Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.431
Filtrar
1.
Cell Mol Life Sci ; 81(1): 183, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630262

RESUMEN

Apart from the androgen receptor, transcription factors (TFs) that are required for the development and formation of the different segments of the epididymis have remained unknown. We identified TF families expressed in the developing epididymides, of which many showed segment specificity. From these TFs, down-regulation of runt related transcription factors (RUNXs) 1 and 2 expression coincides with epithelial regression in Dicer1 cKO mice. Concomitant deletion of both Runx1 and Runx2 in a mouse epididymal epithelial cell line affected cell morphology, adhesion and mobility in vitro. Furthermore, lack of functional RUNXs severely disturbed the formation of 3D epididymal organoid-like structures. Transcriptomic analysis of the epididymal cell organoid-like structures indicated that RUNX1 and RUNX2 are involved in the regulation of MAPK signaling, NOTCH pathway activity, and EMT-related gene expression. This suggests that RUNXs are master regulators of several essential signaling pathways, and necessary for the maintenance of proper differentiation of the epididymal epithelium.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Humanos , Masculino , Animales , Ratones , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Epidídimo , Diferenciación Celular/genética , Línea Celular
2.
J Orthop Surg Res ; 19(1): 260, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659042

RESUMEN

Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.


Asunto(s)
Neoplasias Óseas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ligasas , MicroARNs , Osteosarcoma , Proteínas del Grupo Polycomb , ARN Circular , Regulación hacia Arriba , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , ARN Circular/genética , MicroARNs/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Animales , Progresión de la Enfermedad , Línea Celular Tumoral , Femenino , Activación Transcripcional/genética , Pronóstico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
3.
J Ethnopharmacol ; 330: 118191, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621468

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY: The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS: Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS: MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Medicamentos Herbarios Chinos , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Ovariectomía , ARN Mensajero , Ratas Sprague-Dawley , Animales , Femenino , Osteogénesis/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , ARN Mensajero/metabolismo , Osteoporosis/tratamiento farmacológico , Ratas , Modelos Animales de Enfermedad , Células Cultivadas
4.
Int J Med Sci ; 21(4): 664-673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464837

RESUMEN

N6-Methyladenosine (m6A) has been reported to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remains unclear. Here, we found that methyltransferase-like 3 (METTL3) was up-regulated synchronously with m6A during the osteogenic differentiation of hPDLSCs. Functionally, lentivirus-mediated knockdown of METTL3 in hPDLSCs impaired osteogenic potential. Mechanistic analysis further showed that METTL3 knockdown decreased m6A methylation and reduced IGF2BP1-mediated stability of runt-related transcription factor 2 (Runx2) mRNA, which in turn inhibited osteogenic differentiation. Therefore, METTL3-based m6A modification favored osteogenic differentiation of hPDLSCs through IGF2BP1-mediated Runx2 mRNA stability. Our study shed light on the critical roles of m6A on regulation of osteogenic differentiation in hPDLSCs and served novel therapeutic approaches in vital periodontitis therapy.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Humanos , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Osteogénesis/genética , Células Madre
5.
Int J Biol Macromol ; 261(Pt 2): 129905, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311136

RESUMEN

Efficient bone reconstruction, especially of the critical size after bone damage, remains a challenge in the clinic. Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation is considered as a promising strategy for bone repair. Nicotinamide adenine dinucleotide (NAD+) regulating BMSC fate and cellular function enhance osteogenesis, but is hardly delivered and lack of targeting. Herein, a novel and biocompatible scaffold was fabricated to locally deliver a precursor of NAD+, nicotinamide mononucleotide (NMN) to the bone defect site, and its bone repair capability and healing mechanism were clarified. NMN-based hyaluronic acid methacryloyl hybrid hydrogel scaffold (denoted as NMN/HAMA) was prepared via photopolymerization. In vitro RT-qPCR analysis, western blotting, Elisa and alizarin red S staining assays demonstrated that the NMN/HAMA hybrid hydrogel regulated BMSCs cellular function in favour of osteogenic differentiation and mineralization by upregulating the mRNA and proteins expression of the osteogenic genes type I pro-collagen (Col-1), bone morphogenic protein 4 (BMP4), and runt-related transcription factor 2 (RUNX2) via the SIRT1 pathway. Implantation of such hybrid hydrogels significantly enhanced bone regeneration in rodent critical calvarial defect models. Furthermore, restoration of the bone defect with NMN administration was inhibited in Prx1 Cre+; SIRT1flox/flox mice, confirming that the NMN/HAMA hybrid hydrogel scaffold promoted bone regeneration via the SIRT1-RUNX2 pathway. These results imply that NMN-based scaffold may be a promising and economic strategy for the treatment of bone defects.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Ratones , Animales , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Ácido Hialurónico/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Regeneración Ósea , Diferenciación Celular
6.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396954

RESUMEN

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Asunto(s)
Calcificación Fisiológica , Calcinosis , N-Acetilgalactosaminiltransferasas , Osteoblastos , Animales , Femenino , Masculino , Ratones , Calcinosis/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Factores de Crecimiento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipéptido N-Acetilgalactosaminiltransferasa
7.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407813

RESUMEN

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Animales , Femenino , Ratones , beta Catenina/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteoblastos , ARN Interferente Pequeño , Vía de Señalización Wnt , Activador de Tejido Plasminógeno/metabolismo
8.
FASEB J ; 38(4): e23484, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407380

RESUMEN

The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.


Asunto(s)
Condrogénesis , Redes Reguladoras de Genes , Humanos , Condrogénesis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Condrocitos , Diferenciación Celular/genética
9.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304971

RESUMEN

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Células Epiteliales , Glucosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cristalino , Osteogénesis , Humanos , Cristalino/metabolismo , Cristalino/patología , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Glucosa/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Osteocalcina/metabolismo , Osteocalcina/genética , Catarata/patología , Catarata/metabolismo , Catarata/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Hiperglucemia/metabolismo , Hiperglucemia/genética , Hiperglucemia/patología , Transducción de Señal , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/genética , Células Cultivadas
10.
J Cell Physiol ; 239(5): e31217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327035

RESUMEN

A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Osteogénesis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Animales , Osteoblastos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Femenino , Ratas , Ratones , Ratas Sprague-Dawley , Complejo de la Endopetidasa Proteasomal/metabolismo , Ovariectomía , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Estabilidad Proteica , Células HEK293
11.
Mol Cancer ; 23(1): 27, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297362

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS: qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS: Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS: We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , ARN Circular/genética , Guanidinoacetato N-Metiltransferasa , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factores de Transcripción/genética , Neoplasias Pancreáticas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Apoptosis , MicroARNs/genética , Proliferación Celular , Línea Celular Tumoral , Proteínas Represoras
12.
J Mol Cell Cardiol ; 187: 65-79, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181546

RESUMEN

BACKGROUND: Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS: Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS: We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION: This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.


Asunto(s)
Actinas , Calcificación Vascular , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Músculo Liso Vascular , Osteogénesis , Células Cultivadas , Miocitos del Músculo Liso
13.
Bone ; 181: 117014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38218304

RESUMEN

Deletion of Runx2 gene in proliferating chondrocytes results in complete failure of endochondral ossification and perinatal lethality. We reported recently that mice with Runx2 deletion specifically in hypertrophic chondrocytes (HCs) using the Col10a1-Cre transgene survive and exhibit enlarged growth plates due to decreased HC apoptosis and cartilage resorption. Bulk of chondrogenesis occurs postnatally, however, the role of Runx2 in HCs during postnatal chondrogenesis is unknown. Despite limb dwarfism, adult homozygous (Runx2HC/HC) mice showed a significant increase in length of growth plate and articular cartilage. Consistent with doubling of the hypertrophic zone, collagen type X expression was increased in Runx2HC/HC mice. In sharp contrast, expression of metalloproteinases and aggrecanases were markedly decreased. Impaired cartilage degradation was evident by the retention of significant amount of safranin-O positive cartilage. Histomorphometry and µCT uncovered increased trabecular bone mass with a significant increase in BV/TV ratio, trabecular number, thickness, and a decrease in trabecular space in Runx2HC/HC mice. To identify if this is due to increased bone synthesis, expression of osteoblast differentiation markers was evaluated and found to be comparable amongst littermates. Histomorphometry confirmed similar number of osteoblasts in the littermates. Furthermore, dynamic bone synthesis showed no differences in mineral apposition or bone formation rates. Surprisingly, three-point-bending test revealed Runx2HC/HC bones to be structurally less strong. Interestingly, both the number and surface of osteoclasts were markedly reduced in Runx2HC/HC littermates. Rankl and IL-17a ligands that promote osteoclast differentiation were markedly reduced in Runx2HC/HC mice. Bone marrow cultures were performed to independently establish Runx2 and hypertrophic chondrocytes role in osteoclast development. The culture from the Runx2HC/HC mice formed significantly fewer and smaller osteoclasts. The expression of mature osteoclast markers, Ctsk and Mmp9, were significantly reduced in the cultures from Runx2HC/HC mice. Thus, Runx2 functions extend beyond embryonic development and chondrocyte hypertrophy by regulating cartilage degradation, osteoclast differentiation, and bone resorption during postnatal endochondral ossification.


Asunto(s)
Resorción Ósea , Condrocitos , Animales , Ratones , Condrocitos/metabolismo , Osteoclastos/metabolismo , Cartílago/metabolismo , Osteogénesis/fisiología , Resorción Ósea/metabolismo , Hipertrofia , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo
14.
Neoplasia ; 48: 100967, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219710

RESUMEN

Triple-negative breast cancer (TNBC) stands out as the most aggressive subtype within the spectrum of breast cancer. The current clinical guidelines propose treatment strategies involving cytotoxic agents like epirubicin or paclitaxel. However, the emergence of acquired resistance frequently precipitates secondary tumor recurrence or the spread of metastasis. In recent times, significant attention has been directed toward the transcription factor RUNX2, due to its pivotal role in both tumorigenesis and the progression of cancer. Previous researches suggest that RUNX2 might be intricately linked to the development of resistance against chemotherapy, with its mechanism of action possibly intertwined with the signaling of TGF-ß. Nevertheless, the precise interplay between their effects and the exact molecular mechanisms underpinning chemoresistance in TNBC remain elusive. Therefore, we have taken a multifaceted approach from in vitro and in vivo experiments to validate the relationship between RUNX2 and TGF-ß and to search for their pathogenic mechanisms in chemoresistance. In conclusion, we found that RUNX2 affects chemoresistance by regulating cancer cell stemness through direct binding to TGF-ß, and that TGF-ß dually regulates RUNX2 expression. The important finding will provide a new reference for clinical reversal of the development of chemoresistance in breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/farmacología , Línea Celular Tumoral , Recurrencia Local de Neoplasia/patología , Resistencia a Antineoplásicos/genética , Células Madre Neoplásicas/metabolismo
15.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255829

RESUMEN

Fracture healing in the aged is associated with a reduced healing capacity, which often results in delayed healing or non-union formation. Many factors may contribute to this deterioration of bone regeneration, including a reduced 'angiogenic trauma response'. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in preclinical studies. Therefore, we herein analyzed in a stable closed femoral fracture model whether this compound also promotes fracture healing in aged mice. Forty-two aged CD-1 mice (age: 16-18 months) were daily treated with 30 mg/kg body weight cilostazol (n = 21) or vehicle (control, n = 21) by oral gavage. At 2 and 5 weeks after fracture, the femora were analyzed by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry, and Western blotting. These analyses revealed a significantly increased bending stiffness at 2 weeks (2.2 ± 0.4 vs. 4.3 ± 0.7 N/mm) and an enhanced bone formation at 5 weeks (4.4 ± 0.7 vs. 9.1 ± 0.7 mm3) in cilostazol-treated mice when compared to controls. This was associated with a higher number of newly formed CD31-positive microvessels (3.3 ± 0.9 vs. 5.5 ± 0.7 microvessels/HPF) as well as an elevated expression of phosphoinositide-3-kinase (PI3K) (3.6 ± 0.8 vs. 17.4 ± 5.5-pixel intensity × 104) and runt-related transcription factor (RUNX)2 (6.4 ± 1.2 vs. 18.2 ± 2.7-pixel intensity × 104) within the callus tissue. These findings indicate that cilostazol accelerates fracture healing in aged mice by stimulating angiogenesis and the expression of PI3K and RUNX2. Hence, cilostazol may represent a promising compound to promote bone regeneration in geriatric patients.


Asunto(s)
Fracturas del Fémur , Fosfatidilinositol 3-Quinasa , Animales , Femenino , Masculino , Ratones , Angiogénesis , Cilostazol/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Curación de Fractura , Fosfatidilinositol 3-Quinasas , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 3/uso terapéutico , Microtomografía por Rayos X
16.
BMC Musculoskelet Disord ; 25(1): 5, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167042

RESUMEN

BACKGROUND: Osteoporosis (OP) is a progressive metabolic disorder that is difficult to cure clinically. The molecular mechanisms of OP urgently need to be further examined. This study was designed to explore the potential function of circ_0027885 during osteogenic differentiation, as well as the systematic interactions among circ_0027885, miR-203-3p and runt-related transcription factor 2 (RUNX2). METHODS: Relative levels of circ_0027885, miR-203-3p and RUNX2 were analyzed with RT-qPCR and western blotting. Alizarin red staining was performed to detect the mineralization ability under the control of circ_0027885 and miR-203-3p. Dual-luciferase reporter gene assay was conducted to examine the combination among circ_0027885, miR-203-3p and RUNX2. RESULTS: Our research demonstrated that circ_0027885 was significantly increased during hBMSCs differentiation. Overexpression of circ_0027885 notably facilitated osteogenic differentiation and upregulated RUNX2 expression, while knockdown of circ_0027885 reversed the above results. Through prediction on bioinformatics analysis, miR-203-3p was the target binding circ_0027885, and RUNX2 was the potential target of miR-203-3p. Subsequently, these changes induced by the overexpression of circ_0027885 were reversed upon addition of miR-203-3p mimic. CONCLUSIONS: Circ_0027885 could sponge miR-203-3p to regulate RUNX2 expression and alleviate osteoporosis progression.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , ARN Circular , Humanos , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo
17.
Pharmacol Res Perspect ; 12(1): e1169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38258916

RESUMEN

Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ligamento Periodontal , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteogénesis , Células Madre , Escopolamina
18.
Acta Histochem ; 126(1): 152133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38266317

RESUMEN

Osteoporosis (OP) is a common disease among older adults. The promotion of osteoblast differentiation plays a crucial role in alleviating OP symptoms. Extracellular matrix protein 1 (ECM1) has been reported to be closely associated with osteogenic differentiation. In this study, we constructed U2OS cell lines with ECM1 knockdown and ECM1a overexpression based on knockdown, and identified the target miRNA (miR-1260b) by sequencing. Overexpression of miR-1260b promoted the osteogenic differentiation of U2OS and MG63 cells, as demonstrated by increased alkaline phosphatase (ALP) activity, matrix mineralization, and Runt-Related Transcription Factor 2 (RUNX2), Osteopontin (OPN), Collagen I (COL1A1), and Osteocalcin (OCN) protein expressions, whereas low expression of miR-1260b had the opposite effect. In addition, miR-1260b expression was decreased in OP patients than in non-OP patients. Next, we predicted the target gene of miRNA through TargetScan and miRDB and found that miR-1260b negatively regulated GDP dissociation inhibitor 1 (GDI1) by directly binding to its 3'-untranslated region. Subsequent experiments revealed that GDI1 overexpression decreased ALP activity and calcium deposit, reduced RUNX2, OPN, COL1A1, and OCN expression levels, and reversed the effects of miR-1260b on osteogenic differentiation. In conclusion, ECM1-related miR-1260b promotes osteogenic differentiation by targeting GDI1 in U2OS and MG63 cells. Thus, this study has significant implication for osteoporosis treatment.


Asunto(s)
Inhibidores de Disociación de Guanina Nucleótido , MicroARNs , Osteoporosis , Humanos , Anciano , Osteogénesis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Cultivadas , MicroARNs/metabolismo , Diferenciación Celular/genética , Osteoporosis/metabolismo , Proteínas de la Matriz Extracelular
19.
Am J Surg Pathol ; 48(3): 317-328, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084005

