Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.518
Filtrar
1.
Anal Chem ; 96(19): 7661-7668, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687969

RESUMEN

The development of sensitive, selective, and rapid methods to detect bacteria in complex media is essential to ensuring human health. Virulence factors, particularly pore-forming toxins (PFTs) secreted by pathogenic bacteria, play a crucial role in bacterial diseases and serve as indicators of disease severity. In this study, a nanochannel-based label-free electrochemical sensing platform was developed for the detection of specific pathogenic bacteria based on their secreted PFTs. In this design, wood substrate channels were functionalized with a Fe-based metal-organic framework (FeMOF) and then protected with a layer of phosphatidylcholine (PC)-based phospholipid membrane (PM) that serves as a peroxidase mimetic and a channel gatekeeper, respectively. Using Staphylococcus aureus (S. aureus) as the model bacteria, the PC-specific PFTs secreted by S. aureus perforate the PM layer. Now exposed to the FeMOF, uncharged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) molecules in the electrolyte undergo oxidation to cationic products (ABTS•+). The measured transmembrane ionic current indicates the presence of S. aureus and methicillin-resistant S. aureus (MRSA) with a low detection limit of 3 cfu mL-1. Besides excellent specificity, this sensing approach exhibits satisfactory performance for the detection of target bacteria in the complex media of food.


Asunto(s)
Técnicas Electroquímicas , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/metabolismo , Estructuras Metalorgánicas/química , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Peroxidasa/metabolismo , Peroxidasa/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/análisis , Técnicas Biosensibles
2.
Sci Rep ; 14(1): 8272, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594253

RESUMEN

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Asunto(s)
Proteínas de Transporte de Catión , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hemo/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Hierro/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1352810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601738

RESUMEN

Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by ß-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.


Asunto(s)
PPAR alfa , Staphylococcus aureus , Ratones , Animales , PPAR alfa/metabolismo , Staphylococcus aureus/metabolismo , Ácido Oléico , Ácidos Grasos/metabolismo , Ratones Noqueados
4.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560776

RESUMEN

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Asunto(s)
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografía Liquida , Staphylococcus aureus/metabolismo , Espectrometría de Masas en Tándem , Bacterias/metabolismo , Klebsiella pneumoniae/metabolismo
5.
Cell Rep ; 43(4): 114022, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568806

RESUMEN

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.


Asunto(s)
Adhesión Bacteriana , Queratinocitos , Piel , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Humanos , Piel/microbiología , Piel/metabolismo , Queratinocitos/microbiología , Queratinocitos/metabolismo , Lectinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Filogenia , Unión Proteica
6.
Biochem Biophys Res Commun ; 711: 149912, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615572

RESUMEN

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.


Asunto(s)
Proteínas Bacterianas , Proteínas Hemolisinas , Percepción de Quorum , Staphylococcus aureus , Staphylococcus aureus/fisiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Animales , Transactivadores/metabolismo , Transactivadores/genética , Hemólisis , Ovinos , Regulación Bacteriana de la Expresión Génica , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Transducción de Señal , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Péptidos/farmacología , Péptidos/metabolismo
7.
Elife ; 122024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687677

RESUMEN

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno , Estrés Oxidativo , Percepción de Quorum , Staphylococcus aureus , Transactivadores , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Staphylococcus aureus/metabolismo , Percepción de Quorum/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Transactivadores/metabolismo , Transactivadores/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Infecciones Estafilocócicas/microbiología , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Gen
8.
Elife ; 132024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639993

RESUMEN

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Unión Proteica , Conformación Proteica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Cristalografía por Rayos X , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/química , Modelos Moleculares
9.
Nat Microbiol ; 9(4): 1049-1063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480900

RESUMEN

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Constricción , Óxido Nítrico Sintasa/metabolismo
10.
Sci Total Environ ; 923: 171331, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428609

RESUMEN

Staphylococcus aureus is one of the most frequently detected foodborne pathogens in cold chain foods. Worryingly, small colony variants (SCVs) can survive in cold environments for a long time and can revert to rapidly growing cells in suitable environments, causing serious food safety issues. This study investigated the underlying mechanism of SCV formation at low temperature (4 °C) via comparative genomics. Multilocus sequence typing (MLST) of 105 strains of S. aureus was divided into 9 sequence types. The ST352 strains exhibited the greatest tolerance to low temperature, with a mean reduction in survival rate of 10.34 % (p < 0.05). Comparative genomics revealed a total of 1941 core genes in the three S. aureus strains, and BB-1 had 468 specific genes, which were enriched mainly in translation, DNA recombination, DNA repair, metabolic pathways, two-component systems, and quorum sensing. Molecular docking analysis revealed that the binding of the RsbW protein to the SigB protein of BB-1 decreased due to base mutations in rsbW, while the binding to the RsbV protein was enhanced. In addition, the results of real-time quantitative PCR showed that the RsbV-RsbW/SigB system of BB-1 may play a role in the low-temperature survival of S. aureus and the formation of SCVs. These results suggest that genes specific to BB-1 may contribute to the mechanism of adaptation to low temperature and the formation of SCVs. This study helps elucidate the causes of SCV formation by S. aureus at low temperature at the molecular level and provides a basis for exploring the safety control of cold chain food environments.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tipificación de Secuencias Multilocus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Simulación del Acoplamiento Molecular , Temperatura , Genómica , Antibacterianos/metabolismo
11.
Bioorg Med Chem Lett ; 103: 129707, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492608

RESUMEN

The design and development of novel antimicrobial agents are highly desired to combat the emergence of medication resistance against microorganisms that cause infections. A series of new pyrimidine-linked thiazolidinedione derivatives (5a-j) were synthesized, characterized, and their antimicrobial properties assessed in the current investigation. Here, novel pyrimidine-linked thiazolidinedione compounds were designed using the molecular hybridization approach. Elemental and spectral techniques were used to determine the structures of the synthesized hybrids. The majority of compounds showed encouraging antibacterial properties. Among the active compounds, 5g, 5i, and 5j showed 1.85, 1.15, and 1.38 times the activity of streptomycin against S. aureus, respectively, with MIC values of 6.4, 10.3, and 8.6 µM. With MIC values of 10.8, 21.9, and 15.4 µM, respectively, the compounds 5g, 5i, and 5j showed 2.14, 1.05, and 1.50 times the activity of linezolid against the methicillin-resistant S. aureus (MRSA) strain. Furthermore, when compared to the reference medications, compounds 5g, 5i, and 5j demonstrated broad-range antimicrobial efficacy against all tested strains of bacteria and fungus. Out of all the compounds that were investigated, compounds 5g, 5i, and 5j showed noteworthy anti-tubercular activity. 5g is the most effective, 1.59 times more effective than reference drug isoniazid. To anticipate the binding manner, the synthesized potent compounds were subjected to molecular docking into the active binding site of MRSA and the mycobacterial membrane protein large 3 (MmpL3) protein. The compounds 5g, 5i, and 5j may eventually serve as lead compounds in the search for antimicrobial and anti-TB therapeutic agents.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Tiazolidinedionas , Antituberculosos , Simulación del Acoplamiento Molecular , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad , Antiinfecciosos/farmacología , Antibacterianos/química , Tiazolidinedionas/farmacología , Pirimidinas/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular
12.
mBio ; 15(4): e0348323, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38511930

RESUMEN

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Asunto(s)
Proteínas de la Membrana , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Proteínas de la Membrana/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Tripsina/metabolismo , Biopelículas , Infecciones Estafilocócicas/metabolismo
13.
Int J Biol Macromol ; 265(Pt 2): 131067, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521328

RESUMEN

Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.


Asunto(s)
Proteínas Bacterianas , Endopeptidasas , Oro , Nanopartículas del Metal , Humanos , Oro/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus/metabolismo , Bacterias , Extractos Vegetales/química
14.
Int J Biol Macromol ; 264(Pt 2): 130631, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453114

RESUMEN

Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and ß-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.


Asunto(s)
Tribolium , Animales , Tribolium/genética , Tribolium/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Simulación del Acoplamiento Molecular , Bacterias/metabolismo , Bacterias Gramnegativas/metabolismo , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
15.
Chem Biol Interact ; 393: 110945, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38460934

RESUMEN

This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.


Asunto(s)
Liposomas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Sesquiterpenos Policíclicos , Etidio , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos
16.
Genes Cells ; 29(5): 397-416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454012

RESUMEN

Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.


Asunto(s)
Adhesión Celular , Leucosialina , Mastocitos , Staphylococcus aureus , Superantígenos , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Ratones , Humanos , Superantígenos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/inmunología , Células HEK293 , Leucosialina/metabolismo , Proteínas Bacterianas/metabolismo , Interleucina-13/metabolismo , Ratones Endogámicos C57BL
17.
J Bacteriol ; 206(3): e0044723, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334326

RESUMEN

Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.


Asunto(s)
Toxinas Bacterianas , Lactobacillus , Choque Séptico , Infecciones Estafilocócicas , Femenino , Humanos , Staphylococcus aureus/metabolismo , Choque Séptico/microbiología , Señales (Psicología) , Enterotoxinas/metabolismo , Superantígenos/metabolismo , Vagina/microbiología , Bacterias/metabolismo , Infecciones Estafilocócicas/microbiología , Glucosa/metabolismo
18.
Int J Biol Macromol ; 262(Pt 2): 130039, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354917

RESUMEN

There is mounting evidence that the uterine microbiota has an important role in the pathogenesis of endometritis, with invasion of pathogenic bacteria being a main cause of uterine microbial imbalance. However, mechanisms of uterine microbiota resistance to pathogen invasion remain unclear. In this study, an intrauterine infusion of Staphylococcus aureus was used as a bovine endometritis model; it significantly increased abundance of pathogenic bacteria (Streptococcus, Helccoccus, Fusobacterium, and Escherichia-Shigella) and significantly decreased abundance of probiotics (Allstipes, Bacteroides, Phascolarctobacterium, Romboutsia, and Prevotella). In addition, the metabolite aloe-emodin was positively correlated with Prevotella and based on combined analyses of omics and probiotics, the presence of its metabolite aloe-emodin in the uterus at least partially resisted Staphylococcus aureus invasion. Therefore, Aloe-emodin has potential for regulating microbial structure and preventing endometritis.


