Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nucleic Acids Res ; 52(8): 4111-4123, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554105

RESUMEN

During assembly, ribosomal particles in bacteria fold according to energy landscapes comprised of multiple parallel pathways. Cryo-electron microscopy studies have identified a critical maturation step that occurs during the late assembly stages of the 50S subunit in Bacillus subtilis. This step acts as a point of convergency for all the parallel assembly pathways of the subunit, where an assembly intermediate accumulates in a 'locked' state, causing maturation to pause. Assembly factors then act on this critical step to 'unlock' the last maturation steps involving the functional sites. Without these factors, the 50S subunit fails to complete its assembly, causing cells to die due to a lack of functional ribosomes to synthesize proteins. In this review, we analyze these findings in B. subtilis and examine other cryo-EM studies that have visualized assembly intermediates in different bacterial species, to determine if convergency points in the ribosome assembly process are a common theme among bacteria. There are still gaps in our knowledge, as these methodologies have not yet been applied to diverse species. However, identifying and characterizing these convergency points can reveal how different bacterial species implement unique mechanisms to regulate critical steps in the ribosome assembly process.


Asunto(s)
Bacillus subtilis , Microscopía por Crioelectrón , Proteínas Ribosómicas , Subunidades Ribosómicas Grandes Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Proteínas Ribosómicas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Ribosomas/metabolismo , Modelos Moleculares
2.
Nucleic Acids Res ; 52(7): 4053-4066, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407413

RESUMEN

During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Listeria monocytogenes , Ribosomas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ribosomas/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Biosíntesis de Proteínas , Modelos Moleculares , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Factor G de Elongación Peptídica/metabolismo , Factor G de Elongación Peptídica/química
3.
Mol Cell ; 81(1): 115-126.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33259810

RESUMEN

In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura
4.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991829

RESUMEN

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Precursores del ARN/metabolismo , Ribonucleasas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , Modelos Moleculares , Precursores del ARN/ultraestructura , Ribonucleasas/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 117(27): 15609-15619, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571953

RESUMEN

Ribosome biogenesis is a complex process, and dozens of factors are required to facilitate and regulate the subunit assembly in bacteria. The 2'-O-methylation of U2552 in 23S rRNA by methyltransferase RrmJ is a crucial step in late-stage assembly of the 50S subunit. Its absence results in severe growth defect and marked accumulation of pre50S assembly intermediates. In the present work, we employed cryoelectron microscopy to characterize a set of late-stage pre50S particles isolated from an Escherichia coli ΔrrmJ strain. These assembly intermediates (solved at 3.2 to 3.8 Å resolution) define a collection of late-stage particles on a progressive assembly pathway. Apart from the absence of L16, L35, and L36, major structural differences between these intermediates and the mature 50S subunit are clustered near the peptidyl transferase center, such as H38, H68-71, and H89-93. In addition, the ribosomal A-loop of the mature 50S subunit from ΔrrmJ strain displays large local flexibility on nucleotides next to unmethylated U2552. Fast kinetics-based biochemical assays demonstrate that the ΔrrmJ 50S subunit is only 50% active and two times slower than the WT 50S subunit in rapid subunit association. While the ΔrrmJ 70S ribosomes show no defect in peptide bond formation, peptide release, and ribosome recycling, they translocate with 20% slower rate than the WT ribosomes in each round of elongation. These defects amplify during synthesis of the full-length proteins and cause overall defect in protein synthesis. In conclusion, our data reveal the molecular roles of U2552 methylation in both ribosome biogenesis and protein translation.


Asunto(s)
Escherichia coli/fisiología , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , ARN Ribosómico 23S/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Técnicas de Inactivación de Genes , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Uridina/metabolismo
6.
Nucleic Acids Res ; 48(5): 2723-2732, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31989172

RESUMEN

Post-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance. High-resolution ribosome structures are thus necessary for precise determination of modified nucleotides' positions, a task that has previously been accomplished by X-ray crystallography. Here, we present a cryo-electron microscopy (cryo-EM) structure of the Escherichia coli 50S subunit at an average resolution of 2.2 Å as an additional approach for mapping modification sites. Our structure confirms known modifications present in 23S rRNA and additionally allows for localization of Mg2+ ions and their coordinated water molecules. Using our cryo-EM structure as a testbed, we developed a program for assessment of cryo-EM map quality. This program can be easily used on any RNA-containing cryo-EM structure, and an associated Coot plugin allows for visualization of validated modifications, making it highly accessible.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Nucleótidos/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Modelos Moleculares , Péptidos/metabolismo , Peptidil Transferasas/metabolismo , Reproducibilidad de los Resultados , Solventes , Electricidad Estática
7.
Nucleic Acids Res ; 47(19): 10414-10425, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31665744

RESUMEN

Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.


Asunto(s)
GTP Fosfohidrolasas/química , ARN Ribosómico/química , Proteínas Ribosómicas/química , Bacillus subtilis/química , Bacillus subtilis/genética , Microscopía por Crioelectrón , GTP Fosfohidrolasas/ultraestructura , Hidrólisis , Modelos Moleculares , Conformación Proteica , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Ribosomas/genética , Ribosomas/ultraestructura
8.
Sci Rep ; 9(1): 13528, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537834

RESUMEN

We describe an NMR approach based on the measurement of residual dipolar couplings (RDCs) to probe the structural and motional properties of the dynamic regions of the ribosome. Alignment of intact 70S ribosomes in filamentous bacteriophage enabled measurement of RDCs in the mobile C-terminal domain (CTD) of the stalk protein bL12. A structural refinement of this domain using the observed RDCs did not show large changes relative to the isolated protein in the absence of the ribosome, and we also found that alignment of the CTD was almost independent of the presence of the core ribosome particle, indicating that the inter-domain linker has significant flexibility. The nature of this linker was subsequently probed in more detail using a paramagnetic alignment strategy, which revealed partial propagation of alignment between neighbouring domains, providing direct experimental validation of a structural ensemble previously derived from SAXS and NMR relaxation measurements. Our results demonstrate the prospect of better characterising dynamical and functional regions of more challenging macromolecular machines and systems, for example ribosome-nascent chain complexes.


Asunto(s)
Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Elementos Estructurales de las Proteínas/fisiología , Ribosomas/metabolismo , Ribosomas/ultraestructura , Relación Estructura-Actividad , Difracción de Rayos X/métodos
9.
Sci Rep ; 9(1): 11460, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391518

RESUMEN

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/ultraestructura , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Proteínas Ribosómicas/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Eritromicina/uso terapéutico , Humanos , Mutación , Unión Proteica/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Imagen Individual de Molécula , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
10.
Nature ; 570(7761): 400-404, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31108498

RESUMEN

The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2-5 and 70S4,6-8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Ribosomas/ultraestructura , Escherichia coli/química , Extensión de la Cadena Peptídica de Translación , Conformación Proteica , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Factores de Tiempo
11.
Mol Cell ; 70(5): 881-893.e3, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29883607

RESUMEN

The assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit. Late reconstitution products were subjected to high-resolution cryo-electron microscopy and multiparticle refinement analysis to reconstruct five distinct precursors of the 50S subunit with 4.3-3.8 Å resolution. These assembly intermediates define a progressive maturation pathway culminating in a late assembly particle, whose structure is more than 96% identical to a mature 50S subunit. Our structures monitor the formation and stabilization of structural elements in a nascent particle in unprecedented detail and identify the maturation of the rRNA-based peptidyl transferase center as the final critical step along the 50S assembly pathway.


Asunto(s)
Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Relación Estructura-Actividad
12.
Nucleic Acids Res ; 45(17): 10284-10292, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973455

RESUMEN

Antimicrobial resistance within a wide range of pathogenic bacteria is an increasingly serious threat to global public health. Among these pathogenic bacteria are the highly resistant, versatile and possibly aggressive bacteria, Staphylococcus aureus. Lincosamide antibiotics were proved to be effective against this pathogen. This small, albeit important group of antibiotics is mostly active against Gram-positive bacteria, but also used against selected Gram-negative anaerobes and protozoa. S. aureus resistance to lincosamides can be acquired by modifications and/or mutations in the rRNA and rProteins. Here, we present the crystal structures of the large ribosomal subunit of S. aureus in complex with the lincosamides lincomycin and RB02, a novel semisynthetic derivative and discuss the biochemical aspects of the in vitro potency of various lincosamides. These results allow better understanding of the drugs selectivity as well as the importance of the various chemical moieties of the drug for binding and inhibition.


