Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cell ; 186(10): 2282-2282.e1, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172570

RESUMEN

Ribosome production is vital for every cell, and failure causes human diseases. It is driven by ∼200 assembly factors functioning along an ordered pathway from the nucleolus to the cytoplasm. Structural snapshots of biogenesis intermediates from the earliest 90S pre-ribosomes to mature 40S subunits unravel the mechanisms of small ribosome synthesis. To view this SnapShot, open or download the PDF.


Asunto(s)
Células Eucariotas , Ribosomas , Humanos , Nucléolo Celular/metabolismo , Células Eucariotas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo
2.
J Phys Chem Lett ; 12(48): 11745-11750, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851631

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents the most severe global health crisis in modern human history. One of the major SARS-CoV-2 virulence factors is nonstructural protein 1 (Nsp1), which, outcompeting with the binding of host mRNA to the human ribosome, triggers a translation shutdown of the host immune system. Here, microsecond-long all-atom simulations of the C-terminal portion of the SARS-CoV-2/SARS-CoV Nsp1 in complex with the 40S ribosome disclose that SARS-CoV-2 Nsp1 has evolved from its SARS-CoV ortholog to more effectively hijack the ribosome by undergoing a critical switch of Q/E158 and E/Q159 residues that perfects Nsp1's interactions with the ribosome. Our outcomes offer a basis for understanding the sophisticated mechanisms underlying SARS-CoV-2 diversion and exploitation of human cell components to its deadly purposes.


Asunto(s)
Simulación de Dinámica Molecular , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Humanos , Enlace de Hidrógeno , Unión Proteica , Subunidades Ribosómicas Pequeñas de Eucariotas/química , SARS-CoV-2/aislamiento & purificación , Proteínas no Estructurales Virales/química
3.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769086

RESUMEN

A comparison of overlapping proximity captures at the head region of the ribosomal 40S subunit (hr40S) in Saccharomyces cerevisiae from four adjacent perspectives, namely Asc1/RACK1, Rps2/uS5, Rps3/uS3, and Rps20/uS10, corroborates dynamic co-localization of proteins that control activity and fate of both ribosomes and mRNA. Co-locating factors that associate with the hr40S are involved in (i) (de)ubiquitination of ribosomal proteins (Hel2, Bre5-Ubp3), (ii) clamping of inactive ribosomal subunits (Stm1), (iii) mRNA surveillance and vesicular transport (Smy2, Syh1), (iv) degradation of mRNA (endo- and exonucleases Ypl199c and Xrn1, respectively), (v) autophagy (Psp2, Vps30, Ykt6), and (vi) kinase signaling (Ste20). Additionally, they must be harmonized with translation initiation factors (eIF3, cap-binding protein Cdc33, eIF2A) and mRNA-binding/ribosome-charging proteins (Scp160, Sro9). The Rps/uS-BioID perspectives revealed substantial Asc1/RACK1-dependent hr40S configuration indicating a function of the ß-propeller in context-specific spatial organization of this microenvironment. Toward resolving context-specific constellations, a Split-TurboID analysis emphasized the ubiquitin-associated factors Def1 and Lsm12 as neighbors of Bre5 at hr40S. These shuttling proteins indicate a common regulatory axis for the fate of polymerizing machineries for the biosynthesis of proteins in the cytoplasm and RNA/DNA in the nucleus.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/química , Modelos Moleculares , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
4.
Biochim Biophys Acta Proteins Proteom ; 1869(10): 140698, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273599

RESUMEN

Abasic (AP) sites in mRNAs are lesions whose accumulation in cells is linked to various neurodegenerative diseases arising from the appearance of truncated peptides due to the premature cessation of translation of these mRNAs. It is believed that the translation of AP site-containing mRNAs is stopped when the damaged codon arrives to the A site, where it is not decoded. We propose an alternative translation arrest mechanism mediated by the 40S ribosomal subunit protein uS3. Recently, it has been shown that in human 80S ribosomal complexes assembled without translation factors, uS3 cross-links to the AP site at the 3'-terminus of the mRNA, whose undamaged part is bound at the 40S subunit channel, via its peptide 55-64 exposed near the mRNA entry pore. In this study, we examined whether such cross-linking occurs during the translation of mRNA with the AP site. To this end, we used a set of synthetic mRNAs bearing the AP site inserted in the desired location in their sequences. An analysis of 80S ribosomal complexes formed with these mRNAs in a mammalian cell-free protein-synthesizing system demonstrates that AP sites do indeed cross-link to uS3 in the course of the translation. We also show that the cross-linking occurs as soon as the AP site arrives to a common favorable position relative to uS3, which is independent on its location in the mRNA. Our findings suggest that the mechanism of stopping translation of damaged mRNAs involving uS3, along with the one mentioned above, could underlie ribosome-associated mRNA quality control.


