Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 217(7): 2519-2529, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29930203

RESUMEN

The ribosome-associated GTPase HflX acts as an antiassociation factor upon binding to the 50S ribosomal subunit during heat stress in Escherichia coli Although HflX is recognized as a guanosine triphosphatase, several studies have shown that the N-terminal domain 1 of HflX is capable of hydrolyzing adenosine triphosphate (ATP), but the functional role of its adenosine triphosphatase (ATPase) activity remains unknown. We demonstrate that E. coli HflX possesses ATP-dependent RNA helicase activity and is capable of unwinding large subunit ribosomal RNA. A cryo-electron microscopy structure of the 50S-HflX complex in the presence of nonhydrolyzable analogues of ATP and guanosine triphosphate hints at a mode of action for the RNA helicase and suggests the linker helical domain may have a determinant role in RNA unwinding. Heat stress results in inactivation of the ribosome, and we show that HflX can restore heat-damaged ribosomes and improve cell survival.


Asunto(s)
Proteínas de Escherichia coli/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Respuesta al Choque Térmico/genética , ARN Helicasas/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , GTP Fosfohidrolasas/química , Proteínas de Unión al GTP/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Unión Proteica , ARN/química , ARN/genética , ARN Helicasas/química , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Ribosomas/enzimología , Ribosomas/genética
2.
Sci Rep ; 7: 42017, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169307

RESUMEN

An understanding of the mechanisms underlying protein aggregation and cytotoxicity of the protein aggregates is crucial in the prevention of several diseases in humans. Ribosome, the cellular protein synthesis machine is capable of acting as a protein folding modulator. The peptidyltransferase center residing in the domain V of large ribosomal subunit 23S rRNA is the centre for the protein folding ability of the ribosome and is also the cellular target of several antiprion compounds. Our in vitro studies unexpectedly reveal that the partial unfolding or aggregation of lysozyme under reducing conditions in presence of the ribosome can induce aggregation of ribosomal components. Electrostatic interactions complemented by specific rRNA-protein interaction drive the ribosome-protein aggregation process. Under similar conditions the rRNA, especially the large subunit rRNA and in vitro transcribed RNA corresponding to domain V of 23S rRNA (bDV RNA) stimulates lysozyme aggregation leading to RNA-protein aggregate formation. Protein aggregation during the refolding of non-disulfide containing protein BCAII at high concentrations also induces ribosome aggregation. BCAII aggregation was also stimulated in presence of the large subunit rRNA. Our observations imply that the specific sequestration of the translation machine by aggregating proteins might contribute to their cytotoxicity.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Muramidasa/metabolismo , Peptidil Transferasas/genética , Agregado de Proteínas/genética , ARN Ribosómico 23S/genética , Subunidades Ribosómicas Grandes Bacterianas/genética , Animales , Anhidrasa Carbónica II/química , Bovinos , Pollos , Escherichia coli/genética , Escherichia coli/metabolismo , Heparina/química , Heparina/metabolismo , Muramidasa/química , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína , Desplegamiento Proteico , ARN Ribosómico 23S/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Electricidad Estática
3.
Nucleic Acids Res ; 43(20): 10015-25, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26464437

RESUMEN

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.


Asunto(s)
Cinamatos/química , Cinamatos/farmacología , Higromicina B/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Sitios de Unión , Cinamatos/metabolismo , Cristalografía por Rayos X , Higromicina B/química , Higromicina B/metabolismo , Higromicina B/farmacología , Modelos Moleculares , Peptidil Transferasas/química , Peptidil Transferasas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
4.
Nucleic Acids Res ; 37(10): 3134-42, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19279186

RESUMEN

The ribosome is an ancient macromolecular machine responsible for the synthesis of all proteins in all living organisms. Here we demonstrate that the ribosomal peptidyl transferase center (PTC) is supported by a framework of magnesium microclusters (Mg(2+)-muc's). Common features of Mg(2+)-muc's include two paired Mg(2+) ions that are chelated by a common bridging phosphate group in the form Mg((a))(2+)-(O1P-P-O2P)-Mg((b))(2+). This bridging phosphate is part of a 10-membered chelation ring in the form Mg((a))(2+)-(OP-P-O5'-C5'-C4'-C3'-O3'-P-OP)-Mg((a))(2+). The two phosphate groups of this 10-membered ring are contributed by adjacent residues along the RNA backbone. Both Mg(2+) ions are octahedrally coordinated, but are substantially dehydrated by interactions with additional RNA phosphate groups. The Mg(2+)-muc's in the LSU (large subunit) appear to be highly conserved over evolution, since they are unchanged in bacteria (Thermus thermophilus, PDB entry 2J01) and archaea (Haloarcula marismortui, PDB entry 1JJ2). The 2D elements of the 23S rRNA that are linked by Mg(2+)-muc's are conserved between the rRNAs of bacteria, archaea and eukarya and in mitochondrial rRNA, and in a proposed minimal 23S-rRNA. We observe Mg(2+)-muc's in other rRNAs including the bacterial 16S rRNA, and the P4-P6 domain of the tetrahymena Group I intron ribozyme. It appears that Mg(2+)-muc's are a primeval motif, with pivotal roles in RNA folding, function and evolution.


Asunto(s)
Magnesio/química , Peptidil Transferasas/química , ARN Ribosómico/química , Ribosomas/enzimología , Sitios de Unión , Haloarcula marismortui/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , Fosfatos/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Archaea/enzimología , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Thermus thermophilus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...