Asunto(s)
Lincosamidas/farmacología , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Benzamidas/química , Benzamidas/farmacología , Sitios de Unión , Clindamicina/química , Clindamicina/farmacología , Cristalización , Cristalografía por Rayos X , Farmacorresistencia Microbiana , Galactósidos/química , Galactósidos/farmacología , Enlace de Hidrógeno , Lincomicina/química , Lincomicina/farmacología , Lincosamidas/química , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Staphylococcus aureus/ultraestructura , Electricidad Estática , Relación Estructura-Actividad
13.
PLoS One ; 12(8): e0182130, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28786986

RESUMEN

Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.


Asunto(s)
Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático no Supervisado , Análisis por Conglomerados , Simulación por Computador , Microscopía por Crioelectrón/métodos , Escherichia coli , Imagenología Tridimensional/métodos , Inflamasomas/ultraestructura , Análisis Multivariante , Análisis de Componente Principal , Complejo de la Endopetidasa Proteasomal/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura
14.
Cell Rep ; 20(1): 149-160, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683309

RESUMEN

The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.


Asunto(s)
Mycobacterium smegmatis/química , Subunidades Ribosómicas Grandes Bacterianas/química , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Mycobacterium smegmatis/ultraestructura , Dominios Proteicos , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura
15.
Nat Methods ; 14(3): 283-286, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28114288

RESUMEN

Investigation of the structure, assembly and function of protein-nucleic acid macromolecular machines requires multidimensional molecular and structural biology approaches. We describe modifications to an Orbitrap mass spectrometer, enabling high-resolution native MS analysis of 0.8- to 2.3-MDa prokaryotic 30S, 50S and 70S ribosome particles and the 9-MDa Flock House virus. The instrument's improved mass range and sensitivity readily exposes unexpected binding of the ribosome-associated protein SRA.


Asunto(s)
Escherichia coli/citología , Espectrometría de Masas/métodos , Nodaviridae/ultraestructura , ARN Largo no Codificante/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Espectrometría de Masas/instrumentación , Nodaviridae/genética , Unión Proteica/fisiología , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/genética
16.
Methods ; 117: 59-66, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729294

RESUMEN

Polysomes are macromolecular complexes made up of multiple ribosomes simultaneously translating a single mRNA into polypeptide chains. Together, the cellular mRNAs translated in this way are referred to 'translatome.' Translation determines a cell's overall gene expression profile. Studying translatome leads to a better understanding of the translational machinery and of its complex regulatory pathways. Given its fundamental role in cell homeostasis and division, bacterial translation is an important target for antibiotics. However, there are no detailed protocols for polysome purification from Staphylococcus aureus, the human pathogen responsible for the majority of multi-drug resistance issues. We therefore developed methods for the isolation of active polysomes, ribosomes, and ribosomal subunits, examining the purity and quality of each fraction and monitoring polysomal activity during protein synthesis. These steps are mandatory for the use of purified S. aureus polysomes and ribosomes for structural studies or for genome-scale analysis of most translated mRNAs.


Asunto(s)
Fraccionamiento Celular/métodos , Polirribosomas/química , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Staphylococcus aureus/genética , Electroforesis en Gel de Agar , Microscopía Electrónica , Polirribosomas/ultraestructura , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Staphylococcus aureus/metabolismo
17.
Nature ; 540(7631): 80-85, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842381

RESUMEN

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Ribosomas/enzimología , Ribosomas/ultraestructura , Ricina/metabolismo , Selenocisteína/metabolismo
18.
Nucleic Acids Res ; 44(17): 8442-55, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27484475

RESUMEN

YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5-6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/ultraestructura , Cinética , Espectrometría de Masas , Conformación Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura
19.
Proc Natl Acad Sci U S A ; 113(27): 7527-32, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27330110

RESUMEN

The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Oligosacáridos/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli , Datos de Secuencia Molecular , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Imagen Individual de Molécula
20.
Structure ; 23(10): 1858-1865, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26299947

RESUMEN

The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a.


Asunto(s)
Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Factores de Transcripción/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...