Asunto(s)
Péptidos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Regiones no Traducidas 3' , Animales , Sistema Libre de Células , Humanos , Péptidos/química , Biosíntesis de Proteínas , Conejos , Biología Sintética
5.
Methods Mol Biol ; 2263: 341-350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877606

RESUMEN

Translation initiation, in both eukaryotes and bacteria, requires essential elements such as mRNA, ribosome , initiator tRNA, and a set of initiation factors. For each domain of life, canonical mechanisms and signals are observed to initiate protein synthesis. However, other initiation mechanism can be used, especially in viral mRNAs. Some viruses hijack cellular machinery to translate some of their mRNAs through a noncanonical initiation pathway using internal ribosome entry site (IRES), a highly structured RNAs which can directly recruit the ribosome with a restricted set of initiation factors, and in some cases even without cap and initiator tRNA. In this chapter, we describe the use of biosensors relying on electro-switchable nanolevers using the switchSENSE® technology, to investigate kinetics of the intergenic (IGR) IRES of the cricket paralysis virus (CrPV) binding to 80S yeast ribosome . This study provides a proof of concept for the application of this method on large complexes.


Asunto(s)
Técnicas Biosensibles/métodos , ARN Viral/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fenómenos Biofísicos , Dicistroviridae/fisiología , Sitios Internos de Entrada al Ribosoma , Cinética , Modelos Moleculares , Prueba de Estudio Conceptual , Biosíntesis de Proteínas , ARN Viral/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Phys Chem Lett ; 11(22): 9659-9668, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33135884

RESUMEN

SARS-CoV-2 is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic around the world causing pneumonia and lower respiratory tract infections. In understanding the SARS-CoV-2 pathogenicity and mechanism of action, it is essential to depict the full repertoire of expressed viral proteins. The recent biological studies have highlighted the leader protein Nsp1 of SARS-CoV-2 importance in shutting down the host protein production. Besides, it still enigmatic how Nsp1 regulates for translation. Here we report the novel structure of Nsp1 from SARS-CoV-2 in complex with the SL1 region of 5'UTR of SARS-CoV-2, and its factual interaction is corroborated with enzyme kinetics and experimental binding affinity studies. The studies also address how leader protein Nsp1 of SARS-CoV-2 recognizes its self RNA toward translational regulation by further recruitment of the 40S ribosome. With the aid of molecular dynamics and simulations, we also demonstrated the real-time stability and functional dynamics of the Nsp1/SL1 complex. The studies also report the potential inhibitors and their mode of action to block viral protein/RNA complex formation. This enhance our understanding of the mechanism of the first viral protein Nsp1 synthesized in the human cell to regulate the translation of self and host. Understanding the structure and mechanism of SARS-CoV-2 Nsp1 and its interplay with the viral RNA and ribosome will open the arena for exploring the development of live attenuated vaccines and effective therapeutic targets for this disease.


Asunto(s)
Regiones no Traducidas 5' , ARN Viral/metabolismo , SARS-CoV-2/química , Proteínas no Estructurales Virales/metabolismo , Vacunas contra la COVID-19 , Depsidos/química , Depsidos/metabolismo , Ácido Glicirrínico/química , Ácido Glicirrínico/metabolismo , Lactonas/química , Lactonas/metabolismo , Simulación de Dinámica Molecular , Pregnatrienos/química , Pregnatrienos/metabolismo , Unión Proteica/efectos de los fármacos , ARN Viral/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2/patogenicidad , Salicilatos/química , Salicilatos/metabolismo , Proteínas no Estructurales Virales/química , Virulencia
7.
Nature ; 587(7835): 683-687, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208940

RESUMEN

Eukaryotic ribosomes consist of a small 40S and a large 60S subunit that are assembled in a highly coordinated manner. More than 200 factors ensure correct modification, processing and folding of ribosomal RNA and the timely incorporation of ribosomal proteins1,2. Small subunit maturation ends in the cytosol, when the final rRNA precursor, 18S-E, is cleaved at site 3 by the endonuclease NOB13. Previous structures of human 40S precursors have shown that NOB1 is kept in an inactive state by its partner PNO14. The final maturation events, including the activation of NOB1 for the decisive rRNA-cleavage step and the mechanisms driving the dissociation of the last biogenesis factors have, however, remained unresolved. Here we report five cryo-electron microscopy structures of human 40S subunit precursors, which describe the compositional and conformational progression during the final steps of 40S assembly. Our structures explain the central role of RIOK1 in the displacement and dissociation of PNO1, which in turn allows conformational changes and activation of the endonuclease NOB1. In addition, we observe two factors, eukaryotic translation initiation factor 1A domain-containing protein (EIF1AD) and leucine-rich repeat-containing protein 47 (LRRC47), which bind to late pre-40S particles near RIOK1 and the central rRNA helix 44. Finally, functional data shows that EIF1AD is required for efficient assembly factor recycling and 18S-E processing. Our results thus enable a detailed understanding of the last steps in 40S formation in human cells and, in addition, provide evidence for principal differences in small ribosomal subunit formation between humans and the model organism Saccharomyces cerevisiae.


Asunto(s)
Microscopía por Crioelectrón , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Activación Enzimática , Células HeLa , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/ultraestructura , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química
8.
Science ; 369(6510): 1470-1476, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32943521

RESUMEN

Production of small ribosomal subunits initially requires the formation of a 90S precursor followed by an enigmatic process of restructuring into the primordial pre-40S subunit. We elucidate this process by biochemical and cryo-electron microscopy analysis of intermediates along this pathway in yeast. First, the remodeling RNA helicase Dhr1 engages the 90S pre-ribosome, followed by Utp24 endonuclease-driven RNA cleavage at site A1, thereby separating the 5'-external transcribed spacer (ETS) from 18S ribosomal RNA. Next, the 5'-ETS and 90S assembly factors become dislodged, but this occurs sequentially, not en bloc. Eventually, the primordial pre-40S emerges, still retaining some 90S factors including Dhr1, now ready to unwind the final small nucleolar U3-18S RNA hybrid. Our data shed light on the elusive 90S to pre-40S transition and clarify the principles of assembly and remodeling of large ribonucleoproteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , Proteínas Nucleares/química , Conformación Proteica , División del ARN , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química
9.
Science ; 369(6510): 1477-1481, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32943522

RESUMEN

The 90S preribosome is a large, early assembly intermediate of small ribosomal subunits that undergoes structural changes to give a pre-40S ribosome. Here, we gained insight into this transition by determining cryo-electron microscopy structures of Saccharomyces cerevisiae intermediates in the path from the 90S to the pre-40S The full transition is blocked by deletion of RNA helicase Dhr1. A series of structural snapshots revealed that the excised 5' external transcribed spacer (5' ETS) is degraded within 90S, driving stepwise disassembly of assembly factors and ribosome maturation. The nuclear exosome, an RNA degradation machine, docks on the 90S through helicase Mtr4 and is primed to digest the 3' end of the 5' ETS. The structures resolved between 3.2- and 8.6-angstrom resolution reveal key intermediates and the critical role of 5' ETS degradation in 90S progression.


