron uptake systems are encoded in adjacencies of T6SS, suggesting that KP T6SS might also play a role in ion import. Some of the T6SS genes are comprised in syntenic regions. 17 sigma 70-dependent promoter regions were identified in Kp52.145, 12 in HS11286 and 12 in NTUH-K2044. Using VirtualFootprint algorithm, binding sites for 13 transcriptional regulators were found in Kp52.145 and 9 in HS11286 and 17 in NTUH-K2044. Six of them are common to the 3 strains: OxyR, H-NS, RcsAB, GcvA, Fis, and OmpR. CONCLUSIONS: The data presented herein are derived from computational analysis. Although future experimental studies are required to confirm those predictions, they suggest that KP T6SS might be regulated in response to environmental signals that are indeed sensed by the bacteria inside the human host: temperature (H-NS), nutrition-limitation (GcvA and Fis), oxidative stress (OxyR) and osmolarity (RscAB and OmpR).


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/genética , Transcripción Genética/genética , Sistemas de Secreción Tipo VI/genética , Secuencia de Aminoácidos , Sitios de Unión , Genoma Bacteriano/genética , Anotación de Secuencia Molecular , Sintenía , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/metabolismo
17.
Rio de Janeiro; s.n; 2019. 2019 p. ilus.
Tesis en Portugués | LILACS | ID: biblio-1050352

RESUMEN

Klebsiella pneumoniae é um patógeno oportunista que causa principalmente infecções respiratórias e do trato urinário. A ocorrência frequente de isolados virulentos resistentes a múltiplas drogas levou a inclusão dessa espécie na lista da OMS das principais prioridades para pesquisa e desenvolvimento de alternativas terapêuticas. O conhecimento abrangente dos mecanismos moleculares subjacentes à virulência da K. pneumoniae pode levar à proposta de medicamentos mais eficientes e específicos. O Sistema de Secreção Tipo VI (T6SS) contribui para a competição bacteriana, invasão celular e colonização in vivo. Apesar dos estudos que mostram o envolvimento do T6SS na patogênese da K. pneumoniae, pouco se conhece sobre a regulação de sua expressão. O entendimento dos mecanismos regulatórios pode fornecer pistas sobre a função desse sistema e contribuir para o desenvolvimento de novas abordagens terapêuticas para o tratamento de infecções por K. pneumoniae. Esse trabalho teve como objetivo identificar mecanismos de regulação transcricional dos genes do T6SS de K. pneumoniae


Para isso, analisamos os genomas de três cepas (Kp52.145, HS11286 e NTUH-K2044) de forma a predizer e padronizar a anotação dos genes de T6SS através de buscas de similaridade. Foram encontrados 38 genes do T6SS em Kp52.145, 29 em HS11286 e 30 em NTUH-K2044. Nas adjacências dos genes do T6SS foram encontrados genes envolvidos em sistemas de captação de ferro, sugerindo que o T6SS de K. pneumoniae também pode desempenhar um papel na importação de íons. Foram identificadas 17 regiões promotoras dependentes de σ70 em Kp52.145, 12 em HS11286 e 12 em NTUH-K2044. Identificamos ainda 17, 12 e 15 sequências promotoras a partir dos sítios putativos de σ54. Também identificamos 165 sítios de ligação para reguladores transcricionais em Kp52.145, 125 em HS11286 e 134 em NTUH-K2044. Nossos resultados in silico sugerem que o T6SS de K. pneumoniae seja regulado em resposta a sinais ambientais e devem direcionar experimentos in vitro que testem a resposta de K. pneumoniae a variações de temperatura (H-NS), de nutrientes (GcvA e Fis), estresse oxidativo (OxyR) e osmolaridade (RscAB e OmpR). (AU)


Asunto(s)
Animales , Genoma Bacteriano , Sistemas de Secreción Tipo VI , Klebsiella pneumoniae
18.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30299474