RESUMEN

Keratocystoma is a rare salivary gland lesion that has been reported primarily in children and young adults. Because of a scarcity of reported cases, very little is known about it, including its molecular underpinnings, biological potential, and histologic spectrum. Purported to be a benign neoplasm, keratocystoma bears a striking histologic resemblance to benign lesions like metaplastic Warthin tumor on one end of the spectrum and squamous cell carcinoma on the other end. This overlap can cause diagnostic confusion, and it raises questions about the boundaries and definition of keratocystoma as an entity. This study seeks to utilize molecular tools to evaluate the pathogenesis of keratocystoma as well as its relationship with its histologic mimics. On the basis of targeted RNA sequencing (RNA-seq) results on a sentinel case, RUNX2 break-apart fluorescence in situ hybridization (FISH) was successfully performed on 4 cases diagnosed as keratocystoma, as well as 13 cases originally diagnosed as tumors that morphologically resemble keratocystoma: 6 primary squamous cell carcinomas, 3 metaplastic/dysplastic Warthin tumors, 2 atypical squamous cysts, 1 proliferating trichilemmal tumor, and 1 cystadenoma. RNA-seq and/or reverse transcriptase-PCR were attempted on all FISH-positive cases. Seven cases were positive for RUNX2 rearrangement, including 3 of 4 tumors originally called keratocystoma, 2 of 2 called atypical squamous cyst, 1 of 1 called proliferating trichilemmal tumor, and 1 of 6 called squamous cell carcinoma. RNA-seq and/or reverse transcriptase-PCR identified IRF2BP2::RUNX2 in 6 of 7 cases; for the remaining case, the partner remains unknown. The cases positive for RUNX2 rearrangement arose in the parotid glands of 4 females and 3 males, ranging from 8 to 63 years old (mean, 25.4 years; median, 15 years). The RUNX2 -rearranged cases had a consistent histologic appearance: variably sized cysts lined by keratinizing squamous epithelium, plus scattered irregular squamous nests, with essentially no cellular atypia or mitotic activity. The background was fibrotic, often with patchy chronic inflammation and/or giant cell reaction. One case originally called squamous cell carcinoma was virtually identical to the other cases, except for a single focus of small nerve invasion. The FISH-negative case that was originally called keratocystoma had focal cuboidal and mucinous epithelium, which was not found in any FISH-positive cases. The tumors with RUNX2 rearrangement were all treated with surgery only, and for the 5 patients with follow-up, there were no recurrences or metastases (1 to 120 months), even for the case with perineural invasion. Our findings solidify that keratocystoma is a cystic neoplastic entity, one which appears to consistently harbor RUNX2 rearrangements, particularly IRF2BP2::RUNX2 . Having a diagnostic genetic marker now allows for a complete understanding of this rare tumor. They arise in the parotid gland and affect a wide age range. Keratocystoma has a consistent morphologic appearance, which includes large squamous-lined cysts that mimic benign processes like metaplastic Warthin tumor and also small, irregular nests that mimic squamous cell carcinoma. Indeed, RUNX2 analysis has considerable promise for resolving these differential diagnoses. Given that one RUNX2 -rearranged tumor had focal perineural invasion, it is unclear whether that finding is within the spectrum of keratocystoma or whether it could represent malignant transformation. Most important, all RUNX2 -rearranged cases behaved in a benign manner.


Asunto(s)
Adenolinfoma , Carcinoma de Células Escamosas , Quistes , Neoplasias de las Glándulas Salivales , Masculino , Femenino , Adulto Joven , Niño , Humanos , Adolescente , Adulto , Persona de Mediana Edad , Adenolinfoma/patología , Hibridación Fluorescente in Situ , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Neoplasias de las Glándulas Salivales/patología , Carcinoma de Células Escamosas/patología , ADN Polimerasa Dirigida por ARN/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis
20.
Nephrol Dial Transplant ; 39(2): 305-316, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37451818

RESUMEN

BACKGROUND: In patients with chronic kidney disease (CKD), vascular calcification (VC) is common and is associated with a higher risk of all-cause mortality. Shh, one ligand for Hedgehog (Hh) signaling, participates in osteogenesis and several cardiovascular diseases. However, it remains unclear whether Shh is implicated in the development of VC. METHODS: Inorganic phosphorus 2.6 mM was used to induce vascular smooth muscle cells (VSMCs) calcification. Mice were fed with adenine diet supplement with 1.2% phosphorus to induce VC. RESULTS: Shh was decreased in VSMCs exposed to inorganic phosphorus, calcified arteries in mice fed with an adenine diet, as well as radial arteries from patients with CKD presenting VC. Overexpression of Shh inhibited VSMCs ostosteoblastic differentiation and calcification, whereas its silencing accelerated these processes. Likewise, mice treated with smoothened agonist (SAG; Hh signaling agonist) showed alleviated VC, and mice treated with cyclopamine (CPN; Hh signaling antagonist) exhibited severe VC. Additionally, overexpression of Gli2 significantly reversed the pro-calcification effect of Shh silencing on VSMCs, suggesting that Shh inhibited VC via Gli2. Mechanistically, Gli2 interacted with Runx2 and promoted its ubiquitin proteasomal degradation, therefore protecting against VC. Of interest, the pro-degradation effect of Gli2 on Runx2 was independent of Smurf1 and Cullin4B. CONCLUSIONS: Our study provided deeper insight to the pathogenesis of VC, and Shh might be a novel potential target for VC treatment.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Ratones , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacología , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control , Calcificación Vascular/metabolismo , Insuficiencia Renal Crónica/patología , Fósforo/metabolismo , Adenina , Miocitos del Músculo Liso/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...