Asunto(s)
Emodina , Endometritis , Infecciones Estafilocócicas , Femenino , Humanos , Animales , Bovinos , Endometritis/microbiología , Endometritis/patología , Staphylococcus aureus/metabolismo , Útero/patología , Bacterias , Infecciones Estafilocócicas/patología
19.
Microbiol Res ; 282: 127635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38340572

RESUMEN

Bacteria develop tolerance after transient exposure to antibiotics, and tolerance is a significant driver of resistance. The purpose of this study is to evaluate the mechanisms underlying tolerance formation in vancomycin-intermediate Staphylococcus aureus (VISA) strains. VISA strains were cultured with sub-minimum inhibitory concentrations (sub-MICs) of vancomycin. Enhanced vancomycin tolerance was observed in VISA strains with distinct genetic lineages. Western blot revealed that the VISA protein succinylation (Ksucc) levels decreased with the increase in vancomycin exposure. Importantly, Ksucc modification, vancomycin tolerance, and cell wall synthesis were simultaneously affected after deletion of SacobB, which encodes a desuccinylase in S. aureus. Several Ksucc sites were identified in MurA, and vancomycin MIC levels of murA mutant and Ksucc-simulated (MurA(K69E) and MurA(K191E)) mutants were reduced. The vancomycin MIC levels of K65-MurA(K191E) in particular decreased to 1 mg/L, converting VISA strain K65 to a vancomycin-susceptible S. aureus strain. We further demonstrated that the enzymatic activity of MurA was dependent on Ksucc modification. Our data suggested the influence of vancomycin exposure on bacterial tolerance, and protein Ksucc modification is a novel mechanism in regulating vancomycin tolerance.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Vancomicina/farmacología , Vancomicina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Vancomicina , Regulación hacia Abajo , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología
20.
mBio ; 15(4): e0338323, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38415646

RESUMEN

We previously demonstrated that mutation of sarA in Staphylococcus aureus limits biofilm formation, cytotoxicity for osteoblasts and osteoclasts, and virulence in osteomyelitis, and that all of these phenotypes can be attributed to the increased production of extracellular proteases. Here we extend these studies to assess the individual importance of these proteases alone and in combination with each other using the methicillin-resistant USA300 strain LAC, the methicillin-susceptible USA200 strain UAMS-1, and isogenic sarA mutants that were also unable to produce aureolysin (Aur), staphopain A (ScpA), staphylococcal serine protease A (subsp.), staphopain B (SspB), and the staphylococcal serine protease-like proteins A-F (SplA-F). Biofilm formation was restored in LAC and UAMS-1 sarA mutants by subsequent mutation of aur and scpA, while mutation of aur had the greatest impact on cytotoxicity to mammalian cells, particularly with conditioned medium (CM) from the more cytotoxic strain LAC. However, SDS-PAGE and western blot analysis of CM confirmed that mutation of sspAB was also required to mimic the phenotype of sarA mutants unable to produce any extracellular proteases. Nevertheless, in a murine model of post-traumatic osteomyelitis, mutation of aur and scpA had the greatest impact on restoring the virulence of LAC and UAMS-1 sarA mutants, with concurrent mutation of sspAB and the spl operon having relatively little effect. These results demonstrate that the increased production of Aur and ScpA in combination with each other is a primary determinant of the reduced virulence of S. aureus sarA mutants in diverse clinical isolates including both methicillin-resistant and methicillin-susceptible strains.IMPORTANCEPrevious work established that SarA plays a primary role in limiting the production of extracellular proteases to prevent them from limiting the abundance of S. aureus virulence factors. Eliminating the production of all 10 extracellular proteases in the methicillin-resistant strain LAC has also been shown to enhance virulence in a murine sepsis model, and this has been attributed to the specific proteases Aur and ScpA. The importance of this work lies in our demonstration that the increased production of these same proteases largely accounts for the decreased virulence of sarA mutants in a murine model of post-traumatic osteomyelitis not only in LAC but also in the methicillin-susceptible human osteomyelitis isolate UAMS-1. This confirms that sarA-mediated repression of Aur and ScpA production plays a critical role in the posttranslational regulation of S. aureus virulence factors in diverse clinical isolates and diverse forms of S. aureus infection.


Asunto(s)
Metaloendopeptidasas , Osteomielitis , Infecciones Estafilocócicas , Animales , Ratones , Humanos , Staphylococcus aureus/metabolismo , Virulencia/genética , Modelos Animales de Enfermedad , Meticilina/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...