RESUMEN

Bacteria of the Azospirillum and Pseudomonas genera are ubiquitous members of the rhizosphere, where they stimulate plant growth. Given the outstanding capacity of pseudomonads to antagonize other microorganisms, we analyzed the interaction between these two bacterial groups to identify determinants of their compatibility. We could establish that, when in direct contact, certain Pseudomonas strains produce lethality on Azospirillum brasilense cells using an antibacterial type 6 secretion system. When analyzing the effect of Pseudomonas spp. diffusible metabolites on A. brasilense growth on King's B medium, we detected strong inhibitory effects, mostly mediated by siderophores. On Congo Red medium, both inhibitory and stimulatory effects were induced by unidentified compounds. Under this condition, Pseudomonas protegens CHA0 produced a Gac/Rsm-regulated antibiotic which specifically inhibited A. brasilense Sp7 but not Sp245. This effect was not associated with the production of 2,4-diacetylphloroglucinol. The three identified antagonism determinants were also active in vivo, producing a reduction of viable cells of A. brasilense in the roots of wheat seedlings when co-inoculated with pseudomonads. These results are relevant to the understanding of social dynamics in the rhizosphere and might aid in the selection of strains for mixed inoculants.


Asunto(s)
Antibiosis/fisiología , Azospirillum brasilense/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pseudomonas/metabolismo , Azospirillum brasilense/metabolismo , Rizosfera , Plantones/microbiología , Sideróforos/metabolismo , Triticum/microbiología , Sistemas de Secreción Tipo VI/fisiología
19.
Environ Microbiol ; 20(4): 1562-1575, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488354

RESUMEN

Plant-associated bacteria of the genus Xanthomonas cause disease in a wide range of economically important crops. However, their ability to persist in the environment is still poorly understood. Predation by amoebas represents a major selective pressure to bacterial populations in the environment. In this study, we show that the X. citri type 6 secretion system (T6SS) promotes resistance to predation by the soil amoeba Dictyostelium discoideum. We found that an extracytoplasmic function (ECF) sigma factor (EcfK) is required for induction of T6SS genes during interaction with Dictyostelium. EcfK homologues are found in several environmental bacteria in association with a gene encoding a eukaryotic-like Ser/Thr kinase (pknS). Deletion of pknS causes sensitivity to amoeba predation and abolishes induction of T6SS genes. Phosphomimetic mutagenesis of EcfK identified a threonine residue (T51) that renders EcfK constitutively active in standard culture conditions. Moreover, susceptibility of ΔpknS to Dictyostelium predation can be overcome by expression of the constitutively active version EcfKT51E from a multicopy plasmid. Together, these results describe a new regulatory cascade in which PknS functions through activation of EcfK to promote T6SS expression. Our work reveals an important aspect of Xanthomonas physiology that affects its ability to persist in the environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dictyostelium/microbiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor sigma/genética , Sistemas de Secreción Tipo VI/metabolismo , Xanthomonas/metabolismo , Cadena Alimentaria , Mutagénesis , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/genética , Sistemas de Secreción Tipo VI/genética , Xanthomonas/genética
20.
Syst Appl Microbiol ; 41(3): 198-212, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29429564

RESUMEN

The application of tandem MALDI-TOF MS screening with 16S rRNA gene sequencing of selected isolates has been demonstrated to be an excellent approach for retrieving novelty from large-scale culturing. The application of such methodologies in different hypersaline samples allowed the isolation of the culture-recalcitrant Salinibacter ruber second phylotype (EHB-2) for the first time, as well as a new species recently isolated from the Argentinian Altiplano hypersaline lakes. In this study, the genome sequences of the different species of the phylum Rhodothermaeota were compared and the genetic repertoire along the evolutionary gradient was analyzed together with each intraspecific variability. Altogether, the results indicated an open pan-genome for the family Salinibacteraceae, as well as the codification of relevant traits such as diverse rhodopsin genes, CRISPR-Cas systems and spacers, and one T6SS secretion system that could give ecological advantages to an EHB-2 isolate. For the new Salinibacter species, we propose the name Salinibacter altiplanensis sp. nov. (the designated type strain is AN15T=CECT 9105T=IBRC-M 11031T).


Asunto(s)
Bacteroidetes/clasificación , Genoma Bacteriano , Lagos/microbiología , Filogenia , Salinidad , Altitud , Argentina , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Sistemas CRISPR-Cas , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Rodopsina/genética , Análisis de Secuencia de ADN , Sistemas de Secreción Tipo VI/genética , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA