Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076394

RESUMEN

The resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast- and slow-inactivated states, such as the accessory Navß4 channel subunit, can modulate the amplitude of INaR.


Asunto(s)
Potenciales de Acción/fisiología , Activación del Canal Iónico , Células de Purkinje/metabolismo , Sodio/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/deficiencia , Animales , Animales Recién Nacidos , Cerebelo/citología , Femenino , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Equilibrio Postural/fisiología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
2.
Cells ; 10(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209614

RESUMEN

The SCN4B gene, coding for the NaVß4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells has not been characterized. In this study, we demonstrated that reducing NaVß4 expression in MCF10A non-cancer mammary epithelial cells generated important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably, the loss of NaVß4 induced a complete loss of epithelial organisation in cysts and increased proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of ß-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, and α-SMA expression. Overall, our results suggest that Navß4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its downregulation might be a determining step in early carcinogenesis.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/citología , Subunidades de Proteína/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Línea Celular , Polaridad Celular , Regulación hacia Abajo , Células Epiteliales/citología , Femenino , Humanos , Mesodermo/metabolismo , Fenotipo , Proteolisis , beta Catenina/metabolismo
3.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767215

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Enfermedad de Huntington , Neuronas/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos C57BL , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Kaohsiung J Med Sci ; 37(1): 20-26, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32833340

RESUMEN

MicroRNA-3175 (miR-3175) expression is upregulated in prostate cancer, but its roles and the underlying mechanisms in prostate cancer cell growth and invasion need to be elucidated. This study aimed to uncover the roles of miR-3175 in regulating cell growth and migration, as well as the expression of its predicted target gene cardiac sodium channel ß4-subunit gene (SCN4B). Real-time quantitative PCR (RT-qPCR) and/or western blotting techniques were used to measure miR-3175 and SCN4B expression levels in prostate cancer cells. Inhibitor or mimics transfections were used to overexpress or silence miR-3175 in prostate cancer cells. MTT and Edu assays were applied to assess cell viability. Scratch assay and transwell chambers were used to examine cell migration and invasion abilities. The interaction between miR-3175 and SCN4B was determined by means of luciferase gene reporter, RT-qPCR, and western blotting assays. The results showed that miR-3175 expression was increased and SCN4B expression was decreased in prostate cancer cell lines as compared with normal human prostatic epithelial cells. Compared with the control group, knockdown of miR-3175 resulted in strong inhibitions of cell growth, migration, invasion, and N-cadherin expression, together with an increase in E-cadherin expression. In addition, knockdown of miR-3175 dramatically increased the luciferase activity of the luciferase vector of SCN4B, and increased SCN4B expression. Together, this study illustrated that downregulation of miR-3175 repressed the proliferation and invasion of prostate cancer cells, which might be induced by SCN4B downregulation.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Invasividad Neoplásica , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
5.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331418

RESUMEN

Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for surgery due to antiepileptic drug (AED) resistance. A common molecular target for many of these drugs is the voltage-gated sodium channel (VGSC). The VGSC consists of four domains of pore-forming α-subunits and two auxiliary ß-subunits, several of which have been well studied in epileptic conditions. However, despite the ß4-subunits' role having been reported in some neurological conditions, there is little research investigating its potential significance in epilepsy. Therefore, the purpose of this work was to assess the role of SCN4ß in epilepsy by using a combination of molecular and bioinformatics approaches. We first demonstrated that there was a reduction in the relative expression of SCN4B in the drug-resistant TLE patients compared to non-epileptic control specimens, both at the mRNA and protein levels. By analyzing a co-expression network in the neighborhood of SCN4B we then discovered a linkage between the expression of this gene and K+ channels activated by Ca2+, or K+ two-pore domain channels. Our approach also inferred several potential effector functions linked to variation in the expression of SCN4B. These observations support the hypothesis that SCN4B is a key factor in AED-resistant TLE, which could help direct both the drug selection of TLE treatments and the development of future AEDs.


