Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Arch Virol ; 169(5): 111, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664271

RESUMEN

India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Filogenia , Filogeografía , India/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Humanos , Gripe Humana/virología , Gripe Humana/epidemiología , Genotipo , Virus Reordenados/genética , Virus Reordenados/clasificación , Virus Reordenados/aislamiento & purificación , Neuraminidasa/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Aves/virología , Brotes de Enfermedades
2.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305155

RESUMEN

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N6 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Virus de la Parainfluenza 5 , Animales , Humanos , Ratones , Hurones/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N6 del Virus de la Influenza A/química , Subtipo H5N6 del Virus de la Influenza A/clasificación , Subtipo H5N6 del Virus de la Influenza A/genética , Subtipo H5N6 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/transmisión , Gripe Aviar/virología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Preparación para una Pandemia/métodos , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/inmunología , Virus de la Parainfluenza 5/metabolismo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Administración Intranasal , Aves de Corral/virología , Inmunoglobulina A/inmunología , Linfocitos T/inmunología
3.
Nature ; 622(7984): 810-817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853121

RESUMEN

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Asunto(s)
Aves , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Internacionalidad , Animales , África/epidemiología , Animales Salvajes/virología , Asia/epidemiología , Aves/virología , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Evolución Molecular , Especificidad del Huésped , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Mamíferos/virología , Mutación , Filogenia , Aves de Corral/virología
4.
Viruses ; 14(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35215806

RESUMEN

The UK and Europe have seen successive outbreaks of highly pathogenic avian influenza across the 2020/21 and 2021/22 autumn/winter seasons. Understanding both the epidemiology and transmission of these viruses in different species is critical to aid mitigating measures where outbreaks cause extensive mortalities in both land- and waterfowl. Infection of different species can result in mild or asymptomatic outcomes, or acute infections that result in high morbidity and mortality levels. Definition of disease outcome in different species is of great importance to understanding the role different species play in the maintenance and transmission of these pathogens. Further, the infection of species that have conservation value is also important to recognise and characterise to understand the impact on what might be limited wild populations. Highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b has been detected in great skuas (Stercorarius skua) across different colonies on islands off the shore of Scotland, Great Britain during summer 2021. A large number of great skuas were observed as developing severe clinical disease and dying during the epizootic and mortalities were estimated to be high where monitored. Of eight skuas submitted for post-mortem examination, seven were confirmed as being infected with this virus using a range of diagnostic assays. Here we overview the outbreak event that occurred in this species, listed as species of conservation concern in Great Britain and outline the importance of this finding with respect to virus transmission and maintenance.


Asunto(s)
Charadriiformes/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión , Escocia/epidemiología , Estaciones del Año , Virulencia
5.
Viruses ; 13(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34452430

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses continue to circulate worldwide, causing numerous outbreaks among bird species and severe public health concerns. H5N1 and H5N8 are the two most fundamental HPAI subtypes detected in birds in the last two decades. The two viruses may compete with each other while sharing the same host population and, thus, suppress the spread of one of the viruses. In this study, we performed a statistical analysis to investigate the temporal correlation of the HPAI H5N1 and HPAI H5N8 subtypes using globally reported data in 2015-2020. This was joined with an in-depth analysis using data generated via our national surveillance program in Egypt. A total of 6412 outbreaks were reported worldwide during this period, with 39% (2529) as H5N1 and 61% (3883) as H5N8. In Egypt, 65% of positive cases were found in backyards, while only 12% were found in farms and 23% in live bird markets. Overall, our findings depict a trade-off between the number of positive H5N1 and H5N8 samples around early 2017, which is suggestive of the potential replacement between the two subtypes. Further research is still required to elucidate the underpinning mechanisms of this competitive dynamic. This, in turn, will implicate the design of effective strategies for disease control.