Asunto(s)
ARN Helicasas DEAD-box/química , Estabilidad del ARN , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Exosomas/metabolismo , Eliminación de Gen , Dominios Proteicos , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Science ; 369(6508): 1249-1255, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32680882

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Evasión Inmune , Inmunidad Innata , Biosíntesis de Proteínas , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , Betacoronavirus/fisiología , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Microscopía por Crioelectrón , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Modelos Moleculares , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Receptores Inmunológicos , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2
11.
Nucleic Acids Res ; 48(14): 8063-8073, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32609821

RESUMEN

The mechanism for how internal ribosome entry sites (IRESs) recruit ribosomes to initiate translation of an mRNA is not completely understood. We investigated how a 40S subunit was recruited by the cricket paralysis virus intergenic region (CrPV IGR) IRES to form a stable 40S-IRES complex. Kinetic binding studies revealed that formation of the complex between the CrPV IGR and the 40S subunit consisted of two-steps: an initial fast binding step of the IRES to the 40S ribosomal subunit, followed by a slow unimolecular reaction consistent with a conformational change that stabilized the complex. We further showed that the ribosomal protein S25 (eS25), which is required by functionally and structurally diverse IRESs, impacts both steps of the complex formation. Mutations in eS25 that reduced CrPV IGR IRES activity either decreased 40S-IRES complex formation, or increased the rate of the conformational change that was required to form a stable 40S-IRES complex. Our data are consistent with a model in which eS25 facilitates initial binding of the CrPV IGR IRES to the 40S while ensuring that the conformational change stabilizing the 40S-IRES complex does not occur prematurely.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , ADN Intergénico/genética , ADN Intergénico/metabolismo , Dicistroviridae/genética , Mutación , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 295(34): 12058-12070, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32616653

RESUMEN

rRNA-modifying enzymes participate in ribosome assembly. However, whether the catalytic activities of these enzymes are important for the ribosome assembly and other cellular processes is not fully understood. Here, we report the crystal structure of WT human dimethyladenosine transferase 1 (DIMT1), an 18S rRNA N6,6-dimethyladenosine (m26,6A) methyltransferase, and results obtained with a catalytically inactive DIMT1 variant. We found that DIMT1+/- heterozygous HEK 293T cells have a significantly decreased 40S fraction and reduced protein synthesis but no major changes in m26,6A levels in 18S rRNA. Expression of a catalytically inactive variant, DIMT1-E85A, in WT and DIMT1+/- cells significantly decreased m26,6A levels in 18S rRNA, indicating a dominant-negative effect of this variant on m26,6A levels. However, expression of the DIMT1-E85A variant restored the defects in 40S levels. Of note, unlike WT DIMT1, DIMT1-E85A could not revert the defects in protein translation. We found that the differences between this variant and the WT enzyme extended to translation fidelity and gene expression patterns in DNA damage response pathways. These results suggest that the catalytic activity of DIMT1 is involved in protein translation and that the overall protein scaffold of DIMT1, regardless of the catalytic activity on m26,6A in 18S rRNA, is essential for 40S assembly.


Asunto(s)
Metiltransferasas/química , Biosíntesis de Proteínas , ARN Ribosómico 18S/química , Sustitución de Aminoácidos , Catálisis , Cristalografía por Rayos X , Células HEK293 , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación Missense , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
13.
Nucleic Acids Res ; 48(14): 8022-8034, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32573735

RESUMEN

Mammalian mitochondrial ribosomes contain a set of modified nucleotides, which is distinct from that of the cytosolic ribosomes. Nucleotide m4C840 of the murine mitochondrial 12S rRNA is equivalent to the dimethylated m4Cm1402 residue of Escherichia coli 16S rRNA. Here we demonstrate that mouse METTL15 protein is responsible for the formation of m4C residue of the 12S rRNA. Inactivation of Mettl15 gene in murine cell line perturbs the composition of mitochondrial protein biosynthesis machinery. Identification of METTL15 interaction partners revealed that the likely substrate for this RNA methyltransferase is an assembly intermediate of the mitochondrial small ribosomal subunit containing an assembly factor RBFA.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/enzimología , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Animales , Células Cultivadas , Metilación , Ratones , Mitocondrias/metabolismo , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN Ribosómico 28S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
14.
Nucleic Acids Res ; 47(22): 11850-11860, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31724718

RESUMEN

The features of previously unexplored labile complexes of human 40S ribosomal subunits with RNAs, whose formation is manifested in the cross-linking of aldehyde derivatives of RNAs to the ribosomal protein uS3 through its peptide 55-64 located outside the mRNA channel, were studied by EPR spectroscopy methods. Analysis of subatomic 40S subunit models showed that a likely site for labile RNA binding is a cluster of positively charged amino acid residues between the mRNA entry site and uS3 peptide 55-64. This is consistent with our finding that the 3'-terminal mRNA fragment hanging outside the 40S subunit prevents the cross-linking of an RNA derivative to this peptide. To detect labile complexes of 40S subunits with RNA by DEER/PELDOR spectroscopy, an undecaribonucleotide derivative with nitroxide spin labels at terminal nucleotides was utilized. We demonstrated that the 40S subunit channel occupancy with mRNA does not affect the RNA derivative binding and that uS3 peptide 55-64 is not involved in binding interactions. Replacing the RNA derivative with a DNA one revealed the importance of ribose 2'-OH groups for the complex formation. Using the single-label RNA derivatives, the distance between the mRNA entry site and the loosely bound RNA site on the 40S subunit was estimated.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química
15.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194411, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31356988

RESUMEN

Conserved ribosomal protein uS3 contains a decapeptide fragment in positions 55-64 (human numbering), which has a very specific ability to cross-link to various RNA derivatives bearing aldehyde groups, likely provided by K62. It has been shown that during translation in the cell-free protein-synthesizing system, uS3 becomes accessible for such cross-linking only after eIF3j leaves the mRNA binding channel of the 40S ribosomal subunit. We studied the functional role of K62 and its nearest neighbors in the ribosomal assembly and translation with the use of HEK293T-derived cell cultures capable of producing FLAG-tagged uS3 (uS3FLAG) or its mutant form with amino acid residues at positions 60-63 replaced with alanines. Analysis of polysome profiles from the respective cells and cytosol lysates showed that the mutation significantly affected the uS3 ability to participate in the assembly of 40S subunits, but it was not essential for their maturation and did not prevent the binding of mRNAs to 40S subunits during translation initiation. The most striking effect of the replacement of amino acid residues in the above uS3 positions was that it almost completely deprived the 40S subunits of their ability to form 80S ribosomes, suggesting that the 48S pre-initiation complexes assembled on these subunits were defective in the binding of 60S subunits. Thus, our results revealed the previously unknown crucial role of the uS3 tetrapeptide 60GEKG63 in translation initiation related to maintaining the proper structure of the 48S complex, most likely via the prevention of premature mRNA loading into the ribosomal channel.


Asunto(s)
Péptidos/genética , Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Aminoácidos/química , Aminoácidos/genética , Sistema Libre de Células , Células HEK293 , Humanos , Péptidos/química , Polirribosomas/química , Polirribosomas/genética , Unión Proteica , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero/química , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química
16.
Elife ; 82019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31206356

RESUMEN

Eukaryotic ribosome biogenesis is initiated with the transcription of pre-ribosomal RNA at the 5' external transcribed spacer, which directs the early association of assembly factors but is absent from the mature ribosome. The subsequent co-transcriptional association of ribosome assembly factors with pre-ribosomal RNA results in the formation of the small subunit processome. Here we show that stable rRNA domains of the small ribosomal subunit can independently recruit their own biogenesis factors in vivo. The final assembly and compaction of the small subunit processome requires the presence of the 5' external transcribed spacer RNA and all ribosomal RNA domains. Additionally, our cryo-electron microscopy structure of the earliest nucleolar pre-ribosomal assembly - the 5' external transcribed spacer ribonucleoprotein - provides a mechanism for how conformational changes in multi-protein complexes can be employed to regulate the accessibility of binding sites and therefore define the chronology of maturation events during early stages of ribosome assembly.


Asunto(s)
Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/metabolismo , Modelos Moleculares , Conformación Molecular , Dominios Proteicos , Precursores del ARN/química , Precursores del ARN/genética , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Subunidades Ribosómicas Pequeñas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Gene ; 706: 69-76, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31054365

RESUMEN

The receptor for activated c-kinase (RACK1, Asc1 in yeast) is a eukaryotic ribosomal protein located in the head region of the 40S subunit near the mRNA exit channel. This WD-repeat ß-propeller protein acts as a signaling molecule and is involved in metabolic regulation, cell cycle progression, and translational control. However, the exact details of the RACK1 recruitment and stable association with the 40S ribosomal subunit remain only partially known. X-ray analyses of the yeast, Saccharomyces cerevisiae, ribosome revealed that the RACK1 propeller blade (4-5) interacts with the eukaryote-specific C-terminal domain (CTD) of ribosomal protein S3 (uS3 family). To check the functional significance of this interaction, we generated mutant yeast strains harboring C-terminal deletions of uS3. We found that deletion of the 20 C-terminal residues (interacting with blade 4-5) from the uS3-CTD abrogates RACK1 binding to the ribosome. Strains with truncated uS3-CTD exhibited compromised cellular growth and protein synthesis similar to that of RACK1Δ strain, thus suggesting that the uS3-CTD is crucial not only for the recruitment and association of RACK1 with the ribosome, but also for its intracellular function. We suggest that eukaryote-specific RACK1-uS3 interaction has evolved to act as a link between the ribosome and the cellular signaling pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al GTP/genética , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/genética , Receptores de Cinasa C Activada/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Ribosomas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
18.
Biochimie ; 158: 117-125, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30594661

RESUMEN

The small subunit ribosomal protein uS3 is a critically important player in the ribosome-mRNA interactions during translation and has numerous functions not directly related to protein synthesis in eukaryotes. A peculiar feature of the human uS3 protein is the ability of its fragment 55-64 exposed on the 40S subunit surface near the mRNA entry channel to form cross-links with 3'-terminal dialdehyde derivatives of various unstructured RNAs and with abasic sites in single-stranded DNAs. Here we showed that the ability of the above uS3 fragment to cross-link to abasic sites in DNAs is inherent only in mature cytoplasmic 40S subunits, but not nuclear pre-40S particles, which implies that it may be relevant to the ribosome-mRNA interplay. To clarify this issue, we investigated interactions of human ribosomes with synthetic mRNA analogues bearing an abasic site protected by a photocleavable group at the 3'-termini. We found that these mRNA analogues can form specific complexes with 80S ribosomes and 40S subunits, where the undamaged upstream part of the analogue is fixed in the mRNA binding channel by interaction with the P-site tRNA, and the downstream part located outside the ribosome is cross-linked to the uS3 fragment 55-64. The yield of cross-links of the mRNA analogues was rather high when their undamaged parts were bound to the mRNA channel prior to deprotection of the abasic site enabling its covalent attachment to the 40S subunit via the uS3 protein, but not vice versa. Based on our findings, one can assume that abasic sites, which can occur in mRNAs due to oxidative stress and ageing, are able to interact directly with the uS3 fragment exposed on the 40S subunit surface near the mRNA entry channel during translation. Consequently, the 40S subunit can be considered as a potential mRNA quality controller.


Asunto(s)
Péptidos/química , ARN Mensajero/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Femenino , Humanos , Péptidos/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
19.
Curr Opin Struct Biol ; 53: 151-158, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30243210

RESUMEN

Translation initiation in eukaryotes is a complex multistep process that requires the interplay of over a dozen protein factors together with the small ribosomal subunit (SSU) and the mRNA. During all these steps, the SSU serves as a platform for attachment, displacement and release of different molecules. In recent years, the great number of high-resolution X-ray and cryo-EM structures provided unprecedented insights into the molecular mechanism of this important process in eukaryotes. More specifically, cryo-EM became a leading technique in uncovering the structural details of this process due to exceptional advances in resolution and in image processing. Here, we briefly review cap-dependent eukaryotic translation initiation with an emphasis on its major conformational changes at several key steps during the process, unraveled thanks to the recent advances in the structural biology field.


Asunto(s)
Eucariontes/genética , Células Eucariotas/metabolismo , Complejos Multienzimáticos , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero , Subunidades Ribosómicas Pequeñas de Eucariotas , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
20.
Nature ; 559(7712): 130-134, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950728

RESUMEN

The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.


Asunto(s)
Regiones no Traducidas 5'/genética , Codón Iniciador/genética , ARN Helicasas DEAD-box/metabolismo , Iniciación de la Cadena Peptídica Traduccional/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Reactivos de Enlaces Cruzados/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...