Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.348
Filtrar
1.
ACS Chem Neurosci ; 15(10): 2070-2079, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691676

RESUMEN

PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.


Asunto(s)
Proteínas Portadoras , Dominios PDZ , Unión Proteica , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteínas Portadoras/metabolismo , Unión Proteica/fisiología , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Sitios de Unión/fisiología
2.
J Biol Chem ; 300(1): 105552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072065

RESUMEN

Fibrinogen C domain-containing protein 1 (FIBCD1) is an immune protein proposed to be involved in host recognition of chitin on the surface of pathogens. As FIBCD1 readily binds acetylated molecules, we have determined the high-resolution crystal structures of a recombinant fragment of the FIBCD1 C-terminal domain complexed with small N-acetyl-containing ligands to determine the mode of recognition. All ligands bind at the conserved N-acetyl-binding site (S1) with galactose and glucose-derived ligands rotated 180° relative to each other. One subunit of a native structure derived from protein expressed in mammalian cells binds glycosylation from a neighboring subunit, in an extended binding site. Across the various structures, the primary S1 binding pocket is occupied by N-acetyl-containing ligands or acetate, with N-acetyl, acetate, or sulfate ion in an adjacent pocket S1(2). Inhibition binding studies of N-acetylglucosamine oligomers, (GlcNAc)n, n = 1, 2, 3, 5, 11, via ELISA along with microscale thermophoresis affinity assays indicate a strong preference of FIBCD1 for longer N-acetylchitooligosaccharides. Binding studies of mutant H396A, located beyond the S1(2) site, showed no significant difference from wildtype, but K381L, within the S1(2) pocket, blocked binding to the model ligand acetylated bovine serum albumin, suggesting that S1(2) may have functional importance in ligand binding. The binding studies, alongside structural definition of diverse N-acetyl monosaccharide binding in the primary S1 pocket and of additional, adjacent binding pockets, able to accommodate both carbohydrate and sulfate functional groups, suggest a versatility in FIBCD1 to recognize chitin oligomers and other pathogen-associated carbohydrate motifs across an extended surface.


Asunto(s)
Receptores de Superficie Celular , Humanos , Acetatos , Sitios de Unión/fisiología , Carbohidratos/química , Quitina/metabolismo , Hemostáticos , Ligandos , Unión Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Sulfatos , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Protein Sci ; 32(5): e4625, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916754

RESUMEN

[4Fe-4S]2+ cluster assembly in human cytosol requires both a [2Fe-2S] cluster chaperone being able to donate two [2Fe-2S]2+ clusters and an electron donor providing two electrons to reductively couple the two [2Fe-2S]2+ clusters into a [4Fe-4S]2+ cluster. The mechanism through which the cytosolic [4Fe-4S]2+ cluster assembly works is still not defined. Here, we show that a hetero-tetrameric complex formed by two molecules of cluster-reduced [2Fe-2S]+ 2 -anamorsin and one molecule of dimeric cluster-oxidized [2Fe-2S]2+ 2 -GLRX32 orchestrates the assembly of a [4Fe-4S]2+ cluster on the N-terminal cluster binding site of the cytosolic protein NUBP1. We demonstrate that the hetero-tetrameric complex is able to synergically provide two [2Fe-2S]2+ clusters from GLRX3 and two electrons from anamorsin for the assembly of the [4Fe-4S]2+ cluster on the N-terminal cluster binding site of NUBP1. We also showed that only one of the two [2Fe-2S] clusters bound to anamorsin, that is, that bound to the CX8 CX2 CXC motif, provides the electrons required to form the [4Fe-4S]2+ cluster. Our study contributes to the molecular understanding of the mechanism of [4Fe-4S] protein biogenesis in the cytosol.