Asunto(s)
Pollos/virología , Brotes de Enfermedades/veterinaria , Monitoreo Epidemiológico/veterinaria , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Brotes de Enfermedades/prevención & control , Egipto/epidemiología , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/prevención & control , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología
6.
Emerg Microbes Infect ; 10(1): 148-151, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33400615

RESUMEN

Analyses of HPAI H5 viruses from poultry outbreaks across a wide Eurasian region since July 2020 including the Russian Federation, Republics of Iraq and Kazakhstan, and recent detections in migratory waterfowl in the Netherlands, revealed undetected maintenance of H5N8, likely in galliform poultry since 2017/18 and both H5N5 and H5N1. All viruses belong to A/H5 clade 2.3.4.4b with closely related HA genes. Heterogeneity in Eurasian H5Nx HPAI emerging variants threatens poultry production, food security and veterinary public health.


Asunto(s)
Brotes de Enfermedades/veterinaria , Virus de la Influenza A/clasificación , Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Aves de Corral/virología , Animales , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/aislamiento & purificación , Irak/epidemiología , Kazajstán/epidemiología , Países Bajos/epidemiología , Filogenia , Federación de Rusia/epidemiología , Secuenciación Completa del Genoma
7.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451024

RESUMEN

DC-SIGN, a C-type lectin mainly expressed in dendritic cells (DCs), has been reported to mediate several viral infections. We previously reported that DC-SIGN mediated H5N1 influenza A virus (AIVs) infection, however, the important DC-SIGN interaction with N-glycosylation sites remain unknown. This study aims to identify the optimal DC-SIGN interacting N-glycosylation sites in HA proteins of H5N1-AIVs. Results from NetNGlyc program analyzed the H5 hemagglutinin sequences of isolates during 2004-2020, revealing that seven and two conserved N-glycosylation sites were detected in HA1 and HA2 domain, respectively. A lentivirus pseudotyped A/Vietnam/1203/04 H5N1 envelope (H5N1-PVs) was generated which displayed an abundance of HA5 proteins on the virions via immuno-electron microscope observation. Further, H5N1-PVs or reverse-genetics (H5N1-RG) strains carrying a serial N-glycosylated mutation was generated by site-directed mutagenesis assay. Human recombinant DC-SIGN (rDC-SIGN) coated ELISA showed that H5N1-PVs bound to DC-SIGN, however, mutation on the N27Q, N39Q, and N181Q significantly reduced this binding (p < 0.05). Infectivity and capture assay demonstrated that N27Q and N39Q mutations significantly ameliorated DC-SIGN mediated H5N1 infection. Furthermore, combined mutations (N27Q&N39Q) significantly waned the interaction on either H5N1-PVs or -RG infection in cis and in trans (p < 0.01). This study concludes that N27 and N39 are two essential N-glycosylation contributing to DC-SIGN mediating H5N1 infection.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Susceptibilidad a Enfermedades , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Gripe Humana/virología , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Sustitución de Aminoácidos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/ultraestructura , Mutación , Filogenia
8.
Transbound Emerg Dis ; 68(3): 1136-1150, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32964686

RESUMEN

The H5 A/Goose/Guangdong/1/1996 (gs/GD) lineage emerged in China in 1996. Rooted in the respective gs/GD lineage, the hemagglutinin (HA) gene of highly pathogenic avian influenza viruses (HPAIV) has genetically diversified into a plethora of clades and subclades and evolved into an assortment of sub- and genotypes. Some caused substantial losses in the poultry industry and had a major impact on wild bird populations alongside public health implications due to a zoonotic potential of certain clades. After the primary introduction of the HPAI H5N1 gs/GD lineage into Europe in autumn 2005 and winter 2005/2006, Germany has seen recurring incursions of four varying H5Nx subtypes (H5N1, H5N8, H5N5, H5N6) carrying multiple distinct reassortants, all descendants of the gs/GD virus. The first HPAIV H5 epidemic in Germany during 2006/2007 was caused by a clade 2.2 subtype H5N1 virus. Phylogenetic analysis confirmed three distinct clusters belonging to clades 2.2.1, 2.2.2 and 2.2, concurring with geographic and temporal structures. From 2014 onwards, HPAIV clade 2.3.4.4 has dominated the epidemiological situation in Germany. The initial clade 2.3.4.4a HPAIV H5N8, reaching Germany in November 2014, caused a limited epidemic affecting five poultry holdings, one zoo in Northern Germany and few wild birds. After November 2016, HPAIV of clade 2.3.4.4b have dominated the situation to date. The most extensive HPAIV H5 epidemic on record reached Germany in winter 2016/2017, encompassing multiple incursion events with two subtypes (H5N8, H5N5) and entailing five reassortants. A novel H5N6 clade 2.3.4.4b strain affected Germany from December 2017 onwards, instigating low-level infection in smallholdings and wild birds. Recently, in spring 2020, a novel incursion of a genetically distinct HPAI clade 2.3.4.4b H5N8 virus caused another epidemic in Europe, which affected a small number of poultry holdings, one zoo and two wild birds throughout Germany.


Asunto(s)
Virus de la Influenza A/genética , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Aves/virología , Brotes de Enfermedades/veterinaria , Alemania/epidemiología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/clasificación , Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Filogenia , Aves de Corral/virología , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/patogenicidad
9.
Infect Genet Evol ; 86: 104599, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096302

RESUMEN

Since 2004, several outbreaks of highly pathogenic avian influenza (HPAI) have been reported in Cambodia. Until 2013, all H5N1 viruses identified in Cambodia belonged to clade 1 and its subclades. H5N1 HPAI viruses belonging to clade 2.3.2.1c have been dominant since the beginning of 2014, with various genotypes (KH1-KH5) reported. Here, we isolated nine H5N1 HPAI viruses from domestic poultry farms and slaughterhouses in Cambodia during 2018-2019 and performed phylogenetic analysis of whole genome sequences. All isolates were classified as H5 clade 2.3.2.1c viruses and all harbored multi-basic amino acid sequences (PQRERRRKR/GLF) at the haemagglutinin (HA) cleavage site. Phylogenetic analysis revealed that the H5N1 isolates in this study belonged to the KH2 genotype, the dominant genotype in Cambodia in 2015. Phylogenetic analysis of the HA gene showed that the isolates were divided into two groups (A and B). The results of Bayesian discrete phylogeography analysis revealed that the viral migration pathways from Vietnam to Cambodia (Bayes factor value: 734,039.01; posterior probability: 1.00) and from Cambodia to Vietnam (Bayes factor value: 26,199.95; posterior probability: 1.00) were supported by high statistical values. These well-supported viral migrations between Vietnam and Cambodia demonstrate that viral transmission continued in both directions. Several factors may have contributed to this, including the free-grazing duck system and movement of poultry-related products. Thus, the results emphasize the need for an enhanced international surveillance program to better understand transboundary infection and evolution of H5N1 HPAI viruses, along with implementation of more stringent international trade controls on poultry and poultry products.


Asunto(s)
Genotipo , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Filogenia , Filogeografía , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Animales , Cambodia/epidemiología , Historia del Siglo XXI , Humanos , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Enfermedades de las Aves de Corral/historia , Vigilancia en Salud Pública
10.
Microb Cell Fact ; 19(1): 193, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059676

RESUMEN

BACKGROUND: The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. RESULTS: Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. CONCLUSION: This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.


Asunto(s)
Protección Cruzada , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Lactococcus lactis , Animales , Anticuerpos Antivirales/sangre , Pollos/inmunología , Pollos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Inmunidad Humoral , Inmunidad Mucosa , Subtipo H5N1 del Virus de la Influenza A/clasificación
11.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33028722

RESUMEN

Adaptive mutations and/or reassortments in avian influenza virus polymerase subunits PA, PB1, and PB2 are one of the major factors enabling the virus to overcome the species barrier to infect humans. The majority of human adaptation polymerase mutations have been identified in PB2; fewer adaptation mutations have been characterized in PA and PB1. Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and generally carry the human adaptation PB2-E627K substitution during their dissemination in nature. In this study, we identified other human adaptation polymerase mutations by analyzing phylogeny-associated PA mutations that H5N1 clade 2.2.1 viruses have accumulated during their evolution in the field. This analysis identified several PA mutations that produced increased replication by contemporary clade 2.2.1.2 viruses in vitro in human cells and in vivo in mice compared to ancestral clade 2.2.1 viruses. The PA mutations acted cooperatively to increase viral polymerase activity and replication in both avian and human cells, with the effect being more prominent in human cells at 33°C than at 37°C. These results indicated that PA mutations have a role in establishing contemporary clade 2.2.1.2 virus infections in poultry and in adaptation to infect mammals. Our study provided data on the mechanism for PA mutations to accumulate during avian influenza virus evolution and extend the viral host range.IMPORTANCE Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and have caused the highest number of human H5N1 influenza cases worldwide, presenting a serious global public health threat. These viruses may have the greatest evolutionary potential for adaptation from avian hosts to human hosts. Using a comprehensive phylogenetic approach, we identified several novel clade 2.2.1 virus polymerase mutations that increased viral replication in vitro in human cells and in vivo in mice. These mutations were in the polymerase PA subunit and acted cooperatively with the E627K mutation in the PB2 polymerase subunit to provide higher replication in contemporary clade 2.2.1.2 viruses than in ancestral clade 2.2.1 viruses. These data indicated that ongoing clade 2.2.1 dissemination in the field has driven PA mutations to modify viral replication to enable host range expansion, with a higher public health risk for humans.


Asunto(s)
Evolución Molecular , Subtipo H5N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/genética , Proteínas no Estructurales Virales/genética , Adaptación Fisiológica , Animales , Línea Celular , Pollos , Egipto/epidemiología , Especificidad del Huésped , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/genética , Ratones , Modelos Moleculares , Mutación , Filogenia , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
12.
Biochem Biophys Res Commun ; 529(4): 963-969, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819606

RESUMEN

Influenza A virus, the H9N2 subtype, is an avian influenza virus that has long been circulating in the worldwide poultry industry and is occasionally found to be transmissible to humans. Evidence from genomic analysis suggests that H9N2 provides the genes for the H5N1 and H7N9 subtypes, which have been found to infect mammals and pose a threat to human health. However, due to the lack of a structural model of the interaction between H9N2 and host cells, the mechanism of the extensive adaptability and strong transformation capacity of H9N2 is not fully understood. In this paper, we collected 40 representative H9N2 virus samples reported recently, mainly in China and neighboring countries, and investigated the interactions between H9N2 hemagglutinin and the mammalian receptor, the polysaccharide α-2,6-linked lactoseries tetrasaccharide c, at the atomic level using docking simulation tools. We categorized the mutations of studied H9N2 hemagglutinin according to their effects on ligand-binding interactions and the phylogenetic analysis. The calculations indicated that all the studied H9N2 viruses can establish a tight binding with LSTc although the mutations caused a variety of perturbations to the local conformation of the binding pocket. Our calculations suggested that a marginal equilibrium is established between the conservative ligand-receptor interaction and the conformational dynamics of the binding pocket, and it might be this equilibrium that allows the virus to accommodate mutations to adapt to a variety of environments. Our results provided a way to understand the adaptive mechanisms of H9N2 viruses, which may help predict its propensity to spread in mammals.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Interacciones Huésped-Patógeno/genética , Subtipo H9N2 del Virus de la Influenza A/química , Polisacáridos/química , Receptores Virales/química , Animales , Sitios de Unión , Pollos/virología , China/epidemiología , Cristalografía por Rayos X , Patos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/química , Subtipo H7N9 del Virus de la Influenza A/clasificación , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Subtipo H9N2 del Virus de la Influenza A/clasificación , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/transmisión , Gripe Humana/virología , Simulación de Dinámica Molecular , Filogenia , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/metabolismo , Homología Estructural de Proteína
13.
Emerg Microbes Infect ; 9(1): 1702-1711, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32666894

RESUMEN

Influenza A/H5N1 has circulated in Asia since 2003 and is now enzootic in many countries in that region. In Cambodia, the virus has circulated since 2004 and has intermittently infected humans. During this period, we have noted differences in the rate of infections in humans, potentially associated with the circulation of different viral clades. In particular, a reassortant clade 1.1.2 virus emerged in early 2013 and was associated with a dramatic increase in infections of humans (34 cases) until it was replaced by a clade 2.3.2.1c virus in early 2014. In contrast, only one infection of a human has been reported in the 6 years since the clade 2.3.2.1c virus became the dominant circulating virus. We selected three viruses to represent the main viral clades that have circulated in Cambodia (clade 1.1.2, clade 1.1.2 reassortant, and clade 2.3.2.1c), and we conducted experiments to assess the virulence and transmissibility of these viruses in avian (chicken, duck) and mammalian (ferret) models. Our results suggest that the clade 2.3.2.1c virus is more "avian-like," with high virulence in both ducks and chickens, but there is no evidence of aerosol transmission of the virus from ducks to ferrets. In contrast, the two clade 1 viruses were less virulent in experimentally infected and contact ducks. However, evidence of chicken-to-ferret aerosol transmission was observed for both clade 1 viruses. The transmission experiments provide insights into clade-level differences that might explain the variation in A/H5N1 infections of humans observed in Cambodia and other settings.


Asunto(s)
Pollos/virología , Patos/virología , Hurones/virología , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Animales , Cambodia/epidemiología , Humanos , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Gripe Humana/epidemiología , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/epidemiología , Filogenia , Especificidad de la Especie , Virulencia
14.
PLoS Pathog ; 16(1): e1008191, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31951644

RESUMEN

Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting mutations during spillover, but data from natural infection is limited. We analyze deep sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 viruses evolve during spillover. Overall, viral populations in both species are predominated by low-frequency (<10%) variation shaped by purifying selection and genetic drift, and half of the variants detected within-host are never detected on the H5N1 virus phylogeny. However, we do detect a subset of mutations linked to human receptor binding and replication (PB2 E627K, HA A150V, and HA Q238L) that arose in multiple, independent humans. PB2 E627K and HA A150V were also enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adaptive. Our data show that H5N1 viruses generate putative human-adapting mutations during natural spillover infection, many of which are detected at >5% frequency within-host. However, short infection times, genetic drift, and purifying selection likely restrict their ability to evolve extensively during a single infection. Applying evolutionary methods to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-adaptation in other zoonotic viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Gripe Humana/virología , Animales , Cambodia , Patos/virología , Evolución Molecular , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Mutación , Filogenia , Proteínas Virales/genética
15.
Influenza Other Respir Viruses ; 14(3): 349-352, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31912608

RESUMEN

In response to unusual crow die-offs from avian influenza A(H5N1) virus infection during January-February 2017 in Dhaka, Bangladesh, a One Health team assessed potential infection risks in live bird markets (LBMs). Evidence of aerosolized avian influenza A viruses was detected in LBMs and in the respiratory tracts of market workers, indicating exposure and potential for infection. This study highlighted the importance of surveillance platforms with a coordinated One Health strategy to investigate and mitigate zoonotic risk.


Asunto(s)
Aves/virología , Cuervos/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Humana/transmisión , Enfermedades de las Aves de Corral/transmisión , Adulto , Animales , Bangladesh/epidemiología , Pollos/virología , Femenino , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/virología , Masculino , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Zoonosis Virales/epidemiología , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Adulto Joven
16.
Microb Pathog ; 141: 103984, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31972269

RESUMEN

In this study, we assessed the pathogenicity of two H5N1 viruses isolated from crows in mice. Eighteen 6-8 weeks BALB/c mice each were intranasally inoculated with 106 EID50/ml of H5N1 viruses A/crow/India/03CA04/2015 (H9N2-PB2 reassortant H5N1) and A/crow/India/02CA01/2012 (Non-reassortant H5N1). The infected mice showed dullness, weight loss and ruffled fur coat. Histopathological examination of lungs showed severe congestion, haemorrhage, thrombus, fibrinous exudate in perivascular area, interstitial septal thickening, bronchiolitis and alveolitis leading to severe pneumonic changes and these lesions were less pronounced in reassortant virus infected mice. Viral replication was demonstrated in nasal mucosa, lungs, trachea and brain in both the groups. Brain, lung, nasal mucosa and trachea showed significantly higher viral RNA copies and presence of antigen in immunohistochemistry in both the groups. This study concludes that both the crow viruses caused morbidity and mortality in mice and the viruses were phenotypically highly virulent in mice. The H5N1 viruses isolated from synanthropes pose a serious public health concern and should be monitored continuously for their human spill-over.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Animales , Biopsia , Cuervos , Susceptibilidad a Enfermedades , Histocitoquímica , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , ARN Viral , Virus Reordenados/genética , Carga Viral , Replicación Viral
17.
PLoS One ; 14(12): e0226108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815962

RESUMEN

In Cambodia, highly pathogenic avian influenza A(H5N1) subtype viruses circulate endemically causing poultry outbreaks and zoonotic human cases. To investigate the genomic diversity and development of endemicity of the predominantly circulating clade 2.3.2.1c A(H5N1) viruses, we characterised 68 AIVs detected in poultry, the environment and from a single human A(H5N1) case from January 2014 to December 2016. Full genomes were generated for 42 A(H5N1) viruses. Phylogenetic analysis shows that five clade 2.3.2.1c genotypes, designated KH1 to KH5, were circulating in Cambodia during this period. The genotypes arose through multiple reassortment events with the neuraminidase (NA) and internal genes belonging to H5N1 clade 2.3.2.1a, clade 2.3.2.1b or A(H9N2) lineages. Phylogenies suggest that the Cambodian AIVs were derived from viruses circulating between Cambodian and Vietnamese poultry. Molecular analyses show that these viruses contained the hemagglutinin (HA) gene substitutions D94N, S133A, S155N, T156A, T188I and K189R known to increase binding to the human-type α2,6-linked sialic acid receptors. Two A(H5N1) viruses displayed the M2 gene S31N or A30T substitutions indicative of adamantane resistance, however, susceptibility testing towards neuraminidase inhibitors (oseltamivir, zanamivir, lananmivir and peramivir) of a subset of thirty clade 2.3.2.1c viruses showed susceptibility to all four drugs. This study shows that A(H5N1) viruses continue to reassort with other A(H5N1) and A(H9N2) viruses that are endemic in the region, highlighting the risk of introduction and emergence of novel A(H5N1) genotypes in Cambodia.


Asunto(s)
Variación Genética , Subtipo H5N1 del Virus de la Influenza A/genética , Virus Reordenados/genética , Animales , Teorema de Bayes , Cambodia , Pollos , Genotipo , Hemaglutininas/clasificación , Hemaglutininas/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/patología , Gripe Aviar/virología , Filogenia , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/aislamiento & purificación , Selección Genética , Virulencia/genética
19.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597767