Asunto(s)
Resistencia a Medicamentos/genética , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/metabolismo , Regulación de la Expresión Génica , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Biología Computacional/métodos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/fisiopatología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Transcripción Genética
6.
J Gen Physiol ; 151(11): 1300-1318, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31558566

RESUMEN

Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVß4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVß4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Células de Purkinje/fisiología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Fenómenos Electrofisiológicos , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Sodio/metabolismo , Tetrodotoxina/farmacología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
7.
Mol Genet Genomics ; 294(4): 1059-1071, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31020414

RESUMEN

Ventricular tachycardia (VT) causes sudden cardiac death, however, the majority of risk genes for VT remain unknown. SCN4B encodes a ß-subunit, Navß4, for the voltage-gated cardiac sodium channel complex involved in generation and conduction of the cardiac action potential. We hypothesized that genomic variants in SCN4B increase the risk of VT. We used high-resolution melt analysis followed by Sanger sequencing to screen 199 VT patients to identify nonsynonymous variants in SCN4B. Two nonsynonymous heterozygous variants in SCN4B were identified in VT patients, including p.Gly8Ser in four VT patients and p.Ala145Ser in one VT patient. Case-control association studies were used to assess the association between variant p.Gly8Ser and VT in two independent populations for VT (299 VT cases vs. 981 controls in population 1 and 270 VT patients vs. 639 controls in population 2). Significant association was identified between p.Gly8Ser and VT in population 1 (P = 1.21 × 10-4, odds ratio or OR = 11.04), and the finding was confirmed in population 2 (P = 0.03, OR = 3.62). The association remained highly significant in the combined population (P = 3.09 × 10-5, OR = 6.17). Significant association was also identified between p.Gly8Ser and idiopathic VT (P = 1.89 × 10-5, OR = 7.27). Functional analysis with Western blotting showed that both p.Gly8Ser and p.Ala145Ser variants significantly reduced the expression level of Navß4. Based on 2015 ACMG Standards and Guidelines, p.Gly8Ser and p.Ala145Ser can be classified as the pathogenic and likely pathogenic variant, respectively. Our data suggest that SCN4B is a susceptibility gene for common VT and idiopathic VT and link rare SCN4B variants with large effects (OR = 6.17-7.27) to common VT.


Asunto(s)
Sustitución de Aminoácidos , Análisis de Secuencia de ADN/métodos , Taquicardia Ventricular/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Adulto , Anciano , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Taquicardia Ventricular/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
8.
Ann Hum Genet ; 83(4): 239-248, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30821358

RESUMEN

Atrial fibrillation (AF) affects 33.5 million individuals worldwide. It accounts for 15% of strokes and increases risk of heart failure and sudden death. The voltage-gated cardiac sodium channel complex is responsible for the generation and conduction of the cardiac action potential, and composed of the main pore-forming α-subunit Nav 1.5 (encoded by the SCN5A gene) and one or more auxiliary ß-subunits, including Nav ß1 to Nav ß4 encoded by SCN1B to SCN4B, respectively. We and others identified loss-of-function mutations in SCN1B and SCN2B and dominant-negative mutations in SCN3B in patients with AF. Three missense variants in SCN4B were identified in sporadic AF patients and small nuclear families; however, the association between SCN4B variants and AF remains to be further defined. In this study, we performed mutational analysis in SCN4B using a panel of 477 AF patients, and identified one nonsynonymous genomic variant p.Gly8Ser in four patients. To assess the association between the p.Gly8Ser variant and AF, we carried out case-control association studies with two independent populations (944 AF patients vs. 9,81 non-AF controls in the first discovery population and 732 cases and 1,291 controls in the second replication population). Significant association was identified in the two independent populations and in the combined population (p = 4.16 × 10-4 , odds ratio [OR] = 3.14) between p.Gly8Ser and common AF as well as lone AF (p = 0.018, OR = 2.85). These data suggest that rare variant p.Gly8Ser of SCN4B confers a significant risk of AF, and SCN4B is a candidate susceptibility gene for AF.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Fibrilación Atrial/genética , Variación Genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Anciano , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Estudios de Casos y Controles , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
9.
Neuroscience ; 402: 51-65, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30699332

RESUMEN

Low back pain is a common cause of chronic pain and disability. It is modeled in rodents by chronically compressing the lumbar dorsal root ganglia (DRG) with small metal rods, resulting in ipsilateral mechanical and cold hypersensitivity, and hyperexcitability of sensory neurons. Sodium channels are implicated in this hyperexcitability, but the responsible isoforms are unknown. In this study, we used siRNA-mediated knockdown of the pore-forming NaV1.6 and regulatory NaVß4 sodium channel isoforms that have been previously implicated in a different model of low back pain caused by locally inflaming the L5 DRG. Knockdown of either subunit markedly reduced spontaneous pain and mechanical and cold hypersensitivity induced by DRG compression, and reduced spontaneous activity and hyperexcitability of sensory neurons with action potentials <1.5 msec (predominately cells with myelinated axons, based on conduction velocities measured in a subset of cells) 4 days after DRG compression. These results were similar to those previously obtained in the DRG inflammation model and some neuropathic pain models, in which sensory neurons other than nociceptors seem to play key roles. The cytokine profiles induced by DRG compression and DRG inflammation were also very similar, with upregulation of several type 1 pro-inflammatory cytokines and downregulation of type 2 anti-inflammatory cytokines. Surprisingly, the cytokine profile was largely unaffected by NaVß4 knockdown in either model. The NaV1.6 channel, and the NaVß4 subunit that can regulate NaV1.6 to enhance repetitive firing, play key roles in both models of low back pain; targeting the abnormal spontaneous activity they generate may have therapeutic value.


Asunto(s)
Ganglios Espinales/metabolismo , Dolor de la Región Lumbar/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/fisiología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Potenciales de Acción , Animales , Femenino , Ganglios Espinales/lesiones , Ganglios Espinales/fisiopatología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Dolor de la Región Lumbar/fisiopatología , Masculino , Modelos Animales , Umbral del Dolor , Ratas Sprague-Dawley , Compresión de la Médula Espinal , Regulación hacia Arriba
10.
PLoS One ; 13(5): e0197007, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723302

RESUMEN

Voltage-gated sodium channel ß subunits (encoded by SCN1B to SCN4B genes) have been demonstrated as important multifunctional signaling molecules modulating cellular processes such as cell adhesion and cell migration. In this study, we aimed to explore the expression profiles of SCN4B in papillary thyroid cancer (PTC) and its prognostic value in terms of recurrence-free survival (RFS) in classical PTC. In addition, we also examined the potential effect of DNA methylation on its expression. A retrospective study was performed by using data from available large databases, including the Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA)-Thyroid Cancer (THCA). Results showed that SCN4B is downregulated at both RNA and protein level in PTC compared with normal thyroid tissues. Preserved SCN4B expression was an independent indicator of favorable RFS in patients with classical PTC, no matter as categorical variables (HR: 0.243, 95%CI: 0.107-0.551, p = 0.001) or as a continuous variable (HR: 0.684, 95%CI: 0.520-0.899, p = 0.007). The methylation status of one CpG site (Chr11: 118,022,316-318) in SCN4B DNA had a moderately negative correlation with SCN4B expression in all PTC cases (Pearson's r = -0.48) and in classical PTC cases (Pearson's r = -0.41). In comparison, SCN4B DNA copy number alterations (CNAs) were not frequent and might not influence its mRNA expression. In addition, no somatic mutation was found in SCN4B DNA. Based on these findings, we infer that preserved SCN4B expression might independently predict favorable RFS in classical PTC. Its expression might be suppressed by DNA hypermethylation, but is less likely to be influenced by DNA CNAs/mutations.


