Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
2.
Dev Biol ; 373(2): 407-21, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23085238

RESUMEN

The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of numerous vertebrate species has added significant weight to Cooke and Zeeman's 'clock and wavefront' model of somitogenesis, in which a travelling wavefront determines the spatial position of somite formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis. In this study we describe how our recently proposed model, in which oscillator coupling drives the propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of 'salt and pepper' patterns of gene expression upon disruption of oscillator coupling; and (c) spatial correlations in the 'salt and pepper' patterns in Delta-Notch mutants. In light of our results, we propose a number of plausible experiments that could be used to further test the model.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Organogénesis , Receptores Notch/metabolismo , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Animales , Relojes Biológicos/genética , Tipificación del Cuerpo/genética , División Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Mutación/genética , Fenotipo , Transducción de Señal , Somitos/anatomía & histología , Somitos/citología , Procesos Estocásticos , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Evol Dev ; 14(3): 234-56, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23017073

RESUMEN

Vertebrate head segmentation has attracted the attention of comparative and evolutionary morphologists for centuries, given its importance for understanding the developmental body plan of vertebrates and its evolutionary origin. In particular, the segmentation of the mesoderm is central to the problem. The shark embryo has provided a canonical morphological scheme of the head, with its epithelialized coelomic cavities (head cavities), which have often been regarded as head somites. To understand the evolutionary significance of the head cavities, the embryonic development of the mesoderm was investigated at the morphological and histological levels in the shark, Scyliorhinus torazame. Unlike somites and some enterocoelic mesodermal components in other vertebrates, the head cavities in S. torazame appeared as irregular cyst(s) in the originally unsegmented mesenchymal head mesoderm, and not via segmentation of an undivided coelom. The mandibular cavity appeared first in the paraxial part of the mandibular mesoderm, followed by the hyoid cavity, and the premandibular cavity was the last to form. The prechordal plate was recognized as a rhomboid roof of the preoral gut, continuous with the rostral notochord, and was divided anteroposteriorly into two parts by the growth of the hypothalamic primordium. Of those, the posterior part was likely to differentiate into the premandibular cavity, and the anterior part disappeared later. The head cavities and somites in the trunk exhibited significant differences, in terms of histological appearance and timing of differentiation. The mandibular cavity developed a rostral process secondarily; its homology to the anterior cavity reported in some elasmobranch embryos is discussed.


Asunto(s)
Cazón/anatomía & histología , Cazón/embriología , Cabeza/embriología , Somitos/anatomía & histología , Somitos/embriología , Animales , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Cabeza/anatomía & histología , Organogénesis
4.
J Microsc ; 248(2): 156-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22957990

RESUMEN

With the availability of high-throughput imaging machines and a large number of zebrafish embryos, zebrafish are clearly among the most cost-effective vertebrate systems for high-throughput or high-content screens with applications in drug discovery and biological pathway analysis. With the tremendous volume of images generated from large numbers of zebrafish screens, computerized image analysis for accurate and efficient data interpretation becomes essential. This paper presents an automated algorithm for a high-throughput screening pipeline for quantification of zebrafish somite. First, the main body is segmented using the level set method; then the head is removed; after that, the body is aligned and a coherence-enhancing filter is carried out so as to facilitate the somite detection. Finally, the somites can be easily extracted. Preliminary evaluation results are reported to demonstrate the good performance of the algorithm.


Asunto(s)
Biometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Somitos/anatomía & histología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Animales
5.
Dev Biol ; 368(2): 370-81, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22705477

RESUMEN

The extracellular matrix (ECM) is a major player in the microenvironment governing morphogenesis. However, much is yet to be known about how matrix composition and architecture changes as it influences major morphogenetic events. Here we performed a detailed, 3D analysis of the distribution of two ECM components, fibronectin and laminin, during the development of the chick paraxial mesoderm. By resorting to whole mount double immunofluorescence and confocal microscopy, we generated a detailed 3D map of the two ECM components, revealing their supra-cellular architecture in vivo, while simultaneously retaining high resolution cellular detail. We show that fibronectin assembly occurs at the surface of the presomitic mesoderm (PSM), where a gradual increase in the complexity of the fibronectin matrix accompanies PSM maturation. In the rostral PSM, where somites form, fibronectin fibrils are thick and densely packed and some occupy the cleft which comes to separate the newly formed somite from the PSM. Our 3D approach revealed that laminin matrix assembly starts at the PSM surface as small dispersed patches, which are always localized closer to cells than the fibronectin matrix. These patches gradually grow and coalesce with neighboring patches, but do not generate a continuous laminin sheet, not even on epithelial somites and dermomyotome, suggesting that these epithelia develop in contact with a fenestrated laminin matrix. Unexpectedly, as the somite differentiates, its fibronectin and laminin matrices are maintained, thus initially containing both the epithelial dermomyotome and the mesenchymal sclerotome within the somite segment. Our analysis provides unprecedented details of the progressive in vivo assembly and 3D architecture of fibronectin and laminin matrices during paraxial mesoderm development. These data are consistent with the hypothesis that progressive ECM assembly and subsequent 3D organization are active driving and containing forces during tissue development.


Asunto(s)
Matriz Extracelular/metabolismo , Imagenología Tridimensional/métodos , Mesodermo/embriología , Somitos/embriología , Animales , Tipificación del Cuerpo , Embrión de Pollo , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente , Laminina/metabolismo , Mesodermo/anatomía & histología , Mesodermo/citología , Microscopía Confocal , Modelos Anatómicos , Somitos/anatomía & histología , Somitos/citología
6.
Development ; 139(4): 625-39, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22274695

RESUMEN

The segmentation clock is an oscillating genetic network thought to govern the rhythmic and sequential subdivision of the elongating body axis of the vertebrate embryo into somites: the precursors of the segmented vertebral column. Understanding how the rhythmic signal arises, how it achieves precision and how it patterns the embryo remain challenging issues. Recent work has provided evidence of how the period of the segmentation clock is regulated and how this affects the anatomy of the embryo. The ongoing development of real-time clock reporters and mathematical models promise novel insight into the dynamic behavior of the clock.


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Desarrollo Embrionario/fisiología , Somitos/embriología , Vertebrados/anatomía & histología , Vertebrados/embriología , Animales , Evolución Biológica , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulación del Desarrollo de la Expresión Génica , Modelos Teóricos , Receptores Notch/metabolismo , Receptores Opioides delta/metabolismo , Transducción de Señal/fisiología , Somitos/anatomía & histología , Proteínas Wnt/metabolismo
7.
Dev Dyn ; 240(10): 2272-80, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21901784

RESUMEN

Somitogenesis is a complex process during early vertebrate development involving interactions between many factors to form a bilateral somite series. A role for chromatin remodelers in somitogenesis has not yet been demonstrated. Here, we investigate the function of chromodomain helicase DNA binding protein 7 (chd7) during zebrafish somitogenesis. We show that Chd7 deficiency leads to asymmetric segmentation of the presomitic mesoderm (PSM), as revealed by expression of the somitogenesis genes, cdx1a, dlc, her7, mespa, and ripply1. Moreover, we show that abrogation of Chd7 results in the loss of asymmetric expression of spaw in the lateral plate mesoderm, which is consistent with more general laterality defects. Based on the observation that insufficient Chd7 leads to left-right asymmetry defects during PSM segmentation, and because CHD7 has been linked to human spinal deformities, we suggest that zebrafish chd7 morphants may be a good in vivo model to examine the pathophysiology of these diseases.


Asunto(s)
Tipificación del Cuerpo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Somitos/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Síndrome CHARGE/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Embrión no Mamífero/fisiología , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Somitos/anatomía & histología , Somitos/fisiología , Columna Vertebral/anomalías , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
8.
Curr Biol ; 21(17): R661-3, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21920298

RESUMEN

In contrast to lampreys and jawed vertebrates, hagfishes were thought to lack vertebrae. Now, long overlooked vertebral rudiments have been analysed in hagfish, suggesting that vertebrae existed in the last common ancestor of all vertebrates.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Anguila Babosa/anatomía & histología , Columna Vertebral/anatomía & histología , Animales , Cartílago/anatomía & histología , Cartílago/embriología , Peces/embriología , Fósiles , Anguila Babosa/embriología , Lampreas/anatomía & histología , Lampreas/embriología , Somitos/anatomía & histología , Somitos/embriología , Columna Vertebral/embriología
9.
Med Sci (Paris) ; 26(5): 504-8, 2010 May.
Artículo en Francés | MEDLINE | ID: mdl-20510149

RESUMEN

The dermomyotome is a transient epithelial sheet that forms from the dorsal aspect of the somite. The dermomyotome gives rise to a variety of tissues, most importantly myotomal muscle and dermis. Despite the central importance of the dermomyotome in the development of amniotes, the question of its existence in lower vertebrates has been lastingly eluded. The combination of single-cell lineage tracing and gene expression analysis has recently led to the identification in fish of a somitic sub-domain that exhibits structural and functional features of the amniote dermomyotome.


Asunto(s)
Vasos Sanguíneos/embriología , Epitelio/embriología , Peces/embriología , Músculos/embriología , Piel/embriología , Somitos/anatomía & histología , Animales , Linaje de la Célula , Embrión de Pollo , Embrión no Mamífero/fisiología , Embrión no Mamífero/ultraestructura , Desarrollo Embrionario , Células Endoteliales/citología , Células Epiteliales/citología , Factores de Transcripción Paired Box/fisiología , Somitos/fisiología , Especificidad de la Especie
10.
Proc Natl Acad Sci U S A ; 107(5): 2118-23, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20080660

RESUMEN

The development of distinct regions in the amniote vertebral column results from somite formation and Hox gene expression, with the adult morphology displaying remarkable variation among lineages. Mammalian regionalization is reportedly very conservative or even constrained, but there has been no study investigating vertebral count variation across Amniota as a whole, undermining attempts to understand the phylogenetic, ecological, and developmental factors affecting vertebral column variation. Here, we show that the mammalian (synapsid) and reptilian lineages show early in their evolutionary histories clear divergences in axial developmental plasticity, in terms of both regionalization and meristic change, with basal synapsids sharing the conserved axial configuration of crown mammals, and basal reptiles demonstrating the plasticity of extant taxa. We conducted a comprehensive survey of presacral vertebral counts across 436 recent and extinct amniote taxa. Vertebral counts were mapped onto a generalized amniote phylogeny as well as individual ingroup trees, and ancestral states were reconstructed by using squared-change parsimony. We also calculated the relationship between presacral and cervical numbers to infer the relative influence of homeotic effects and meristic changes and found no correlation between somitogenesis and Hox-mediated regionalization. Although conservatism in presacral numbers characterized early synapsid lineages, in some cases reptiles and synapsids exhibit the same developmental innovations in response to similar selective pressures. Conversely, increases in body mass are not coupled with meristic or homeotic changes, but mostly occur in concert with postembryonic somatic growth. Our study highlights the importance of fossils in large-scale investigations of evolutionary developmental processes.


Asunto(s)
Evolución Biológica , Fósiles , Columna Vertebral/anatomía & histología , Columna Vertebral/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Ecosistema , Genes Homeobox , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Filogenia , Reptiles/anatomía & histología , Reptiles/clasificación , Reptiles/genética , Reptiles/crecimiento & desarrollo , Somitos/anatomía & histología , Somitos/crecimiento & desarrollo , Vertebrados/anatomía & histología , Vertebrados/clasificación , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
11.
Development ; 136(17): 2913-21, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19641014

RESUMEN

Extracellular matrixes (ECMs) coat and subdivide animal tissues, but it is unclear how ECM formation is restricted to tissue surfaces and specific cell interfaces. During zebrafish somite morphogenesis, segmental assembly of an ECM composed of Fibronectin (FN) depends on the FN receptor Integrin alpha5beta1. Using in vivo imaging and genetic mosaics, our studies suggest that incipient Itgalpha5 clustering along the nascent border precedes matrix formation and is independent of FN binding. Integrin clustering can be initiated by Eph/Ephrin signaling, with Ephrin reverse signaling being sufficient for clustering. Prior to activation, Itgalpha5 expressed on adjacent cells reciprocally and non-cell-autonomously inhibits spontaneous Integrin clustering and assembly of an ECM. Surface derepression of this inhibition provides a self-organizing mechanism for the formation and maintenance of ECM along the tissue surface. Within the tissue, interplay between Eph/Ephrin signaling, ligand-independent Integrin clustering and reciprocal Integrin inhibition restricts de novo ECM production to somite boundaries.


Asunto(s)
Efrinas/metabolismo , Matriz Extracelular/metabolismo , Integrina alfa5beta1/metabolismo , Morfogénesis/fisiología , Receptores de la Familia Eph/metabolismo , Somitos/fisiología , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Efrinas/genética , Fibronectinas/metabolismo , Humanos , Integrina alfa5beta1/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de la Familia Eph/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Transducción de Señal/fisiología , Somitos/anatomía & histología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
12.
J Morphol ; 270(9): 1069-83, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19291672

RESUMEN

Three consecutive pairs of head cavities (premandibular, mandibular, and hyoid) found in elasmobranchs have been considered as remnants of preotic 'head' somites-serial homologues of the myotomic compartments of trunk somites that give rise to the extraoccular musculature. Here, we study a more derived vertebrate, and show that cavitation is more complex in the head of Crocodylus niloticus, than just the occurrence of three pairs of cavities. Apart from the premandibular cavities, paired satellite microcavities, and unpaired extrapremandibular microcavities are recognized in the prechordal region as well. We observed that several developmental phenomena occur at the same time as the formation of the head cavities (premandibular, satellite, extrapremandibular, mandibular, and hyoid) appear temporarily in the crocodile embryo. These are 1) rapid growth of the optic stalk and inflation of the optic vesicle; 2) release of the intimate topographical relationships between the neural tube, notochord and oral gut; 3) tendency of the prechordal mesenchyme to follow the curvature of the forebrain; and 4) proliferation of the prechordal mesenchyme. On the basis of volumetric characters, only the hyoid cavity and hyoid condensation is comparable to the trunk somitocoel and somite, respectively.


Asunto(s)
Caimanes y Cocodrilos/embriología , Hueso Hioides/embriología , Mandíbula/embriología , Organogénesis , Caimanes y Cocodrilos/anatomía & histología , Animales , Antígenos CD57/metabolismo , Cabeza/anatomía & histología , Cabeza/embriología , Hueso Hioides/anatomía & histología , Mandíbula/anatomía & histología , Mesodermo/anatomía & histología , Mesodermo/embriología , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Somitos/anatomía & histología , Somitos/embriología
13.
Evol Dev ; 11(1): 27-40, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19196331

