Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.621
Filtrar
1.
Curr Microbiol ; 81(6): 166, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724665

RESUMEN

Many regulatory genes that affect cellular development in Streptomyces, such as the canonical bld genes, have already been identified. However, in this study, we identified sven_5003 in Streptomyces venezuelae as a major new developmental regulatory gene, the deletion of which leads to a bald phenotype, typical of bld mutants, under multiple growth conditions. Our data indicated that disruption of sven_5003 also has a differential impact on the production of the two antibiotics jadomycin and chloramphenicol. Enhanced production of jadomycin but reduced production of chloramphenicol were detected in our sven_5003 mutant strain (S. venezuelae D5003). RNA-Seq analysis indicated that SVEN_5003 impacts expression of hundreds of genes, including genes involved in development, primary and secondary metabolism, and genes of unknown function, a finding confirmed by real-time PCR analysis. Transcriptional analysis indicated that sven_5003 is an auto-regulatory gene, repressing its own expression. Despite the evidence indicating that SVEN_5003 is a regulatory factor, a putative DNA-binding domain was not predicted from its primary amino acid sequence, implying an unknown regulatory mechanism by SVEN_5003. Our findings revealed that SVEN_5003 is a pleiotropic regulator with a critical role in morphological development in S. venezuelae.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Cloranfenicol/farmacología , Isoquinolinas/metabolismo
2.
Nature ; 629(8010): 165-173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632398

RESUMEN

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Asunto(s)
Antibiosis , Proteínas Bacterianas , Toxinas Bacterianas , Streptomyces , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Microscopía por Crioelectrón , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestructura , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efectos de los fármacos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efectos de los fármacos , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo , Streptomyces griseus/metabolismo
3.
Microb Cell Fact ; 22(1): 167, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644530

RESUMEN

BACKGROUND: Naringenin is an industrially relevant compound due to its multiple pharmaceutical properties as well as its central role in flavonoid biosynthesis. RESULTS: On our way to develop Streptomyces albidoflavus J1074 as a microbial cell factory for naringenin production, we have significantly increased the yields of this flavanone by combining various metabolic engineering strategies, fermentation strategies and genome editing approaches in a stepwise manner. Specifically, we have screened different cultivation media to identify the optimal production conditions and have investigated how the additive feeding of naringenin precursors influences the production. Furthermore, we have employed genome editing strategies to remove biosynthetic gene clusters (BGCs) associated with pathways that might compete with naringenin biosynthesis for malonyl-CoA precursors. Moreover, we have expressed MatBC, coding for a malonate transporter and an enzyme responsible for the conversion of malonate into malonyl-CoA, respectively, and have duplicated the naringenin BGC, further contributing to the production improvement. By combining all of these strategies, we were able to achieve a remarkable 375-fold increase (from 0.06 mg/L to 22.47 mg/L) in naringenin titers. CONCLUSION: This work demonstrates the influence that fermentation conditions have over the final yield of a bioactive compound of interest and highlights various bottlenecks that affect production. Once such bottlenecks are identified, different strategies can be applied to overcome them, although the efficiencies of such strategies may vary and are difficult to predict.


Asunto(s)
Flavanonas , Microbiología Industrial , Streptomyces , Ingeniería Metabólica , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Flavanonas/biosíntesis , Cerulenina/farmacología , Fenilalanina/farmacología , Tirosina/farmacología
4.
Proc Natl Acad Sci U S A ; 119(40): e2211052119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161918

RESUMEN

Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.


Asunto(s)
Deferoxamina , Interacciones Microbianas , Saccharomyces cerevisiae , Sideróforos , Streptomyces , Cloranfenicol/metabolismo , Coproporfirinas/metabolismo , Deferoxamina/metabolismo , Glicerol/metabolismo , Hierro/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
5.
PLoS One ; 17(2): e0264094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213576

RESUMEN

Lactoferrin (LF) is a multifunctional protein with a broad spectrum of antimicrobial activities. In this study, we investigated the antimicrobial activity of LF against the potato common scab pathogen Streptomyces scabiei, which causes severe damage to potato tubers. LF derived from bovine (bLF) had much higher activity against S. scabiei than human LF. The minimal inhibitory concentration of bLF was 3.9 µM. The effects of both apo-bLF (iron-free) and holo-bLF (iron-saturated) on S. scabiei were not different. Bovine lactoferricin (LFcinB), a short peptide with a length of 25 amino acid residues located in the N-terminal region of bLF, showed antimicrobial activity against S. scabiei, similar to that of bLF. These results indicated that the antimicrobial activity of bLF against S. scabiei cannot be attributed to its iron-chelating effect but to the bioactivity of its peptides. When S. scabiei was treated with the fusion protein of mCherry-LFcinB (red fluorescent protein) expressed in Escherichia coli, the pseudohyphal cells instantly glowed, indicating that the peptide electrostatically binds to the surface of S. scabiei. An assay of synthetic peptides, with modified number of arginine (Arg) and tryptophan (Trp) residues based on the antimicrobial center (RRWQWR) of LFcinB showed that Trp residues are implicated in the antimicrobial activity against S. scabiei; however, Arg residues are also necessary to carry Trp residues to the cell surface to fully exert its activity. Although the single amino acid effect of Trp had low activity, Trp derivatives showed much higher activity against S. scabiei, suggesting that the derivatives effectively bind to the cell surface (cell membrane) by themselves without a carrier. Thus, amino acid derivatives might be considered effective and alternative antimicrobial substances.


Asunto(s)
Antibacterianos/farmacología , Lactoferrina/farmacología , Solanum tuberosum/microbiología , Streptomyces/crecimiento & desarrollo , Animales , Antibacterianos/química , Bovinos , Escherichia coli/crecimiento & desarrollo , Humanos , Lactoferrina/química
6.
Microb Genom ; 8(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040428

RESUMEN

The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the 'green light' to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs' expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Celobiosa/farmacología , Celulosa/farmacología , Tubérculos de la Planta/microbiología , Streptomyces/crecimiento & desarrollo , Triosas/farmacología , Factores de Virulencia/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Macrólidos/metabolismo , Metabolómica , Familia de Multigenes/efectos de los fármacos , Piperazinas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , RNA-Seq , Streptomyces/efectos de los fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidad
7.
Nat Commun ; 13(1): 71, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013186

RESUMEN

Filamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular/fisiología , Hifa/metabolismo , Esporas Bacterianas/metabolismo , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Fenómenos Biológicos , Pared Celular , Hifa/citología , Hifa/genética , Hifa/crecimiento & desarrollo , Estadios del Ciclo de Vida , Esporas Bacterianas/genética , Streptomyces/citología , Streptomyces/genética , Streptomyces/crecimiento & desarrollo
8.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946638

RESUMEN

A new aliphatic acid, compound 1, together with six known metabolites, including nonactic acid (2), homononactic acid (3), ethyl homononactate (4), homononactylhomononactate (5), valinomycin (6), and cyclo-(Pro-Leu) (7), was isolated from the culture broth of Streptomyces sp. BM-8, an actinobacterial strain isolated from the feces of Equus quagga. The structures of these compounds were established by analyses of spectroscopic data, including 1D and 2D nuclear magnetic resonance spectra (NMR), as well as by HR-ESI-MS spectrometry and chemical derivative analyses. Additionally, a serial analogue of nonactic acid and homononacticacid (8-21) was synthesized. The cytotoxicity of 1-21 wastested against a panel of cancer cell lines, such as HT-29, MCF-7, A375 and K562, with MTT assay. In addition, the cytotoxicity tests revealed that 1 was less cytotoxic toward a panel of cancerous cells, as compared with valinomycin (6).


Asunto(s)
Antineoplásicos , Citotoxinas , Equidae/microbiología , Heces/microbiología , Neoplasias/tratamiento farmacológico , Streptomyces , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Citotoxinas/química , Citotoxinas/farmacología , Células HT29 , Humanos , Células K562 , Células MCF-7 , Neoplasias/metabolismo , Streptomyces/química , Streptomyces/crecimiento & desarrollo , Streptomyces/aislamiento & purificación
9.
Microbiol Spectr ; 9(3): e0198121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878326

RESUMEN

In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Cloranfenicol/metabolismo , Regulación Bacteriana de la Expresión Génica , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Regulón , Streptomyces/genética , Factores de Transcripción/genética
10.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769298

RESUMEN

Streptomyces bacteria produce a plethora of secondary metabolites including the majority of medically important antibiotics. The onset of secondary metabolism is correlated with morphological differentiation and controlled by a complex regulatory network involving numerous regulatory proteins. Control over these pathways at the molecular level has a medical and industrial importance. Here we describe a GntR-like DNA binding transcription factor SCO3932, encoded within an actinomycete integrative and conjugative element, which is involved in the secondary metabolite biosynthesis regulation. Affinity chromatography, electrophoresis mobility shift assay, footprinting and chromatin immunoprecipitation experiments revealed, both in vitro and in vivo, SCO3932 binding capability to its own promoter region shared with the neighboring gene SCO3933, as well as promoters of polyketide metabolite genes, such as cpkD, a coelimycin biosynthetic gene, and actII-orf4-an activator of actinorhodin biosynthesis. Increased activity of SCO3932 target promoters, as a result of SCO3932 overproduction, indicates an activatory role of this protein in Streptomyces coelicolor A3(2) metabolite synthesis pathways.


Asunto(s)
Actinobacteria/genética , Vías Biosintéticas , Streptomyces/crecimiento & desarrollo , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Inmunoprecipitación de Cromatina , Cromatografía de Afinidad , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Metabolismo Secundario , Streptomyces/genética
11.
Sci Rep ; 11(1): 20116, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635733

RESUMEN

Extracellular contractile injection systems (eCISs) are structurally similar to headless phages and are versatile nanomachines conserved among diverse classes of bacteria. Herein, Streptomyces species, which comprise filamentous Gram-positive bacteria and are ubiquitous in soil, were shown to produce Streptomyces phage tail-like particles (SLPs) from eCIS-related genes that are widely conserved among Streptomyces species. In some Streptomyces species, these eCIS-related genes are regulated by a key regulatory gene, which is essential for Streptomyces life cycle and is involved in morphological differentiation and antibiotic production. Deletion mutants of S. lividans of the eCIS-related genes appeared phenotypically normal in terms of morphological differentiation and antibiotic production, suggesting that SLPs are involved in other aspects of Streptomyces life cycle. Using co-culture method, we found that colonies of SLP-deficient mutants of S. lividans were more severely invaded by fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. In addition, microscopic and transcriptional analyses demonstrated that SLP expression was elevated upon co-culture with the fungi. In contrast, co-culture with Bacillus subtilis markedly decreased SLP expression and increased antibiotic production. Our findings demonstrate that in Streptomyces, eCIS-related genes affect microbial competition, and the patterns of SLP expression can differ depending on the competitor species.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Espacio Extracelular/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Microbianas , Profagos/metabolismo , Streptomyces/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Genes Reguladores , Nanoestructuras , Profagos/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo
12.
World J Microbiol Biotechnol ; 37(10): 171, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34490503

RESUMEN

Filamentous microorganisms are potent sources of bioactive secondary metabolites, the molecules formed in response to complex environmental signals. The chemical diversity encoded in microbial genomes is only partially revealed by following the standard microbiological approaches. Mimicking the natural stimuli through laboratory co-cultivation is one of the most effective methods of awakening the formation of high-value metabolic products. Whereas the biosynthetic outcomes of co-cultures are reviewed extensively, the bioprocess aspects of such efforts are often overlooked. The aim of the present review is to discuss the submerged co-cultivation strategies used for triggering and enhancing secondary metabolites production in Streptomyces, a heavily investigated bacterial genus exhibiting an impressive repertoire of secondary metabolites, including a vast array of antibiotics. The previously published studies on influencing the biosynthetic capabilities of Streptomyces through co-cultivation are comparatively analyzed in the bioprocess perspective, mainly with the focus on the approaches of co-culture initiation, the experimental setup, the design of experimental controls and the ways of influencing the outcomes of co-cultivation processes. These topics are discussed in the general context of secondary metabolites production in submerged microbial co-cultures by referring to the Streptomyces-related studies as illustrative examples.


Asunto(s)
Productos Biológicos/metabolismo , Técnicas de Cocultivo/métodos , Metabolismo Secundario , Streptomyces/metabolismo , Streptomyces/genética , Streptomyces/crecimiento & desarrollo
13.
Appl Biochem Biotechnol ; 193(12): 3936-3948, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34436750

RESUMEN

Clavulanic acid (CA) is a naturally occurring antibiotic produced by Streptomyces clavuligerus. Statistical optimization of the fermentation medium for CA production by Streptomyces clavuligerus was carried out. Multiple carbon sources, glycerol, dextrin, and triolein, were considered simultaneously. A two-level fractional factorial design experiment was conducted to identify the significant components of medium on CA production. Statistical analysis of the results showed that soybean meal, dextrin, and triolein were the most significant medium ingredients on CA production. The optimal level of these screened components was obtained by RSM based on the result of a Box-Behnken design, in which the values of dextrin, soybean meal, and triolein in CA fermentation medium were 12.37 g/L, 39.75 g/L, and 26.98 ml/L, respectively. Using the proposed optimized medium, the model predicted 938 mg/L of CA level and via experimental rechecking the model, 946 mg/L of CA level was attained in shake flask fermentation, significantly high than 630 mg/L of original medium. The optimized medium was further verified in 50-L stirred fermenter, and compared with performance of original medium in parallel, CA titer was increased from 889 to 1310 mg/L; a 47% increase was achieved through medium optimization by statistical approaches.


Asunto(s)
Ácido Clavulánico/biosíntesis , Medios de Cultivo/química , Streptomyces/crecimiento & desarrollo
14.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34413202

RESUMEN

Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Codón , Escherichia coli/metabolismo , Código Genético , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/metabolismo , Streptomyces/metabolismo , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Prolina/genética , Prolina/metabolismo , Aminoacil-ARN de Transferencia/genética , Homología de Secuencia , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Especificidad por Sustrato
15.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299187

RESUMEN

By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.


Asunto(s)
Proteínas Bacterianas/genética , Benzo(a)Antracenos/metabolismo , Familia de Multigenes , Proteínas Recombinantes/genética , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Benzopiranos , Regulación Bacteriana de la Expresión Génica , Glicósidos/biosíntesis , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Trisacáridos/biosíntesis
16.
Biotechnol Lett ; 43(9): 1809-1820, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34160747

RESUMEN

FK506 is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. To improve production, atmospheric and room temperature plasma (ARTP) mutagenesis was adopted to get the initial strains used in genome shuffling (GS). After three rounds of GS, S. tsukubaensis R3-C4 was the most productive strain, resulting in a FK506 concentration of 335 µg/mL, 2.6 times than that of the original wild-type strain. Moreover, exogenous DMSO 4% (v/v) addition could induce efflux of FK506 and increased FK506 production by 27.9% to 429 µg/mL. Finally, analyses of the differences in morphology, fermentation characteristics and specific gene expression levels between S. tsukubaensis R3-C4 and the wild-type strain revealed that R3-C4 strain: has hampered spore differentiation, thicker mycelia and more red pigment, which are likely related to the downregulation of bldD and cdgB expression. In addition, the expression levels of fkbO, fkbP, dahp, pccB and prpE all showed up-regulation at diverse degrees compared to the wild-type S. tsukubaensis. Overall, these results show that a combined approach involving classical random mutation and exogenous feeding can be applied to increase FK506 biosynthesis and may be applied also to the improvement of other important secondary metabolites.


Asunto(s)
Dimetilsulfóxido/química , Mutagénesis , Streptomyces/crecimiento & desarrollo , Tacrolimus/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/química , Barajamiento de ADN , Fermentación , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Gases em Plasma/efectos adversos , Streptomyces/genética
17.
Appl Environ Microbiol ; 87(17): e0047321, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34160269

RESUMEN

The heat shock response (HSR) is a universal cellular response that promotes survival following temperature increase. In filamentous Streptomyces, which accounts for ∼70% of commercial antibiotic production, HSR is regulated by transcriptional repressors; in particular, the widespread MerR-family regulator HspR has been identified as a key repressor. However, functions of HspR in other biological processes are unknown. The present study demonstrates that HspR pleiotropically controls avermectin production, morphological development, and heat shock and H2O2 stress responses in the industrially important species Streptomyces avermitilis. HspR directly activated ave structural genes (aveA1 and aveA2) and H2O2 stress-related genes (katA1, catR, katA3, oxyR, ahpC, and ahpD), whereas it directly repressed heat shock genes (HSGs) (the dnaK1-grpE1-dnaJ1-hspR operon, clpB1p, clpB2p, and lonAp) and developmental genes (wblB, ssgY, and ftsH). HspR interacted with PhoP (response regulator of the widespread PhoPR two-component system) at dnaK1p to corepress the important dnaK1-grpE1-dnaJ1-hspR operon. PhoP exclusively repressed target HSGs (htpG, hsp18_1, and hsp18_2) different from those of HspR (clpB1p, clpB2p, and lonAp). A consensus HspR-binding site, 5'-TTGANBBNNHNNNDSTSHN-3', was identified within HspR target promoter regions, allowing prediction of the HspR regulon involved in broad cellular functions. Taken together, our findings demonstrate a key role of HspR in the coordination of a variety of important biological processes in Streptomyces species. IMPORTANCE Our findings are significant to clarify the molecular mechanisms underlying HspR function in Streptomyces antibiotic production, development, and H2O2 stress responses through direct control of its target genes associated with these biological processes. HspR homologs described to date function as transcriptional repressors but not as activators. The results of the present study demonstrate that HspR acts as a dual repressor/activator. PhoP cross talks with HspR at dnaK1p to coregulate the heat shock response (HSR), but it also has its own specific target heat shock genes (HSGs). The novel role of PhoP in the HSR further demonstrates the importance of this regulator in Streptomyces. Overexpression of hspR strongly enhanced avermectin production in Streptomyces avermitilis wild-type and industrial strains. These findings provide new insights into the regulatory roles and mechanisms of HspR and PhoP and facilitate methods for antibiotic overproduction in Streptomyces species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/farmacología , Ivermectina/análogos & derivados , Proteínas Represoras/metabolismo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Calor , Ivermectina/metabolismo , Regulón , Proteínas Represoras/genética , Streptomyces/efectos de los fármacos , Streptomyces/genética , Estrés Fisiológico
18.
mSphere ; 6(3): e0042721, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34077259

RESUMEN

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Asunto(s)
Bacterias/efectos de los fármacos , Fenazinas/farmacología , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/patogenicidad , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Variación Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/crecimiento & desarrollo , Pseudomonas/clasificación , Streptomyces/efectos de los fármacos , Streptomyces/crecimiento & desarrollo
19.
Biotechnol Lett ; 43(9): 1765-1778, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34021830

RESUMEN

OBJECTIVE: This study was conducted to enhance the production of tacrolimus in Streptomyces tsukubaensis by strain mutagenesis and optimization of the fermentation medium. RESULTS: A high tacrolimus producing strain S. tsukubaensis FIM-16-06 was obtained by ultraviolet mutagenesis coupled with atmospheric and room temperature plasma mutagenesis.Then, nine variables were screened using Plackett-Burman experimental design, in which soluble starch, peptone and Tween 80 showed significantly affected tacrolimus production. Further studies were carried out employing central composite design to elucidate the mutual interaction between the variables and to work out optimal fermentation medium composition for tacrolimus production. The optimum fermentation medium was found to contain 61.61 g/L of soluble starch, 20.61 g/L of peptone and 30.79 g/L of Tween 80. In the optimized medium, the production of tacrolimus reached 1293 mg/L in shake-flask culture, and reached 1522 mg/L while the scaled-up fermentation was conducted in a 1000 L fermenter, which was about 3.7 times higher than that in the original medium. CONCLUSIONS: Combining compound mutation with rational medium optimization is an effective approach for improving tacrolimus production, and the optimized fermentation medium could be efficiently used for industrial production.


Asunto(s)
Mutagénesis , Streptomyces/crecimiento & desarrollo , Tacrolimus/metabolismo , Técnicas de Cultivo Celular por Lotes , Medios de Cultivo/química , Fermentación , Peptonas/química , Gases em Plasma/efectos adversos , Polisorbatos/química , Almidón/química , Streptomyces/genética , Rayos Ultravioleta/efectos adversos
20.
Appl Environ Microbiol ; 87(14): e0271920, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33990299

RESUMEN

The cellulolytic insect symbiont bacterium Streptomyces sp. strain SirexAA-E secretes a suite of carbohydrate-active enzymes (CAZymes), which are involved in the degradation of various polysaccharides in the plant cell wall, in response to the available carbon sources. Here, we examined a poorly understood response of this bacterium to mannan, one of the major plant cell wall components. SirexAA-E grew well on mannose, carboxymethyl cellulose (CMC), and locust bean gum (LBG) as sole carbon sources in the culture medium. The secreted proteins from each culture supernatant were tested for their polysaccharide-degrading ability, and the composition of secreted CAZymes in each sample was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that mannose, LBG, and CMC induced the secretion of mannan and cellulose-degrading enzymes. Interestingly, two α-1,2-mannosidases were abundantly secreted during growth on mannose and LBG. Using genomic analysis, we found a unique 12-bp palindromic sequence motif at 4 locations in the SirexAA-E genome, two of which were found upstream of the above-mentioned α-1,2-mannosidase genes, along with a newly identified mannose and mannobiose-responsive transcriptional regulator, SsManR. Furthermore, the previously reported cellobiose-responsive repressor, SsCebR, was determined to also use mannobiose as an effector ligand. To test whether mannobiose induces the sets of genes under the control of the two regulators, SirexAA-E was grown on mannobiose, and the secretome composition was analyzed. As hypothesized, the composition of the mannobiose secretome combined sets of CAZymes found in both LBG and CMC secretomes, and thus they are likely under the regulation of both SsManR and SsCebR. IMPORTANCEStreptomyces sp. SirexAA-E, a microbial symbiont of biomass-harvesting insects, secretes a suite of polysaccharide-degrading enzymes dependent on the available carbon sources. However, the response of this bacterium to mannan has not been documented. In this study, we investigated the response of this bacterium to mannose, mannobiose, and galactomannan (LBG). By combining biochemical, proteomic, and genomic approaches, we discovered a novel mannose and mannobiose responsive transcriptional regulator, SsManR, which selectively regulates three α-1,2-mannosidase-coding genes. We also demonstrated that the previously described cellobiose responsive regulator, SsCebR, could use mannobiose as an effector ligand. Overall, our findings suggest that the Streptomyces sp. SirexAA-E responds to mannose and mannooligosaccharides through two different transcriptional repressors that regulate the secretion of the plant cell wall-degrading enzymes to extract carbon sources in the host environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mananos/metabolismo , Manosa/metabolismo , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Carboximetilcelulosa de Sodio/metabolismo , Galactanos/metabolismo , Galactosa/análogos & derivados , Insectos/microbiología , Manosidasas/genética , Manosidasas/metabolismo , Gomas de Plantas/metabolismo , Streptomyces/crecimiento & desarrollo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...