Asunto(s)
Carcinoma Papilar/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , Neoplasias de la Tiroides/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Adulto , Anciano , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/mortalidad , Carcinoma Papilar/patología , Islas de CpG , Metilación de ADN , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero/metabolismo , Estudios Retrospectivos , Cáncer Papilar Tiroideo , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
11.
J Biol Chem ; 292(32): 13428-13440, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655765

RESUMEN

Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary ß subunits, designated as ß1/ß1B-ß4 (encoded by SCN1B-4B, respectively), which also function in cell-cell adhesion. We previously reported the structural basis for the trans homophilic interaction of the ß4 subunit, which contributes to its adhesive function. Here, using crystallographic and biochemical analyses, we show that the ß4 extracellular domains directly interact with each other in a parallel manner that involves an intermolecular disulfide bond between the unpaired Cys residues (Cys58) in the loop connecting strands B and C and intermolecular hydrophobic and hydrogen-bonding interactions of the N-terminal segments (Ser30-Val35). Under reducing conditions, an N-terminally deleted ß4 mutant exhibited decreased cell adhesion compared with the wild type, indicating that the ß4 cis dimer contributes to the trans homophilic interaction of ß4 in cell-cell adhesion. Furthermore, this mutant exhibited increased association with the α subunit, indicating that the cis dimerization of ß4 affects α-ß4 complex formation. These observations provide the structural basis for the parallel dimer formation of ß4 in VGSCs and reveal its mechanism in cell-cell adhesion.


Asunto(s)
Modelos Moleculares , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Adhesión Celular , Cricetulus , Cristalografía por Rayos X , Cisteína/química , Cistina/química , Dimerización , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
12.
Cell Rep ; 19(3): 532-544, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423317

RESUMEN

The resurgent component of voltage-gated Na+ (Nav) currents, INaR, has been suggested to provide the depolarizing drive for high-frequency firing and to be generated by voltage-dependent Nav channel block (at depolarized potentials) and unblock (at hyperpolarized potentials) by the accessory Navß4 subunit. To test these hypotheses, we examined the effects of the targeted deletion of Scn4b (Navß4) on INaR and on repetitive firing in cerebellar Purkinje neurons. We show here that Scn4b-/- animals have deficits in motor coordination and balance and that firing rates in Scn4b-/- Purkinje neurons are markedly attenuated. Acute, in vivo short hairpin RNA (shRNA)-mediated "knockdown" of Navß4 in adult Purkinje neurons also reduced spontaneous and evoked firing rates. Dynamic clamp-mediated addition of INaR partially rescued firing in Scn4b-/- Purkinje neurons. Voltage-clamp experiments revealed that INaR was reduced (by ∼50%), but not eliminated, in Scn4b-/- Purkinje neurons, revealing that additional mechanisms contribute to generation of INaR.


Asunto(s)
Potenciales de Acción/fisiología , Activación del Canal Iónico , Actividad Motora/fisiología , Equilibrio Postural/fisiología , Células de Purkinje/metabolismo , Sodio/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/deficiencia , Envejecimiento , Animales , Animales Recién Nacidos , Diferenciación Celular , Separación Celular , Femenino , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Marcación de Gen , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
13.
Nat Commun ; 7: 13648, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917859

RESUMEN

The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed 'mesenchymal' and 'amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the ß4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (NaV) in excitable tissues, is expressed in normal epithelial cells and that reduced ß4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing ß4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid-mesenchymal hybrid phenotype. This hyperactivated migration is independent of NaV and is prevented by overexpression of the intracellular C-terminus of ß4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/ß4 represents a metastasis-suppressor gene.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular , Genes Supresores de Tumor , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Animales , Neoplasias de la Mama/ultraestructura , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Activación del Canal Iónico , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Subunidades de Proteína/metabolismo , Canales de Sodio/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Pez Cebra , Proteína de Unión al GTP rhoA/metabolismo
14.
Sci Rep ; 6: 26618, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216889