RESUMEN

In the zebrafish embryo, expression of the prdm1 and patched1 genes in adaxial cells is indicative of their specification to give rise to slow twitch muscle fibers in response to Hedgehog (Hh) signaling. Subsets of these slow twitch muscle progenitors activate engrailed (eng) strongly in response to high-level Hh signaling, and differentiate into muscle pioneer cells, which are important for subsequent development of the horizontal myoseptum. In addition, eng is expressed more weakly in medial fast fibers in response to lower Hh levels. Somite morphology in the lamprey, an agnathan (jawless) vertebrate, differs significantly from that of teleosts. In particular, the lamprey does not have clear epaxial/hypaxial domains, lacks a horizontal myoseptum, and does not appear to possess distinct populations of fast and slow fibers in the embryonic somite. Nevertheless, Hh is expressed in the midline of the lamprey embryo, and we report here that, as in zebrafish, homologues of patched and prdm1 are expressed in adaxial regions of the lamprey somite, and an eng homologue is also expressed in the somite. However, the lamprey adaxial region does not exhibit the same distinct adaxial cell morphology as in the zebrafish. In addition, the expression of follistatin is not excluded from the adaxial region, and eng is not detected in discrete muscle pioneer-like cells. These data suggest the presence of conserved responses to Hh signaling in lamprey somites, although the full range of effects elicited by Hh in the zebrafish somite is not recapitulated.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes del Desarrollo/genética , Proteínas Hedgehog/metabolismo , Lampreas/embriología , Transducción de Señal/genética , Somitos/metabolismo , Animales , Secuencia de Bases , Análisis por Conglomerados , ADN Complementario/genética , Hibridación in Situ , Lampreas/metabolismo , Proteínas de la Membrana , Datos de Secuencia Molecular , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Receptores Patched , Receptor Patched-1 , Filogenia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ADN , Somitos/anatomía & histología , Proteínas de Pez Cebra
14.
Dev Dyn ; 238(6): 1332-45, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19086027

RESUMEN

Dystroglycan (Dg) is a cell adhesion receptor for laminin that has been reported to play a role in skeletal muscle cell stability, cytoskeletal organization, cell polarity, and signaling. Here we show that Dg is expressed at both the notochord/somite and the intersomitic boundaries, where laminin and fibronectin are accumulated during somitogenesis. Inhibition of Dg function with morpholino antisense oligonucleotides or a dominant negative mutant results in the normal segmentation of the presomitic mesoderm but affects the number, the size, and the integrity of somites. Depletion of Dg disrupts proliferation and alignment of myoblasts without affecting XMyoD and XMRF4 expression. It also leads to defects in laminin deposition at the intersomitic junctions, whereas expression of integrin beta1 subunits and fibronectin assembly occur normally. Our results show that Dg is critical for both proliferation and elongation of somitic cells and that the Dg-cytoplasmic domain is required for the laminin assembly at the intersomitic boundaries. Developmental Dynamics 238:1332-1345, 2009. (c) 2008 Wiley-Liss, Inc.


Asunto(s)
Distroglicanos/metabolismo , Morfogénesis , Somitos/embriología , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología , Animales , Proliferación Celular , Distroglicanos/genética , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Laminina/genética , Laminina/metabolismo , Desarrollo de Músculos/fisiología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Transducción de Señal/fisiología , Somitos/anatomía & histología , Xenopus laevis/fisiología
15.
Dev Biol ; 318(1): 126-32, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18430417

RESUMEN

Notch signaling is required for many developmental processes, yet differences in the signaling abilities of various Notch ligands are poorly understood. Here, we have isolated a splice variant of the zebrafish Notch ligand deltaC in which the inclusion of the last intron leads to a truncation of the C-terminal 39 amino acids (deltaC(tv2)). We show that, unlike deltaC(tv1), deltaC(tv2) cannot function effectively in somitogenesis but has an enhanced ability to signal during midline development. Additionally, over-expression of deltaC(tv2) preferentially affects anterior midline development, while another Notch ligand, deltaD, shows a posterior bias. Using chimeric Deltas we show that the intracellular domain is responsible for the strength of signal in midline development, while the extracellular domain influences the anterior-posterior bias of the effect. Together our data show that different deltas can signal in biologically distinct ways in both midline formation and somitogenesis. Moreover, it illustrates the importance of cell-type-dependent modifiers of Notch signaling in providing ligand specificity.