Asunto(s)
Proteínas Hierro-Azufre , Dominios Proteicos , Humanos , Sitios de Unión/fisiología , Complejos de Coordinación , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/química , Unión Proteica , Dominios Proteicos/fisiología
4.
Biochem Pharmacol ; 208: 115399, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581051

RESUMEN

CC chemokine receptor 2 (CCR2), a G protein-coupled receptor, plays a role in many cancer-related processes such as metastasis formation and immunosuppression. Since âˆ¼ 20 % of human cancers contain mutations in G protein-coupled receptors, ten cancer-associated CCR2 mutants obtained from the Genome Data Commons were investigated for their effect on receptor functionality and antagonist binding. Mutations were selected based on either their vicinity to CCR2's orthosteric or allosteric binding sites or their presence in conserved amino acid motifs. One of the mutant receptors, namely S101P2.63 with a mutation near the orthosteric binding site, did not express on the cell surface. All other studied mutants showed a decrease in or a lack of G protein activation in response to the main endogenous CCR2 ligand CCL2, but no change in potency was observed. Furthermore, INCB3344 and LUF7482 were chosen as representative orthosteric and allosteric antagonists, respectively. No change in potency was observed in a functional assay, but mutations located at F1163.28 impacted orthosteric antagonist binding significantly, while allosteric antagonist binding was abolished for L134Q3.46 and D137N3.49 mutants. As CC chemokine receptor 2 is an attractive drug target in cancer, the negative effect of these mutations on receptor functionality and drugability should be considered in the drug discovery process.


Asunto(s)
Neoplasias , Receptores CCR2 , Humanos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Sitios de Unión/fisiología , Sitio Alostérico , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
Luminescence ; 38(1): 28-38, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36327139

RESUMEN

To promote the rational use of cabozantinib (CBZ), this paper studied the influence of several nutritional supplements on the interaction between CBZ and bovine serum albumin (BSA), an appropriate alternative model for human serum albumin (HSA) that is one of the important transporter proteins in plasma, by fluorescence spectroscopy and UV-vis spectroscopy. The results showed that CBZ could quench the fluorescence of BSA via a dynamic-static quenching process, and the six nutritional supplements did not change the quenching mode of BSA by CBZ. However, all of them could reduce the binding constant of the CBZ-BSA system at 293 K and increase the polarity around tryptophan residues. Among them, nicotinamide and vitamin B12 (VB12 ) had a greater effect on the binding constants of the CBZ-BSA system. In the meantime, the thermodynamic parameters of the CBZ-BSA system were examined, indicating that the interaction of CBZ with BSA was spontaneous and dominated by hydrophobic forces. Further research discovered that the combining of CBZ with BSA was primarily located within Site I of BSA, and the binding distance r was 2.48 nm. Consequently, while taking CBZ, patients should use VB12 and nicotinamide carefully, which may interfere with the transport of drugs.


Asunto(s)
Suplementos Dietéticos , Interacciones Farmacológicas , Piridinas , Albúmina Sérica Bovina , Humanos , Sitios de Unión/fisiología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacología , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica
6.
Nat Commun ; 13(1): 4582, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933426

RESUMEN

γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels abundant in the central nervous system and are prolific drug targets for treating anxiety, sleep disorders and epilepsy. Diverse small molecules exert a spectrum of effects on γ-aminobutyric acid type A (GABAA) receptors by acting at the classical benzodiazepine site. They can potentiate the response to GABA, attenuate channel activity, or counteract modulation by other ligands. Structural mechanisms underlying the actions of these drugs are not fully understood. Here we present two high-resolution structures of GABAA receptors in complex with zolpidem, a positive allosteric modulator and heavily prescribed hypnotic, and DMCM, a negative allosteric modulator with convulsant and anxiogenic properties. These two drugs share the extracellular benzodiazepine site at the α/γ subunit interface and two transmembrane sites at ß/α interfaces. Structural analyses reveal a basis for the subtype selectivity of zolpidem that underlies its clinical success. Molecular dynamics simulations provide insight into how DMCM switches from a negative to a positive modulator as a function of binding site occupancy. Together, these findings expand our understanding of how GABAA receptor allosteric modulators acting through a common site can have diverging activities.


Asunto(s)
Benzodiazepinas , Receptores de GABA-A , Sitios de Unión/fisiología , Moduladores del GABA/farmacología , Receptores de GABA-A/metabolismo , Zolpidem , Ácido gamma-Aminobutírico
7.
J Immunol ; 208(5): 1232-1247, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35110419

RESUMEN

The ß protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of ß as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by ß retained its decay acceleration and cofactor activities. Heterologous expression of ß by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by ß was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evasión Inmune/inmunología , Proteínas de la Membrana/metabolismo , Streptococcus agalactiae/inmunología , Sitios de Unión/fisiología , Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Humanos , Neutrófilos/inmunología , Opsonización/inmunología , Unión Proteica/inmunología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/patología
8.
Biophys J ; 121(7): 1166-1183, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35219649

RESUMEN

A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 µM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Nodo Sinoatrial , Sitios de Unión/fisiología , Bradicardia/genética , GMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Proteínas Musculares/química , Nucleótidos Cíclicos/química , Canales de Potasio/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216338

RESUMEN

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the "mouth" of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


Asunto(s)
Boca/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Veratridina/farmacología , Sitios de Unión/fisiología , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Neurotoxinas/farmacología
10.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091471

RESUMEN

We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide-Kv1.3). Both the apo-Kv1.3 and dalazatide-Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide-Kv1.3, binding of dalazatide to the channel's outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3's transition into the drug-blocked state.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/ultraestructura , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.3/efectos de los fármacos , Potenciales de la Membrana , Microscopía Electrónica/métodos , Modelos Moleculares , Conformación Molecular , Potasio/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio/ultraestructura , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/ultraestructura , Alineación de Secuencia/métodos
11.
PLoS Comput Biol ; 18(1): e1009825, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089918

RESUMEN

Proteins ensure their biological functions by interacting with each other. Hence, characterising protein interactions is fundamental for our understanding of the cellular machinery, and for improving medicine and bioengineering. Over the past years, a large body of experimental data has been accumulated on who interacts with whom and in what manner. However, these data are highly heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means to a "blind" protein-protein interaction network reconstruction. Here, we report on a molecular cross-docking-based approach for the identification of protein partners. The docking algorithm uses a coarse-grained representation of the protein structures and treats them as rigid bodies. We applied the approach to a few hundred of proteins, in the unbound conformations, and we systematically investigated the influence of several key ingredients, such as the size and quality of the interfaces, and the scoring function. We achieved some significant improvement compared to previous works, and a very high discriminative power on some specific functional classes. We provide a readout of the contributions of shape and physico-chemical complementarity, interface matching, and specificity, in the predictions. In addition, we assessed the ability of the approach to account for protein surface multiple usages, and we compared it with a sequence-based deep learning method. This work may contribute to guiding the exploitation of the large amounts of protein structural models now available toward the discovery of unexpected partners and their complex structure characterisation.


Asunto(s)
Sitios de Unión/fisiología , Simulación del Acoplamiento Molecular , Conformación Proteica , Mapas de Interacción de Proteínas/fisiología , Proteínas , Algoritmos , Biología Computacional , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo
12.
Nat Cell Biol ; 24(1): 112-122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35013558

RESUMEN

Nuclear pore complexes (NPCs) embedded within the nuclear envelope mediate rapid, selective and bidirectional traffic between the cytoplasm and the nucleoplasm. Deciphering the mechanism and dynamics of this process is challenged by the need for high spatial and temporal resolution. We report here a multicolour imaging approach that enables direct three-dimensional visualization of cargo transport trajectories relative to a super-resolved octagonal double-ring structure of the NPC scaffold. The success of this approach is enabled by the high positional stability of NPCs within permeabilized cells, as verified by a combined experimental and simulation analysis. Hourglass-shaped translocation conduits for two cargo complexes representing different nuclear transport receptor pathways indicate rapid migration through the permeability barrier on or near the NPC scaffold. Binding sites for cargo complexes extend more than 100 nm from the pore openings, which is consistent with a wide distribution of the phenylalanine-glycine polypeptides that bind nuclear transport receptors.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Imagenología Tridimensional/métodos , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Sitios de Unión/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Biología Computacional/métodos , Humanos , Imagen Individual de Molécula
13.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948188

