Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.313
Filtrar
1.
Sci Rep ; 14(1): 10866, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740920

RESUMEN

The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum bicolor and S. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.


Asunto(s)
Micorrizas , Raíces de Plantas , Sorghum , Micorrizas/fisiología , Raíces de Plantas/microbiología , Sorghum/microbiología , Modelos Lineales , Simbiosis , Redes Neurales de la Computación
2.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38726730

RESUMEN

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Asunto(s)
Bupleurum , Metabolómica , Ácido Oleanólico , Raíces de Plantas , Saponinas , Sorghum , Zea mays , Sorghum/metabolismo , Sorghum/química , Bupleurum/química , Bupleurum/metabolismo , Zea mays/metabolismo , Zea mays/química , Saponinas/análisis , Saponinas/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análisis , Ácido Oleanólico/metabolismo , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Espectrometría de Masas/métodos , Agricultura/métodos , Cromatografía Líquida con Espectrometría de Masas
3.
PeerJ ; 12: e17274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737742

RESUMEN

Background: This experiment was conducted in the Research and Application Field of Canakkale Onsekiz Mart University, Faculty of Agriculture, during the 2020 and 2021 summer period. The objective of this experiment was to determine the effects of different harvesting heights on forage yields and crude ash, fat, protein, and carbon and nitrogen content of leaves and stalks of sweet sorghum (SS) and sorghum sudangrass hybrid (SSH) cultivars. Methods: Nutri Honey and Nutrima varieties of SSH and the M81-E and Topper-76 varieties of SS were used in this study. The experiment was conducted using the randomized complete block design with four replications. The main plots each included two early and late varieties of SS and SSH cultivars, while the subplots were used to test different harvesting heights (30, 60, 90, 120, 150 cm) and physiological parameters of each crop. Results: The results of this study showed that dry forage yields increased with plant growth, with the amount of forage produced at the end of the growth cycle increasing 172.2% compared to the early growth stages. Carbon (C) content of leaves decreased by 6.5%, nitrogen (N) by 46%, crude protein (CP) by 54%, crude fat (CF) by 34%, while crude ash (CA) content increased by 6% due to the increase in plant height harvest. At the same time, in parallel with the increase in plant height at harvest, the nitrogen content of the stems of the plants decreased by 87%, crude protein by 65%, crude ash by 33% and crude fat by 41%, while the carbon content increased by 4%. As plant height at harvest increased, hay yield increased but nutrient contents of the hay decreased. However, the Nutrima, Nutri Honey and M81-E sorghum cultivars, harvested three times at heights of 90 to 120 cm, are recommended for the highest yield.


Asunto(s)
Sorghum , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Sorghum/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Carbono/metabolismo , Carbono/análisis , Alimentación Animal/análisis
4.
Pak J Pharm Sci ; 37(1): 53-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741400

RESUMEN

The study focused on the neuroprotective role of Sorghum bicolor and vitamin C in the amelioration of oxidative stress and anxiety-like behavoiur induced by tramadol in male albino rats. The study design involved 7 groups and a control group with 5 male albino rats in each group. Tramadol (40 mg/kg) treatment was administered for 21 days. Tramadol 40mg/kg was administered in all groups. Pretreatment with varying doses of Sorghum bicolor and Vitamin C was done in three of the groups. Behavioral assessment of anxiety and locomotors actions of the groups were compared using Elevated Plus Maze (EPM) and Open Field Test (OFT). In conclusion, Sorghum bicolor and Vitamin C tramadol ameliorated oxidative stress and anxiety-like behaviour induced by tramadol. Pretreatment with Sorghum bicolor or vitamin C (100mg) can also reduced anxiogenic responses in male albino rats that are induced by chronic tramadol use.


Asunto(s)
Ansiedad , Ácido Ascórbico , Conducta Animal , Estrés Oxidativo , Sorghum , Tramadol , Animales , Tramadol/farmacología , Estrés Oxidativo/efectos de los fármacos , Masculino , Ácido Ascórbico/farmacología , Ansiedad/prevención & control , Ansiedad/inducido químicamente , Ansiedad/tratamiento farmacológico , Ratas , Conducta Animal/efectos de los fármacos , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Ratas Wistar , Analgésicos Opioides/farmacología , Ansiolíticos/farmacología , Aprendizaje por Laberinto/efectos de los fármacos
5.
Int J Biol Macromol ; 267(Pt 1): 131522, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614175