Asunto(s)
Empalme Alternativo , Tipificación del Cuerpo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología , Somitos/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Morfogénesis , Isoformas de Proteínas/genética , Alineación de Secuencia , Somitos/anatomía & histología , Somitos/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
J Exp Zool B Mol Dev Evol ; 310(4): 336-44, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17583579

RESUMEN

A prominent feature of all vertebrate embryos is the presence of a series of bulges on the lateral surface of the head, the pharyngeal arches. These structures constitute a metameric series, with each arch forming a similar set of derivatives. Significantly, the development of the pharyngeal arches is complex as it involves interactions between disparate embryonic cell types: ectoderm, endoderm, mesoderm and neural crest. It is becoming increasingly apparent that the development of the pharyngeal metamere revolves around the pharyngeal endoderm. The segmentation of this tissue is central to the generation of the arches. The pharyngeal endoderm also provides positional cues for the neural crest, and is involved in the induction of a number of components of the pharyngeal metamere. The segmentation of the pharyngeal endoderm has also been key to the evolution of pharyngeal metamerism. It is likely that endodermal segmentation is a deuterostome characteristic and that this basic pattern was sequentially modified and over time the more complex pharyngeal metamere of vertebrates emerged.


Asunto(s)
Endodermo/embriología , Branquias/embriología , Morfogénesis/fisiología , Cresta Neural/embriología , Faringe/embriología , Somitos/embriología , Vertebrados , Animales , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Branquias/anatomía & histología , Faringe/anatomía & histología , Somitos/anatomía & histología
17.
Mol Syst Biol ; 3: 154, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18091725

RESUMEN

Segmentation is a common feature of disparate clades of metazoans, and its evolution is a central problem of evolutionary developmental biology. We evolved in silico regulatory networks by a mutation/selection process that just rewards the number of segment boundaries. For segmentation controlled by a static gradient, as in long-germ band insects, a cascade of adjacent repressors reminiscent of gap genes evolves. For sequential segmentation controlled by a moving gradient, similar to vertebrate somitogenesis, we invariably observe a very constrained evolutionary path or funnel. The evolved state is a cell autonomous 'clock and wavefront' model, with the new attribute of a separate bistable system driven by an autonomous clock. Early stages in the evolution of both modes of segmentation are functionally similar, and simulations suggest a possible path for their interconversion. Our computation illustrates how complex traits can evolve by the incremental addition of new functions on top of pre-existing traits.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Simulación por Computador , Drosophila melanogaster/embriología , Redes Reguladoras de Genes , Modelos Biológicos , Somitos/anatomía & histología , Vertebrados/embriología , Algoritmos , Animales , Tipificación del Cuerpo/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Concentración de Iones de Hidrógeno , Proteínas de Insectos/fisiología , Insectos/anatomía & histología , Insectos/embriología , Insectos/genética , Modelos Genéticos , Mutación , Factores de Transcripción , Vertebrados/anatomía & histología , Vertebrados/genética
18.
J Cell Biol ; 178(3): 465-76, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17664336

RESUMEN

The Notch ligands Dll1 and Dll3 are coexpressed in the presomitic mesoderm of mouse embryos. Despite their coexpression, mutations in Dll1 and Dll3 cause strikingly different defects. To determine if there is any functional equivalence, we replaced Dll1 with Dll3 in mice. Dll3 does not compensate for Dll1; DLL1 activates Notch in Drosophila wing discs, but DLL3 does not. We do not observe evidence for antagonism between DLL1 and DLL3, or repression of Notch activity in mice or Drosophila. In vitro analyses show that differences in various domains of DLL1 and DLL3 individually contribute to their biochemical nonequivalence. In contrast to endogenous DLL1 located on the surface of presomitic mesoderm cells, we find endogenous DLL3 predominantly in the Golgi apparatus. Our data demonstrate distinct in vivo functions for DLL1 and DLL3. They suggest that DLL3 does not antagonize DLL1 in the presomitic mesoderm and warrant further analyses of potential physiological functions of DLL3 in the Golgi network.


Asunto(s)
Embrión de Mamíferos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Proteínas de Unión al Calcio , Línea Celular , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Embrión de Mamíferos/anatomía & histología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Proteínas de la Membrana/genética , Ratones , Fenotipo , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Receptores Notch/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Somitos/anatomía & histología , Somitos/fisiología , Distribución Tisular , Alas de Animales/anatomía & histología , Alas de Animales/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA