Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.837
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731473

RESUMEN

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Asunto(s)
Familia de Multigenes , Péptido Sintasas , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
J Am Chem Soc ; 146(19): 13399-13405, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698691

RESUMEN

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.


Asunto(s)
Hidrazinas , Hidrazinas/química , Hidrazinas/metabolismo , Antibacterianos/química , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Streptomyces/enzimología , Streptomyces/metabolismo , Lactamas/química , Lactamas/metabolismo , Farmacóforo
3.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717487

RESUMEN

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Asunto(s)
Escherichia coli , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidad por Sustrato , Dipeptidasas/metabolismo , Dipeptidasas/genética , Dipeptidasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Familia de Multigenes , Concentración de Iones de Hidrógeno , Dipéptidos/metabolismo , Temperatura , Cinética
4.
Methods Enzymol ; 696: 179-199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658079

RESUMEN

ß-Hydroxy-α-amino acids (ßHAAs) are an essential class of building blocks of therapeutically important compounds and complex natural products. They contain two chiral centers at Cα and Cß positions, resulting in four possible diastereoisomers. Many innovative asymmetric syntheses have been developed to access structurally diverse ßHAAs. The main challenge, however, is the control of the relative and absolute stereochemistry of the asymmetric carbons in a sustainable way. In this respect, there has been considerable attention focused on the chemoenzymatic synthesis of ßHAAs via a one-step process. Nature has evolved different enzymatic routes to produce these valuable ßHAAs. Among these naturally occurring transformations, L-threonine transaldolases present potential biocatalysts to generate ßHAAs in situ. 4-Fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA) catalyzes the cross-over transaldolation reaction between L-Thr and fluoroacetaldehyde to give 4-fluorothreonine and acetaldehyde (Ad). It has been demonstrated that FTaseMA displays considerable substrate plasticity toward structurally diverse aldehyde acceptors, leading to the production of various ßHAAs. In this chapter, we describe methods for the preparation of FTaseMA, and the chemoenzymatic synthesis of ßHAAs from various aldehydes and L-Thr using FTaseMA.


Asunto(s)
Streptomyces , Transaldolasa , Streptomyces/enzimología , Transaldolasa/metabolismo , Transaldolasa/química , Transaldolasa/genética , Treonina/análogos & derivados , Treonina/química , Treonina/metabolismo , Biocatálisis , Aminoácidos/química , Aminoácidos/metabolismo , Especificidad por Sustrato , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Acetaldehído/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pruebas de Enzimas/métodos , Estereoisomerismo
5.
Methods Enzymol ; 696: 231-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658081

RESUMEN

Nonheme iron enzymes stand out as one of the most versatile biocatalysts for molecular functionalization. They facilitate a wide array of chemical transformations within biological processes, including hydroxylation, chlorination, epimerization, desaturation, cyclization, and more. Beyond their native biological functions, these enzymes possess substantial potential as powerful biocatalytic platforms for achieving abiological metal-catalyzed reactions, owing to their functional and structural diversity and high evolvability. To this end, our group has recently engineered a series of nonheme iron enzymes to employ non-natural radical-relay mechanisms for abiological radical transformations not previously known in biology. Notably, we have demonstrated that a nonheme iron enzyme, (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE), can be repurposed into an efficient and selective biocatalyst for radical fluorine transfer reactions. This marks the first known instance of a redox enzymatic process for C(sp3)F bond formation. This chapter outlines the detailed experimental protocol for engineering SvHPPE for fluorination reactions. Furthermore, the provided protocol could serve as a general guideline that might facilitate other engineering endeavors targeting nonheme iron enzymes for novel catalytic functions.


Asunto(s)
Biocatálisis , Flúor , Halogenación , Ingeniería de Proteínas , Streptomyces , Flúor/química , Ingeniería de Proteínas/métodos , Streptomyces/enzimología , Streptomyces/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química , Oxidación-Reducción , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
6.
Microb Biotechnol ; 17(5): e14470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683675

RESUMEN

Avermectins (AVEs), a family of macrocyclic polyketides produced by Streptomyces avermitilis, have eight components, among which B1a is noted for its strong insecticidal activity. Biosynthesis of AVE "a" components requires 2-methylbutyryl-CoA (MBCoA) as starter unit, and malonyl-CoA (MalCoA) and methylmalonyl-CoA (MMCoA) as extender units. We describe here a novel strategy for increasing B1a production by enhancing acyl-CoA precursor supply. First, we engineered meilingmycin (MEI) polyketide synthase (PKS) for increasing MBCoA precursor supply. The loading module (using acetyl-CoA as substrate), extension module 7 (using MMCoA as substrate) and TE domain of MEI PKS were assembled to produce 2-methylbutyrate, providing the starter unit for B1a production. Heterologous expression of the newly designed PKS (termed Mei-PKS) in S. avermitilis wild-type (WT) strain increased MBCoA level, leading to B1a titer 262.2 µg/mL - 4.36-fold higher than WT value (48.9 µg/mL). Next, we separately inhibited three key nodes in essential pathways using CRISPRi to increase MalCoA and MMCoA levels in WT. The resulting strains all showed increased B1a titer. Combined inhibition of these key nodes in Mei-PKS expression strain increased B1a titer to 341.9 µg/mL. Overexpression of fatty acid ß-oxidation pathway genes in the strain further increased B1a titer to 452.8 µg/mL - 8.25-fold higher than WT value. Finally, we applied our precursor supply strategies to high-yield industrial strain A229. The strategies, in combination, led to B1a titer 8836.4 µg/mL - 37.8% higher than parental A229 value. These findings provide an effective combination strategy for increasing AVE B1a production in WT and industrial S. avermitilis strains, and our precursor supply strategies can be readily adapted for overproduction of other polyketides.


Asunto(s)
Acilcoenzima A , Ivermectina , Ivermectina/análogos & derivados , Ingeniería Metabólica , Redes y Vías Metabólicas , Sintasas Poliquetidas , Streptomyces , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Acilcoenzima A/metabolismo , Acilcoenzima A/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimología , Redes y Vías Metabólicas/genética , Ivermectina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
Int J Biol Macromol ; 268(Pt 1): 131696, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642679

RESUMEN

Carbon­carbon (C-C) bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase (AOS), named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with ß-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.


Asunto(s)
Ácido Glutámico , Especificidad por Sustrato , Ácido Glutámico/química , Modelos Moleculares , Streptomyces/enzimología , Cristalografía por Rayos X , Dominio Catalítico , Conformación Proteica , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Relación Estructura-Actividad
8.
Nat Commun ; 15(1): 3574, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678027

RESUMEN

Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,ß-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.


Asunto(s)
Streptomyces , Streptomyces/enzimología , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dipéptidos/química , Dipéptidos/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/biosíntesis
9.
Biochemistry ; 63(10): 1359-1368, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38685871

RESUMEN

Sedoheptulose 7-phosphate (SH7P) cyclases are a subset of sugar phosphate cyclases that are known to catalyze the first committed step in many biosynthetic pathways in primary and secondary metabolism. Among them are 2-epi-5-epi-valiolone synthase (EEVS) and 2-epi-valiolone synthase (EVS), two closely related SH7P cyclases that catalyze the conversion of SH7P to 2-epi-5-epi-valiolone and 2-epi-valiolone, respectively. However, how these two homologous enzymes use a common substrate to produce stereochemically different products is unknown. Two competing hypotheses have been proposed for the stereospecificity of EEVS and EVS: (1) variation in aldol acceptor geometry during enzyme catalysis, and (2) preselection of the α-pyranose or ß-pyranose forms of the substrate by the enzymes. Yet, there is no direct evidence to support or rule out either of these hypotheses. Here we report the synthesis of the carba-analogs of the α-pyranose and ß-pyranose forms of SH7P and their use in probing the stereospecificity of ValA (EEVS from Streptomyces hygroscopicus subsp. jinggangensis) and Amir_2000 (EVS from Actinosynnema mirum DSM 43827). Kinetic studies of the enzymes in the presence of the synthetic compounds as well as docking studies of the enzymes with the α- and ß-pyranose forms of SH7P suggest that the inverted configuration of the products of EEVS and EVS is not due to the preselection of the different forms of the substrate by the enzymes.


Asunto(s)
Heptosas , Fosfatos de Azúcar , Fosfatos de Azúcar/metabolismo , Fosfatos de Azúcar/química , Heptosas/química , Heptosas/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Streptomyces/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
10.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675681

RESUMEN

Alpha-ketoglutaric acid (α-KG), as an intermediate product of the tricarboxylic acid cycle, plays a crucial role in peptide and amino acid synthesis. In order to reduce costs and improve efficiency in the oxidative production of α-ketoglutaric acid, this study successfully synthesized and expressed L-glutamate oxidase (LGOXStr) from Streptomyces viridosporus R111 and catalase (KatGEsc) from Escherichia coli H736. Two immobilization methods and the conditions for one-step whole-cell catalysis of α-ketoglutaric acid were investigated. α-Ketoglutaric acid has broad applications in the pharmaceutical, food, and chemical industries. The specific research results are as follows: (1) By fusing the sfGFP tag, L-glutamate oxidase (LGOXStr r) and catalase (KatGEsc) were successfully anchored to the outer membrane of Escherichia coli cells, achieving one-step whole-cell catalysis of α-ketoglutaric acid with a conversion efficiency of up to 75%. (2) Through the co-immobilization of LGOXStr and KatGEsc, optimization of the preparation parameters of immobilized cells, and exploration of the immobilization method using E.coli@ZIF-8, immobilized cells with conversion rates of over 60% were obtained even after 10 cycles of reuse. Under the optimal conditions, the production rate of α-ketoglutaric acid reached 96.7% in a 12 h reaction, which is 1.1 times that of E. coli@SA and 1.29 times that of free cells.


Asunto(s)
Catalasa , Escherichia coli , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Escherichia coli/enzimología , Catalasa/metabolismo , Catalasa/química , Aminoácido Oxidorreductasas/metabolismo , Aminoácido Oxidorreductasas/química , Streptomyces/enzimología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
11.
Nucleic Acids Res ; 52(9): 5033-5047, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38444149

RESUMEN

The linear chromosome of Streptomyces exhibits a highly compartmentalized structure with a conserved central region flanked by variable arms. As double strand break (DSB) repair mechanisms play a crucial role in shaping the genome plasticity of Streptomyces, we investigated the role of EndoMS/NucS, a recently characterized endonuclease involved in a non-canonical mismatch repair (MMR) mechanism in archaea and actinobacteria, that singularly corrects mismatches by creating a DSB. We showed that Streptomyces mutants lacking NucS display a marked colonial phenotype and a drastic increase in spontaneous mutation rate. In vitro biochemical assays revealed that NucS cooperates with the replication clamp to efficiently cleave G/T, G/G and T/T mismatched DNA by producing DSBs. These findings are consistent with the transition-shifted mutational spectrum observed in the mutant strains and reveal that NucS-dependent MMR specific task is to eliminate G/T mismatches generated by the DNA polymerase during replication. Interestingly, our data unveil a crescent-shaped distribution of the transition frequency from the replication origin towards the chromosomal ends, shedding light on a possible link between NucS-mediated DSBs and Streptomyces genome evolution.


Asunto(s)
Cromosomas Bacterianos , Reparación de la Incompatibilidad de ADN , Streptomyces , Reparación de la Incompatibilidad de ADN/genética , Streptomyces/genética , Streptomyces/enzimología , Cromosomas Bacterianos/genética , Mutación , Replicación del ADN/genética , Roturas del ADN de Doble Cadena , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tasa de Mutación , Endonucleasas/genética , Endonucleasas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Disparidad de Par Base , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética
12.
J Biol Chem ; 300(4): 107210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519030

RESUMEN

Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and ß-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.