RESUMEN

The ß1, ß2, and ß4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the ß4 extracellular domain revealed an antiparallel arrangement of the ß4 molecules in the crystal lattice. The interface between the two antiparallel ß4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the ß4-mediated cell-cell adhesion revealed that the interface between the antiparallel ß4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of ß4 in cell-cell adhesion. This trans interaction mode is also employed in the ß1-mediated cell-cell adhesion. Moreover, the ß1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the ß1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the ß-subunit-mediated cell-cell adhesion has been established.


Asunto(s)
Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Sustitución de Aminoácidos , Animales , Adhesión Celular , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Dominios Proteicos , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
15.
Pain ; 157(4): 879-891, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26785322

RESUMEN

High-frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all isoforms in adult DRG, NaV1.6 is the main carrier of tetrodotoxin-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons, the regulatory ß4 subunit is potentially the endogenous blocker. We used in vivo siRNA-mediated knockdown of NaVß4 to examine its role in the DRG inflammation model. NaVß4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRG showed that NaVß4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aß neurons and reduced repetitive firing and other measures of excitability. NaVß4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression, and this was reversed by NaVß4 siRNA, based on immunohistochemistry and Western blotting. NaVß4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch-clamp recordings of tetrodotoxin-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current, effects blocked by NaVß4 siRNA. NaVß4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Conducta Animal/fisiología , Dolor/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Canales de Sodio/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Potenciales de Acción/fisiología , Animales , Femenino , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratas Sprague-Dawley , Regulación hacia Arriba
16.
PLoS One ; 10(11): e0142693, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26554713

RESUMEN

Fibroblasts from patients with Type I bipolar disorder (BPD) and their unaffected siblings were obtained from an Old Order Amish pedigree with a high incidence of BPD and reprogrammed to induced pluripotent stem cells (iPSCs). Established iPSCs were subsequently differentiated into neuroprogenitors (NPs) and then to neurons. Transcriptomic microarray analysis was conducted on RNA samples from iPSCs, NPs and neurons matured in culture for either 2 weeks (termed early neurons, E) or 4 weeks (termed late neurons, L). Global RNA profiling indicated that BPD and control iPSCs differentiated into NPs and neurons at a similar rate, enabling studies of differentially expressed genes in neurons from controls and BPD cases. Significant disease-associated differences in gene expression were observed only in L neurons. Specifically, 328 genes were differentially expressed between BPD and control L neurons including GAD1, glutamate decarboxylase 1 (2.5 fold) and SCN4B, the voltage gated type IV sodium channel beta subunit (-14.6 fold). Quantitative RT-PCR confirmed the up-regulation of GAD1 in BPD compared to control L neurons. Gene Ontology, GeneGo and Ingenuity Pathway Analysis of differentially regulated genes in L neurons suggest that alterations in RNA biosynthesis and metabolism, protein trafficking as well as receptor signaling pathways may play an important role in the pathophysiology of BPD.


Asunto(s)
Amish , Trastorno Bipolar/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma , Adulto , Trastorno Bipolar/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Linaje , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Adulto Joven
17.
Mol Pain ; 11: 60, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26408173