RESUMEN

Human serum transferrin (Tf) is a bilobed glycoprotein whose function is to transport iron through receptor-mediated endocytosis. The mechanism for iron release is pH-dependent and involves conformational changes in the protein, thus making it an attractive system for possible biomedical applications. In this contribution, two powerful X-ray techniques, namely Macromolecular X-ray Crystallography (MX) and Small Angle X-ray Scattering (SAXS), were used to study the conformational changes of iron-free (apo) and iron-loaded (holo) transferrin in crystal and solution states, respectively, at three different pH values of physiological relevance. A crystallographic model of glycosylated apo-Tf was obtained at 3.0 Å resolution, which did not resolve further despite many efforts to improve crystal quality. In the solution, apo-Tf remained mostly globular in all the pH conditions tested; however, the co-existence of closed, partially open, and open conformations was observed for holo-Tf, which showed a more elongated and flexible shape overall.


Asunto(s)
Transferrina/ultraestructura , Sitios de Unión/fisiología , Cristalografía por Rayos X/métodos , Glicosilación , Humanos , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Modelos Moleculares , Unión Proteica/fisiología , Conformación Proteica , Dispersión del Ángulo Pequeño , Suero/química , Suero/metabolismo , Transferrina/metabolismo , Difracción de Rayos X
14.
Life Sci ; 287: 120125, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34762904

RESUMEN

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Asunto(s)
Acetilcisteína/metabolismo , Benzofuranos/metabolismo , Benzofuranos/toxicidad , Glutatión/metabolismo , Hepatocitos/metabolismo , Animales , Sitios de Unión/fisiología , Células Cultivadas , Inductores del Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/toxicidad , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Humanos , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley
15.
Amino Acids ; 53(12): 1863-1874, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34792644

RESUMEN

L-Thioproline (L-thiazolidine-4-carboxylate, L-T4C) is a cyclic sulfur-containing analog of L-proline found in multiple kingdoms of life. The oxidation of L-T4C leads to L-cysteine formation in bacteria, plants, mammals, and protozoa. The conversion of L-T4C to L-Cys in bacterial cell lysates has been attributed to proline dehydrogenase and L-Δ1-pyrroline-5-carboxylate (P5C) reductase (PYCR) enzymes but detailed kinetic studies have not been conducted. Here, we characterize the dehydrogenase activity of human PYCR isozymes 1 and 2 with L-T4C using NAD(P)+ as the hydride acceptor. Both PYCRs exhibit significant L-T4C dehydrogenase activity; however, PYCR2 displays nearly tenfold higher catalytic efficiency (136 M-1 s-1) than PYCR1 (13.7 M-1 s-1). Interestingly, no activity was observed with either L-Pro or the analog DL-thiazolidine-2-carboxylate, indicating that the sulfur at the 4-position is critical for PYCRs to utilize L-T4C as a substrate. Inhibition kinetics show that L-Pro is a competitive inhibitor of PYCR1 [Formula: see text] with respect to L-T4C, consistent with these ligands occupying the same binding site. We also confirm by mass spectrometry that L-T4C oxidation by PYCRs leads to cysteine product formation. Our results suggest a new enzyme function for human PYCRs in the metabolism of L-T4C.


Asunto(s)
Pirrolina Carboxilato Reductasas/metabolismo , Tiazolidinas/metabolismo , Sitios de Unión/fisiología , Cisteína/metabolismo , Humanos , Cinética , Prolina/metabolismo , Pirroles/metabolismo
16.
Cell Rep ; 37(7): 110025, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788616

RESUMEN

Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel, is gated by intracellular adenosine diphosphate ribose (ADPR), Ca2+, warm temperature, and oxidative stress. It is critically involved in physiological and pathological processes ranging from inflammation to stroke to neurodegeneration. At present, the channel's gating and ion permeation mechanisms, such as the location and identity of the selectivity filter, remain ambiguous. Here, we report the cryo-electron microscopy (cryo-EM) structure of human TRPM2 in nanodisc in the ligand-free state. Cryo-EM map-guided computational modeling and patch-clamp recording further identify a quadruple-residue motif as the ion selectivity filter, which adopts a restrictive conformation in the closed state and acts as a gate, profoundly contrasting with its widely open conformation in the Nematostella vectensis TRPM2. Our study reveals the gating of human TRPM2 by the filter and demonstrates the feasibility of using cryo-EM in conjunction with computational modeling and functional studies to garner structural information for intrinsically dynamic but functionally important domains.