Asunto(s)
Proteínas Bacterianas , Flavinas , Oxidorreductasas , Streptomyces , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Flavinas/metabolismo , Flavinas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Streptomyces/enzimología , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Halogenación , Bromuros/química , Bromuros/metabolismo , Triptófano/metabolismo , Triptófano/química , Sitios de Unión , Cloruros/metabolismo , Cloruros/química
13.
FEBS J ; 291(9): 2009-2022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380733

RESUMEN

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Asunto(s)
Oligosacáridos , Streptomyces , beta-Glucanos , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato , beta-Glucanos/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/química , Secuencia de Aminoácidos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Concentración de Iones de Hidrógeno , Cinética
14.
J Biol Chem ; 299(11): 105262, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734553

RESUMEN

A considerable number of lytic polysaccharide monooxygenases (LPMOs) and other carbohydrate-active enzymes are modular, with catalytic domains being tethered to additional domains, such as carbohydrate-binding modules, by flexible linkers. While such linkers may affect the structure, function, and stability of the enzyme, their roles remain largely enigmatic, as do the reasons for natural variation in length and sequence. Here, we have explored linker functionality using the two-domain cellulose-active ScLPMO10C from Streptomyces coelicolor as a model system. In addition to investigating the WT enzyme, we engineered three linker variants to address the impact of both length and sequence and characterized these using small-angle X-ray scattering, NMR, molecular dynamics simulations, and functional assays. The resulting data revealed that, in the case of ScLPMO10C, linker length is the main determinant of linker conformation and enzyme performance. Both the WT and a serine-rich variant, which have the same linker length, demonstrated better performance compared with those with either a shorter linker or a longer linker. A highlight of our findings was the substantial thermostability observed in the serine-rich variant. Importantly, the linker affects thermal unfolding behavior and enzyme stability. In particular, unfolding studies show that the two domains unfold independently when mixed, whereas the full-length enzyme shows one cooperative unfolding transition, meaning that the impact of linkers in biomass-processing enzymes is more complex than mere structural tethering.


Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Modelos Moleculares , Pliegue de Proteína , Dominio Catalítico , Celulosa/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Serina , Estabilidad Proteica , Activación Enzimática , Simulación del Acoplamiento Molecular , Streptomyces/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estructura Terciaria de Proteína
15.
Pak J Pharm Sci ; 36(4): 1093-1105, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37599484

RESUMEN

Streptomyces MDMMH4 cells were immobilized in various matrices with two different techniques for the enhanced and semi-continuous production of extracellular L-methioninase. Of these, agarose was proven to be the most suitable matrix for the immobilization of cells. The optimal agarose concentration was approximately 3% and the initial cell concentration was 150mg/ml (wet cell weight). Agarose-entrapped cells increased the enzyme yield by 21% compared to the highest yield obtained with free cells. Even after twelve successive and efficient fermentation operations, the agarose blocks had good stability. They maintained 69.3% of the enzyme yield obtained in the first cycle. Applying this process on an industrial scale using agarose-entrapped cells, an inexpensive and renewable matrix will allow the stable production of L-methioninase. The purified L-methioninase could be successfully obtained after applying the purification protocol as mentioned in the previous studies. Subsequently, the purified enzyme showed that L- methioninase possessed moderate scavenging activity with high IC50 values of 390.4µg/mL (corresponding to 11.62U/mL). To our knowledge, this is the first report on L-methioninase production by whole-cell immobilization.


Asunto(s)
Streptomyces , Streptomyces/efectos de los fármacos , Streptomyces/enzimología , Antioxidantes/farmacología , Sefarosa/metabolismo
16.
Chemistry ; 29(64): e202302469, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37579200

RESUMEN

Two homologs of the diterpene synthase CotB2 from Streptomyces collinus (ScCotB2) and Streptomyces iakyrus (SiCotB2) were investigated for their products by in vitro incubations of the recombinant enzymes with geranylgeranyl pyrophosphate, followed by compound isolation and structure elucidation by NMR. ScCotB2 produced the new compound collinodiene, besides the canonical CotB2 product cyclooctat-9-en-7-ol, dolabella-3,7,18-triene and dolabella-3,7,12-triene, while SiCotB2 gave mainly cyclooctat-9-en-7-ol and only traces of dolabella-3,7,18-triene. The cyclisation mechanism towards the ScCotB2 products and their absolute configurations were investigated through isotopic labelling experiments.


Asunto(s)
Diterpenos , Ligasas , Streptomyces , Diterpenos/química , Streptomyces/enzimología , Ligasas/química , Proteínas Bacterianas/química
17.
J Biol Chem ; 299(7): 104904, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302552

RESUMEN

Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.


Asunto(s)
Ácido Aspártico , Biocatálisis , Oxigenasas de Función Mixta , Streptomyces , Ácido Aspártico/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Cinética , Oxigenasas de Función Mixta/metabolismo , NADP/metabolismo , Oxidación-Reducción , Streptomyces/enzimología , Dominios Proteicos , Arginina/metabolismo , Especificidad por Sustrato , Hidroxilación , Enlace de Hidrógeno , Electricidad Estática , Descarboxilación , Dominio Catalítico
18.
Braz. j. biol ; 83: 1-12, 2023. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468876

RESUMEN

Organo-mineral fertilizers supplemented with biological additives are an alternative to chemical fertilizers. In this study, thermoresistant microorganisms from composting mass were isolated by two-step procedures. First, samples taken at different time points and temperatures (33 days at 52 ºC, 60 days at 63 ºC, and over 365 days at 26 ºC) were pre-incubated at 80 oC for 30 minutes. Second, the microbial selection by in vitro culture-based methods and heat shock at 60 oC and 100 oC for 2h and 4h. Forty-one isolates were able to grow at 60 °C for 4h; twenty-seven at 100 °C for 2h, and two at 100 °C for 4h. The molecular identification by partial sequencing of the 16S ribosomal gene using universal primers revealed that thirty-five isolates were from eight Bacillus species, one Brevibacillus borstelensis, three Streptomyces thermogriseus, and two fungi (Thermomyces lanuginosus and T. dupontii). Data from amylase, phytase, and cellulase activity assays and the enzymatic index (EI) showed that 38 of 41 thermo-resistant isolates produce at least one enzyme. For amylase activity, the highest EI value was observed in Bacillus licheniformis (isolate 21C2, EI= 4.11), followed by Brevibacillus borstelensis (isolate 6C2, EI= 3.66), Bacillus cereus (isolate 18C2, EI= 3.52), and Bacillus paralicheniformis (isolate 20C2, EI= 3.34). For phytase, the highest EI values were observed for Bacillus cereus (isolate 18C2, EI= 2.30) and Bacillus licheniformis (isolate 3C1, EI= 2.15). Concerning cellulose production, B. altitudinis (isolate 6C1) was the most efficient (EI= 6.40), followed by three Bacillus subtilis (isolates 9C1, 16C2, and 19C2) with EI values of 5.66, 5.84, and 5.88, respectively, and one B. pumilus (isolate 27C2, EI= 5.78). The selected microorganisms are potentially useful as a biological additive in organo-mineral fertilizers and other biotechnological processes.


Os fertilizantes organo-minerais suplementados com aditivos biológicos são uma alternativa aos adubos químicos. Neste estudo, microrganismos termoresistentes foram isolados de compostagem por procedimentos de duas etapas. Inicialmente, as amostras tomadas em diferentes períodos e temperaturas (33 dias a 52 ºC, 60 dias a 63 ºC e mais de 365 dias a 26 ºC) foram pré-incubadas a 80 oC por 30 minutos. Posteriormente, a seleção microbiana foi conduzida por métodos baseados em cultura in vitro e choque térmico a 60 oC e 100 oC por 2h e 4h. Quarenta e um isolados foram capazes de crescer a 60 °C por 4h; vinte e sete a 100 °C por 2h e dois a 100 °C por 4h. A identificação molecular por sequenciamento parcial do gene ribossomal 16S usando primers universais revelou que trinta e cinco isolados eram de oito espécies de Bacillus, um Brevibacillus borstelensis, três Streptomyces thermogriseus e dois fungos (Thermomyces lanuginosus e T. dupontii). Os dados dos ensaios de atividade de amilase, fitase e celulase e o índice enzimático (IE) mostraram que 38 dos 41 isolados termorresistentes produziram pelo menos uma enzima. Para a atividade da amilase, o maior valor de IE foi observado em Bacillus licheniformis (isolado 21C2, IE = 4,11), seguido por Brevibacillus borstelensis (isolado 6C2, IE = 3,66), Bacillus cereus (isolado 18C2, IE = 3,52) e Bacillus paralicheniformis (isolado 20C2, IE = 3,34). Para a fitase, os maiores valores de IE foram observados para B. cereus (isolado 18C2, IE = 2,30) e B. licheniformis (isolado 3C1, IE = 2,15). Em relação à produção de celulose, B. altitudinis (isolado 6C1) foi o mais eficiente (IE = 6,40), seguido por três Bacillus subtilis (isolados 9C1, 16C2 e 19C2) com valores de IE de 5,66, 5,84 e 5,88, respectivamente, e um B. pumilus (isolado 27C2, IE = 5,78). Pode-se inferir que os microrganismos selecionados são potencialmente úteis como aditivos biológicos em fertilizantes organo-minerais e outros processos biotecnológicos.


Asunto(s)
Bacillus , Brevibacillus/enzimología , Compuestos Orgánicos , Hongos/enzimología , Microbiota/genética , /ultraestructura , Streptomyces/enzimología
19.
Biomolecules ; 12(12)2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36551276

RESUMEN

Hundreds of proteins work together in microorganisms to coordinate and control normal activity in cells. Their degradation is not only the last step in the cell's lifespan but also the starting point for its recycling. In recent years, protein degradation has been extensively studied in both eukaryotic and prokaryotic organisms. Understanding the degradation process is essential for revealing the complex regulatory network in microorganisms, as well as further artificial reconstructions and applications. This review will discuss several studies on protein quality-control family members Lon, FtsH, ClpP, the proteasome in Streptomyces, and a few classical model organisms, mainly focusing on their structure, recognition mechanisms, and metabolic influences.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Complejo de la Endopetidasa Proteasomal , Proteolisis , Streptomyces , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Streptomyces/enzimología , Streptomyces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(33): e2205619119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939688

RESUMEN

Melanins are highly conjugated biopolymer pigments that provide photoprotection in a wide array of organisms, from bacteria to humans. The rate-limiting step in melanin biosynthesis, which is the ortho-hydroxylation of the amino acid L-tyrosine to L-DOPA, is catalyzed by the ubiquitous enzyme tyrosinase (Ty). Ty contains a coupled binuclear copper active site that binds O2 to form a µ:η2:η2-peroxide dicopper(II) intermediate (oxy-Ty), capable of performing the regioselective monooxygenation of para-substituted monophenols to catechols. The mechanism of this critical monooxygenation reaction remains poorly understood despite extensive efforts. In this study, we have employed a combination of spectroscopic, kinetic, and computational methods to trap and characterize the elusive catalytic ternary intermediate (Ty/O2/monophenol) under single-turnover conditions and obtain molecular-level mechanistic insights into its monooxygenation reactivity. Our experimental results, coupled with quantum-mechanics/molecular-mechanics calculations, reveal that the monophenol substrate docks in the active-site pocket of oxy-Ty fully protonated, without coordination to a copper or cleavage of the µ:η2:η2-peroxide O-O bond. Formation of this ternary intermediate involves the displacement of active-site water molecules by the substrate and replacement of their H bonds to the µ:η2:η2-peroxide by a single H bond from the substrate hydroxyl group. This H-bonding interaction in the ternary intermediate enables the unprecedented monooxygenation mechanism, where the µ-η2:η2-peroxide O-O bond is cleaved to accept the phenolic proton, followed by substrate phenolate coordination to a copper site concomitant with its aromatic ortho-hydroxylation by the nonprotonated µ-oxo. This study provides insights into O2 activation and reactivity by coupled binuclear copper active sites with fundamental implications in biocatalysis.


Asunto(s)
Proteínas Bacterianas , Melaninas , Monofenol Monooxigenasa , Oxígeno , Fenoles , Streptomyces , Sitios de Unión , Catálisis , Cobre/química , Melaninas/biosíntesis , Monofenol Monooxigenasa/química , Oxígeno/metabolismo , Peróxidos/química , Fenoles/química , Streptomyces/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...