RESUMEN

The influenza A virus (IAV) nonstructural protein 1 (NS1) contributes to disease pathogenesis through the inhibition of host innate immune responses. Dendritic cells (DCs) release interferons (IFNs) and proinflammatory cytokines and promote adaptive immunity upon viral infection. In order to characterize the strain-specific effects of IAV NS1 on human DC activation, we infected human DCs with a panel of recombinant viruses with the same backbone (A/Puerto Rico/08/1934) expressing different NS1 proteins from human and avian origin. We found that these viruses induced a clearly distinct phenotype in DCs. Specifically, viruses expressing NS1 from human IAV (either H1N1 or H3N2) induced higher levels of expression of type I (IFN-α and IFN-ß) and type III (IFN-λ1 to IFNλ3) IFNs than viruses expressing avian IAV NS1 proteins (H5N1, H7N9, and H7N2), but the differences observed in the expression levels of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6) were not significant. In addition, using imaging flow cytometry, we found that human and avian NS1 proteins segregate based on their subcellular trafficking dynamics, which might be associated with the different innate immune profile induced in DCs by viruses expressing those NS1 proteins. Innate immune responses induced by our panel of IAV recombinant viruses were also characterized in normal human bronchial epithelial cells, and the results were consistent with those in DCs. Altogether, our results reveal an increased ability of NS1 from avian viruses to antagonize innate immune responses in human primary cells compared to the ability of NS1 from human viruses, which could contribute to the severe disease induced by avian IAV in humans.IMPORTANCE Influenza A viruses (IAVs) cause seasonal epidemics which result in an important health and economic burden. Wild aquatic birds are the natural host of IAV. However, IAV can infect diverse hosts, including humans, domestic poultry, pigs, and others. IAVs circulating in animals occasionally cross the species barrier, infecting humans, which results in mild to very severe disease. In some cases, these viruses can acquire the ability to be transmitted among humans and initiate a pandemic. The nonstructural 1 (NS1) protein of IAV is an important antagonist of the innate immune response. In this study, using recombinant viruses and primary human cells, we show that NS1 proteins from human and avian hosts show intrinsic differences in the modulation of the innate immunity in human dendritic cells and epithelial cells, as well as different cellular localization dynamics in infected cells.


Asunto(s)
Células Epiteliales/inmunología , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Proteínas no Estructurales Virales/genética , Animales , Aves , Células Dendríticas/inmunología , Células Dendríticas/virología , Perros , Células Epiteliales/virología , Regulación de la Expresión Génica , Especificidad del Huésped , Interacciones Huésped-Patógeno/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H7N2 del Virus de la Influenza A/clasificación , Subtipo H7N2 del Virus de la Influenza A/genética , Subtipo H7N2 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/clasificación , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/genética , Interferón beta/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Células de Riñón Canino Madin Darby , Filogenia , Cultivo Primario de Células , Virus Reordenados/genética , Virus Reordenados/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/inmunología
20.
Transbound Emerg Dis ; 66(5): 2120-2133, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31168925

RESUMEN

A total of 15 dead or sick birds from 13 clinical outbreaks of avian influenza in ducks, geese, chickens and turkeys in 2017 in Bangladesh were examined. The presence of H5N1 influenza A virus in the affected birds was detected by RT-PCR. Phylogenetic analysis based on full-length gene sequences of all eight gene segments revealed that these recent outbreaks were caused by a new reassortant of clade 2.3.2.1a H5N1 virus, which had been detected earlier in 2015 during surveillance in live bird markets (LBMs) and wet lands. This reassortant virus acquired PB2, PB1, PA, NP and NS genes from low pathogenic avian influenza viruses mostly of non-H9N2 subtypes but retained HA, NA and M genes of the old clade 2.3.2.1a viruses. Nevertheless, the HA gene of these new viruses was 2.7% divergent from that of the old clade 2.3.2.1a viruses circulated in Bangladesh. Interestingly, similar reassortment events could be traced back in four 2.3.2.1a virus isolates of 2013 from backyard ducks. It suggests that this reassortant virus emerged in 2013, which took two years to be detected at a broader scale (i.e. in LBMs), another two years until it became widely spread in poultry and fully replaced the old viruses. Several mutations were detected in the recent Bangladeshi isolates, which are likely to influence possible phenotypic alterations such as increased mammalian adaptation, reduced susceptibility to antiviral agents and reduced host antiviral response.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/aislamiento & purificación , Animales , Bangladesh , Pollos , Patos , Gansos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Filogenia , Virus Reordenados/clasificación , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...