RESUMEN

Glutinous sorghum grains were soaked (60-80 °C, 2-8 h) to explore the effects of soaking, an essential step in industrial processing of brewing, on starch. As the soaking temperature increased, the peak viscosity and crystallinity of starch gradually decreased, while the enzymatic hydrolysis rate and storage modulus first increased and then decreased. At 70 °C, the content of amylose, the enzymatic hydrolysis rate of starch, and the final viscosity first increase and then decrease with the increase of soaking time, reaching their maximum at 6 h, increased by 53.1 %, 11.0 %, and 10.4 %, respectively, as compared with the non-soaked sample. At 80 °C (4 h), the laser confocal microscopy images showed a network structure formed between the denatured protein chains and the leached-out amylose chains. The molecular weights of starch before and after soaking were all in the range of 3.82-8.98 × 107 g/mol. Since 70 °C is lower than that of starch gelatinization and protein denaturation, when soaking for 6 h, the enzymatic hydrolysis rate of starch is the highest, and the growth of miscellaneous bacteria is inhibited, which is beneficial for subsequent processing technology. The result provides a theoretical basis for the intelligent control of glutinous sorghum brewing.


Asunto(s)
Amilosa , Fenómenos Químicos , Sorghum , Almidón , Sorghum/química , Almidón/química , Hidrólisis , Amilosa/química , Viscosidad , Grano Comestible/química , Temperatura , Peso Molecular
6.
Bioprocess Biosyst Eng ; 47(5): 737-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607415

RESUMEN

Enzymatic hydrolysis plays a pivotal role in transforming lignocellulosic biomass. Addressing alternate techniques to optimize the utilization of cellulolytic enzymes is one strategy to improve its efficiency and lower process costs. Cellulases are highly specific and environmentally benign biocatalysts that break down intricate polysaccharides into simple forms of sugars. In contrast to the most difficult and time-consuming enzyme immobilization processes, in this research, we studied simple, mild, and successful techniques for immobilization of pure cellulase on magnetic nanocomposites using glutaraldehyde as a linker and used in the application of sorghum residue biomass. Fe3O4 nanoparticles were coated with chitosan from the co-precipitation method, which served as an enzyme carrier. The nanoparticles were observed under XRD, Zeta Potential, FESEM, VSM, and FTIR. The size morphology results presented that the Cs@Fe3O4 have 42.2 nm, while bare nanoparticles (Fe3O4) have 31.2 nm in size. The pure cellulase reaches to 98.07% of loading efficiency and 71.67% of recovery activity at optimal conditions. Moreover, immobilized enzyme's pH stability, thermostability, and temperature tolerance were investigated at suitable conditions. The kinetic parameters of free and immobilized enzyme were estimated as Vmax; 29 ± 1.51 and 27.03 ± 2.02 µmol min-1 mg-1, Km; 4.7 ± 0.49 mM and 2.569 ± 0.522 mM and Kcat; 0.13 s-1, and 0.89 s-1. Sorghum residue was subjected to 2% NaOH pre-treatment at 50 â„ƒ. Pre-treated biomass contains cellulose of 64.8%, used as a raw material to evaluate the efficiency of reducing sugar during hydrolysis and saccharification of free and immobilized cellulase, which found maximum concentration of glucose 5.42 g/L and 5.12 g/L on 72 h. Thus, our study verifies the use of immobilized pure cellulase to successfully hydrolyze raw material, which is a significant advancement in lignocellulosic biorefineries and the reusability of enzymes.


Asunto(s)
Celulasa , Quitosano , Enzimas Inmovilizadas , Nanopartículas de Magnetita , Sorghum , Quitosano/química , Enzimas Inmovilizadas/química , Celulasa/química , Sorghum/química , Nanopartículas de Magnetita/química , Estabilidad de Enzimas , Cinética , Biomasa , Hidrólisis
7.
Environ Monit Assess ; 196(5): 462, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642132

RESUMEN

Regenerative agricultural practices, i.e. organic and natural farming, are rooted in India since ancient times. However, the high cost of production, lack of organic pest control measures and premium price of organic produces in chemical agriculture encourage natural farming. In the present study, the quality improvement of calcareous soils under organic (OGF) and natural (NTF) management was compared with integrated conventional (ICF) and non-invasive (NIF) farming practices with cotton-sorghum crops over three consecutive years. A total of 23 soil attributes were analyzed at the end of the third cropping cycle and subjected to principal component analysis (PCA) to select a minimum data set (MDS) and obtain a soil quality index (SQI). The attributes soil organic carbon (SOC), available Fe, pH, bulk density (BD) and alkaline phosphatase (APA) were selected as indicators based on correlations and expert opinions on the lime content of the experimental soil. The SQI was improved in the order of OGF (0.89) > NTF(0.69) > ICF(0.48) > NIF(0.05). The contribution of the indicators to SQI was in the order of available Fe (17-44%) > SOC (21-28%), APA (11-36%) > pH (0-22%), and BD (0-20%) regardless of the farming practices. These indicators contribute equally to soil quality under natural (17-22%) and organic (18-22%) farming. The benefit:cost ratio was calculated to show the advantage of natural farming and was in the order of NTF(1.95-2.29), ICF (1.34-1.47), OGF (1.13-1.20) and NIF (0.84-1.47). In overall, the natural farming significantly sustained the soil quality and cost benefit compared to integrated conventional farming practices.


Asunto(s)
Suelo , Sorghum , Suelo/química , Carbono/análisis , Monitoreo del Ambiente , Agricultura , Grano Comestible/química
8.
Int. microbiol ; 27(2): 491-504, Abr. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-232295

RESUMEN

As a sugar-rich plant with no impact on global warming and food security, sweet sorghum can be exploited as an alternative source of renewable bioenergy. This study aimed to examine the potential of sweet sorghum juice for the generation of bioethanol using yeast isolated from the juice. The °Brix of sweet sorghum juice was measured using a digital refractometer. Additionally, 18 wild yeasts isolated from fermented sweet sorghum juice were subjected to various biochemical tests to describe them to identify potential yeast for ethanol production. The morphological and biochemical analyses of the yeasts revealed that all of the yeast isolates were most likely members of the genus Saccharomyces. The most ethanol-tolerant yeast isolate SJU14 was employed for sweet sorghum juice fermentation. A completely randomized factorial design was used with various fermentation parameters, primarily pH, temperature, and incubation period. Then ethanol content was determined using a potassium dichromate solution. According to the ANOVA, the highest ethanol content (18.765%) was produced at 30/26 °C, pH 4.5, and incubated for 96 h. Sweet sorghum juice was found to be an excellent source of potent yeasts, which have important industrial properties like the capacity to grow at high ethanol and glucose concentrations. Moreover, it can be utilized as a substitute substrate for the manufacturing of bioethanol production to lessen the environmental threat posed by fossil fuels. Further research is, therefore, recommended to develop strategically valuable applications of sweet sorghum for enhancing the food system and mitigating climate change.(AU)


Asunto(s)
Humanos , Sorghum/microbiología , Fermentación , Saccharomyces cerevisiae , Sorghum/química
9.
Waste Manag ; 181: 211-219, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648723

RESUMEN

Complex organic matter represents a suitable substrate to produce hydrogen through dark fermentation (DF) process. To increase H2 yields, pretreatment technology is often required. The main objective of the present work was to investigate thermo-acid pretreatment impact on sugar solubilization and biotic parameters of DF of sorghum or organic fraction of municipal solid waste (OFMSW). Biochemical hydrogen potential tests were carried out without inoculum using raw or thermo-acid pretreated substrates. Results showed an improvement in sugar solubilization after thermo-acid pretreatments. Pretreatments led to similar DF performances (H2 and total metabolite production) compared to raw biomasses. Nevertheless, they were responsible for bacterial shifts from Enterobacteriales towards Clostridiales and Bacillales as well as metabolic changes from acetate towards butyrate or ethanol. The metabolic changes were attributed to the biomass pretreatment impact on indigenous bacteria as no change in the metabolic profile was observed after performing thermo-acid pretreatments on irradiated OFMSW (inactivated indigenous bacteria and inoculum addition). Consequently, acid pretreatments were inefficient to improve DF performances but led to metabolic and bacterial community changes due to their impact on indigenous bacteria.


Asunto(s)
Biomasa , Fermentación , Bacterias/metabolismo , Residuos Sólidos/análisis , Hidrógeno/metabolismo , Sorghum/metabolismo , Eliminación de Residuos/métodos
10.
Nat Commun ; 15(1): 3488, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664394

RESUMEN

Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.


Asunto(s)
Arabidopsis , Aprendizaje Profundo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum , Sorghum , Zea mays , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Zea mays/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma de Planta , Variación Genética , Especificidad de la Especie
11.
Sci Rep ; 14(1): 9499, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664438

RESUMEN

Sorghum is a vital food and feed crop in the world's dry regions. Developing sorghum cultivars with high biomass production and carbon sequestration can contribute to soil health and crop productivity. The objective of this study was to assess agronomic performance, biomass production and carbon accumulation in selected sorghum genotypes for production and breeding. Fifty sorghum genotypes were evaluated at three locations (Silverton, Ukulinga, and Bethlehem) in South Africa during 2022 and 2023 growing seasons. Significant genotype × location (p < 0.05) interactions were detected for days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), and grain yield (GY). The highest GY was recorded for genotypes AS115 (25.08 g plant-1), AS251 (21.83 g plant-1), and AS134 (21.42 g plant-1). Genotypes AS122 and AS27 ranked first and second, respectively, for all the carbon stock parameters except for root carbon stock (RCs), whereas genotype AS108 had the highest RCs of 8.87 g plant-1. The principal component analysis identified GY, DTH, PH, PB, SB, RB, RCs, RCs/SCs, total plant carbon stock (PCs), shoot carbon stock (SCs), and grain carbon stock (GCs) as the most discriminated traits among the test genotypes. The cluster analysis using agronomic and carbon-related parameters delineated the test genotypes into three genetic groups, indicating marked genetic diversity for cultivar development and enhanced C storage and sustainable sorghum production. The selected sorghum genotypes are recommended for further breeding and variety release adapted to various agroecologies in South Africa.


Asunto(s)
Biomasa , Carbono , Genotipo , Raíces de Plantas , Brotes de la Planta , Sorghum , Sorghum/genética , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Carbono/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Sudáfrica , Fitomejoramiento , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo
12.
Curr Microbiol ; 81(5): 129, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587647

RESUMEN

Arbuscular mycorrhizal (AM) fungi are being used as a new generation of biofertilizers to increase plant growth by improving plant nutrition and bio-protection. However, because of the obligatory nature of the plant host, large-scale multiplication of AM propagules is challenging, which limits its applicability. This study evaluates the ability of Burkholderia arboris to increase AM production in soybean mill waste and vermicompost amended by soil-sand mixture planted with sorghum as a host plant. The experiment was conducted in a nursery using a completely randomized design with four inoculation treatments (B. arboris, AM fungi, B. arboris + AM fungi, and control) under sterilized and unsterilized conditions. AM production was investigated microscopically (spore density and root colonization), and biochemically (AM-specific lipid biomarker, 16:1ω5cis derived from neutral lipid fatty acid (NLFA), and phospholipid fatty acid (PLFA) fractions from both soil and roots). Integrating B. arboris with AM fungi in organically amended pots was found to increase AM fungal production by 62.16 spores g-1 soil and root colonization by 80.85%. Biochemical parameters also increased with B. arboris inoculation: 5.49 nmol PLFA g-1 soil and 692.68 nmol PLFA g-1 root and 36.72 nmol NLFA g-1 soil and 3147.57 nmol NLFA g-1 root. Co-inoculation also increased glomalin-related soil protein and root biomass. Principal component analysis (PCA) further supported the higher contribution of B. arboris to AM fungi production under unsterilized conditions. In conclusion, inoculation of AM plant host seeds with B. arboris prior to sowing into organic potting mix could be a promising and cost-effective approach for increasing AM inoculum density for commercial production. Furthermore, efforts need to be made for up-scaling the AM production with different plant hosts and soil-substrate types.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia , Sorghum , Arena , Suelo , Glycine max , Grano Comestible , Ácidos Grasos , Hongos
13.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629562

RESUMEN

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Asunto(s)
Contaminantes del Suelo , Sorghum , Cadmio/análisis , Biodegradación Ambiental , Suelo , Arena , Ácido Cítrico , Contaminantes del Suelo/análisis , China , Grano Comestible/química
14.
J Environ Manage ; 357: 120844, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579469

RESUMEN

The incineration of poultry litter (PL) effectively reduces the volume of waste in line with the United Nations Sustainable Development Goal of "affordable and clean energy". However, mono-incineration is associated with considerable challenges due to the varying moisture, structural and chemical composition and low energy yield. The aim of the present work was to investigate the influence of sweet sorghum bagasse (SS) and pyrolysis oil (PO) on improving the fuel properties of PL and mitigating ash related burdens during incineration. The different biomass feedstocks were produced by combining PL with SS at 0.0% (T0), 25% (T1), 50% (T2), 75% (T3) and compared with 100% SS (T4). In order to achieve high energy potential and low ash deposition, the parallel samples were additionally mixed with 10% PO to improve the energy value. The experimental results show that increasing the proportion of SS and adding PO to the mixtures increases the volatile matter and decreases the moisture and ash content. The addition of PO also increases the carbon and hydrogen content. The use of SS and PO thus increased the values of the ignitability index and apparently also the flammability by 30.0%-49.4% compared to pure PL. SS and PO shifted the HHV of the starting material from 16.90 to 18.78 MJ kg-1. In addition, SS + PO improved the flame volume and red color intensity of the PL blends based on the image analysis method. However, the presence of SS and PO did not sufficiently improve the ash-related index values, which requires further investigation.


Asunto(s)
Celulosa , Aves de Corral , Sorghum , Animales , Pirólisis , Incineración/métodos
15.
Molecules ; 29(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675711

RESUMEN

Although much less common than anthocyanins, 3-Deoxyanthocyanidins (3-DAs) and their glucosides can be found in cereals such as red sorghum. It is speculated that their bioavailability is higher than that of anthocyanins. Thus far, little is known regarding the therapeutic effects of 3-DAs and their O-ß-D-glucosides on cancer, including prostate cancer. Thus, we evaluated their potential to decrease cell viability, to modulate the activity of transcription factors such as NFκB, CREB, and SOX, and to regulate the expression of the gene CDH1, encoding E-Cadherin. We found that 4',7-dihydroxyflavylium chloride (P7) and the natural apigeninidin can reduce cell viability, whereas 4',7-dihydroxyflavylium chloride (P7) and 4'-hydroxy-7-O-ß-D-glucopyranosyloxyflavylium chloride (P3) increase the activities of NFkB, CREB, and SOX transcription factors, leading to the upregulation of CDH1 promoter activity in PC-3 prostate cancer cells. Thus, these compounds may contribute to the inhibition of the epithelial-to-mesenchymal transition in cancer cells and prevent the metastatic activity of more aggressive forms of androgen-resistant prostate cancer.


Asunto(s)
Antocianinas , Cadherinas , Glucósidos , Regiones Promotoras Genéticas , Neoplasias de la Próstata , Sorghum , Humanos , Cadherinas/metabolismo , Cadherinas/genética , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Antocianinas/farmacología , Antocianinas/química , Sorghum/química , Glucósidos/farmacología , Glucósidos/química , Células PC-3 , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/genética , FN-kappa B/metabolismo
16.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658156

RESUMEN

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Asunto(s)
Acetatos , Alelos , Áfidos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Áfidos/genética , Oxilipinas/farmacología , Oxilipinas/metabolismo , Perfilación de la Expresión Génica , Animales , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología
17.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677068

RESUMEN

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Asunto(s)
Cadmio , Microplásticos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Sorghum , Sorghum/efectos de los fármacos , Sorghum/microbiología , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Suelo/química , Tamaño de la Partícula , Bacterias/efectos de los fármacos
18.
Bioresour Technol ; 400: 130648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561153

RESUMEN

Open unsterile fermentation of the low-cost non-food crop, sweet sorghum, is an economically feasible lactic acid biosynthesis process. However, hyperosmotic stress inhibits microbial metabolism and lactic acid biosynthesis, and engineering strains with high osmotic tolerance is challenging. Herein, heavy ion mutagenesis combined with osmotic pressure enrichment was used to engineer a hyperosmotic-tolerant Bacillus coagulans for L-lactic acid production. The engineered strain had higher osmotic pressure tolerance, when compared with the parental strain, primarily owing to its improved properties such as cell viability, cellular antioxidant capacity, and NADH supply. In a pilot-scale open unsterile fermentation using sweet sorghum juice as a feedstock, the engineered strain produced 94 g/L L-lactic acid with a yield of 91 % and productivity of 6.7 g/L/h, and optical purity of L-lactic acid at the end of fermentation was 99.8 %. In short, this study provided effective and low-cost approach to produce polymer-grade L-lactic acid.


Asunto(s)
Bacillus coagulans , Fermentación , Ácido Láctico , Presión Osmótica , Sorghum , Ácido Láctico/biosíntesis , Ácido Láctico/metabolismo , Sorghum/metabolismo
19.
J Environ Manage ; 358: 120781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608570

RESUMEN

Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.


Asunto(s)
Reactores Biológicos , Fermentación , Jugos de Frutas y Vegetales , Hypocreales , Sorghum , Sorghum/metabolismo , Jugos de Frutas y Vegetales/análisis , Celulasa/metabolismo , Malus
20.
New Phytol ; 242(2): 786-796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451101

RESUMEN

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Asunto(s)
Sorghum , Sorghum/metabolismo , Proteínas de Plantas/metabolismo , Flores/fisiología , Florigena/metabolismo , Fotoperiodo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...