RESUMEN

BACKGROUND: Increased electrical activity in peripheral sensory neurons including dorsal root ganglia (DRG) and trigeminal ganglia neurons is an important mechanism underlying pain. Voltage gated sodium channels (VGSC) contribute to the excitability of sensory neurons and are essential for the upstroke of action potentials. A unique type of VGSC current, resurgent current (INaR), generates an inward current at repolarizing voltages through an alternate mechanism of inactivation referred to as open-channel block. INaRs are proposed to enable high frequency firing and increased INaRs in sensory neurons are associated with pain pathologies. While Nav1.6 has been identified as the main carrier of fast INaR, our understanding of the mechanisms that contribute to INaR generation is limited. Specifically, the open-channel blocker in sensory neurons has not been identified. Previous studies suggest Navß4 subunit mediates INaR in central nervous system neurons. The goal of this study was to determine whether Navß4 regulates INaR in DRG sensory neurons. RESULTS: Our immunocytochemistry studies show that Navß4 expression is highly correlated with Nav1.6 expression predominantly in medium-large diameter rat DRG neurons. Navß4 knockdown decreased endogenous fast INaR in medium-large diameter neurons as measured with whole-cell voltage clamp. Using a reduced expression system in DRG neurons, we isolated recombinant human Nav1.6 sodium currents in rat DRG neurons and found that overexpression of Navß4 enhanced Nav1.6 INaR generation. By contrast neither overexpression of Navß2 nor overexpression of a Navß4-mutant, predicted to be an inactive form of Navß4, enhanced Nav1.6 INaR generation. DRG neurons transfected with wild-type Navß4 exhibited increased excitability with increases in both spontaneous activity and evoked activity. Thus, Navß4 overexpression enhanced INaR and excitability, whereas knockdown or expression of mutant Navß4 decreased INaR generation. CONCLUSION: INaRs are associated with inherited and acquired pain disorders. However, our ability to selectively target and study this current has been hindered due to limited understanding of how it is generated in sensory neurons. This study identified Navß4 as an important regulator of INaR and excitability in sensory neurons. As such, Navß4 is a potential target for the manipulation of pain sensations.


Asunto(s)
Activación del Canal Iónico , Células Receptoras Sensoriales/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Ganglios Espinales/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Ratas Sprague-Dawley , Subunidad beta-2 de Canal de Sodio Activado por Voltaje , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química
18.
Proc Natl Acad Sci U S A ; 110(51): E5016-24, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297919

RESUMEN

Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, ß-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether ß-subunits also influence ligand interactions, we found that ß4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular ß4 domain and identified (58)Cys as an exposed residue that, when mutated, eliminates the influence of ß4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of ß4. Disrupting this bridge by introducing a ß1 mutation implicated in epilepsy repositions the (58)Cys-containing loop and disrupts ß4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of ß-subunit-related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant ß-subunit behavior.


Asunto(s)
Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Xenopus laevis
19.
J Neurosci ; 33(14): 6191-202, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554500

RESUMEN

The axon initial segment (AIS) and nodes of Ranvier are the sites of action potential initiation and regeneration in axons. Although the basic molecular architectures of AIS and nodes, characterized by dense clusters of Na(+) and K(+) channels, are similar, firing patterns vary among cell types. Neuronal firing patterns are established by the collective activity of voltage-gated ion channels and can be modulated through interaction with auxiliary subunits. Here, we report the neuronal expression pattern and subcellular localization of Navß4, the modulatory Na(+) channel subunit thought to underlie resurgent Na(+) current. Immunostaining of rat tissues revealed that Navß4 is strongly enriched at the AIS of a select set of neuron types, including many characterized by high-frequency firing, and at nodes of Ranvier in the PNS and some nodes in the CNS. By introducing full-length and mutant GFP-tagged Navß4 into cultured neurons, we determined that the AIS and nodal localization of Navß4 depends on its direct interaction with Na(+) channel α subunits through an extracellular disulfide bond. Based on these results, we propose that differences in the specific composition of the Na(+) channel complexes enriched at the AIS and nodes contribute to the diverse physiologies observed among cell types.


Asunto(s)
Axones/metabolismo , Encéfalo/citología , Neuronas/citología , Nódulos de Ranvier/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Potenciales de Acción/genética , Animales , Ancirinas/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cisteína/metabolismo , Embrión de Mamíferos , Femenino , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Imagen Óptica , Embarazo , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transfección , Subunidades beta de Canales de Sodio Activados por Voltaje/genética , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...