Asunto(s)
Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/fisiología , Sitios de Unión/fisiología , Calcio/metabolismo , Cationes , Microscopía por Crioelectrón/métodos , Humanos , Activación del Canal Iónico/fisiología , Técnicas de Placa-Clamp/métodos , Unión Proteica/fisiología , Canales Catiónicos TRPM/ultraestructura
17.
Cell Mol Life Sci ; 78(23): 7145-7160, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34633481

RESUMEN

The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.


Asunto(s)
Carcinogénesis/patología , Proteínas del Citoesqueleto/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuromusculares/patología , Proteínas de Unión al ARN/metabolismo , Animales , Sitios de Unión/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Polaridad Celular/fisiología , Transformación Celular Neoplásica/patología , Proteínas del Citoesqueleto/genética , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
18.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625496

RESUMEN

Heat shock protein 70 (Hsp70) chaperones bind many different sequences and discriminate between incompletely folded and folded clients. Most research into the origins of this "selective promiscuity" has relied on short peptides as substrates to dissect the binding, but much less is known about how Hsp70s bind full-length client proteins. Here, we connect detailed structural analyses of complexes between the Escherichia coli Hsp70 (DnaK) substrate-binding domain (SBD) and peptides encompassing five potential binding sites in the precursor to E. coli alkaline phosphatase (proPhoA) with SBD binding to full-length unfolded proPhoA. Analysis of SBD complexes with proPhoA peptides by a combination of X-ray crystallography, methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), and paramagnetic relaxation enhancement (PRE) NMR and chemical cross-linking experiments provided detailed descriptions of their binding modes. Importantly, many sequences populate multiple SBD binding modes, including both the canonical N to C orientation and a C to N orientation. The favored peptide binding mode optimizes substrate residue side-chain compatibility with the SBD binding pockets independent of backbone orientation. Relating these results to the binding of the SBD to full-length proPhoA, we observe that multiple chaperones may bind to the protein substrate, and the binding sites, well separated in the proPhoA sequence, behave independently. The hierarchy of chaperone binding to sites on the protein was generally consistent with the apparent binding affinities observed for the peptides corresponding to these sites. Functionally, these results reveal that Hsp70s "read" sequences without regard to the backbone direction and that both binding orientations must be considered in current predictive algorithms.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Dominios Proteicos/fisiología , Sitios de Unión/fisiología , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína
19.
Cell Rep ; 36(10): 109654, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496256

RESUMEN

Many bacterial pathogens secrete A(2)B5 toxins comprising two functionally distinct yet complementary "A" and "B" subunits to benefit the pathogens during infection. The lectin-like pentameric B subunits recognize specific sets of host glycans to deliver the toxin into target host cells. Here, we offer the molecular mechanism by which neutralizing antibodies, which have the potential to bind to all glycan-receptor binding sites and thus completely inhibit toxin binding to host cells, are inhibited from exerting this action. Cryogenic electron microscopy (cryo-EM)-based analyses indicate that the skewed positioning of the toxin A subunit(s) toward one side of the toxin B pentamer inhibited neutralizing antibody binding to the laterally located epitopes, rendering some glycan-receptor binding sites that remained available for the toxin binding and endocytosis process, which is strikingly different from the counterpart antibodies recognizing the far side-located epitopes. These results highlight additional features of the toxin-antibody interactions and offer important insights into anti-toxin strategies.


Asunto(s)
Toxinas Bacterianas/metabolismo , Polisacáridos/metabolismo , Unión Proteica/fisiología , Salmonella/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas Bacterianas/metabolismo , Sitios de Unión/fisiología , Humanos , Ratones , Salmonella typhi/patogenicidad , Fiebre Tifoidea/microbiología
20.
Cell Mol Life Sci ; 78(21-22): 6869-6885, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34541613

RESUMEN

The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E-eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Humanos , Trastornos del Neurodesarrollo/metabolismo , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...