Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(11): e113445, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25405766

RESUMEN

The cyclostomes (jawless vertebrates), comprising lampreys and hagfishes, are the sister group of jawed vertebrates (gnathostomes) and are hence an important group for the study of vertebrate evolution. In mammals, three Runx genes, Runx1, Runx2 and Runx3, encode transcription factors that are essential for cell proliferation and differentiation in major developmental pathways such as haematopoiesis, skeletogenesis and neurogenesis and are frequently associated with diseases. We describe here the characterization of Runx gene family members from a cyclostome, the Japanese lamprey (Lethenteron japonicum). The Japanese lamprey contains three Runx genes, RunxA, RunxB, and RunxC. However, phylogenetic and synteny analyses suggest that they are not one-to-one orthologs of gnathostome Runx1, Runx2 and Runx3. The major protein domains and motifs found in gnathostome Runx proteins are highly conserved in the lamprey Runx proteins. Although all gnathostome Runx genes each contain two alternative promoters, P1 (distal) and P2 (proximal), only lamprey RunxB possesses the alternative promoters; lamprey RunxA and RunxC contain only P2 and P1 promoter, respectively. Furthermore, the three lamprey Runx genes give rise to fewer alternative isoforms than the three gnathostome Runx genes. The promoters of the lamprey Runx genes lack the tandem Runx-binding motifs that are highly conserved among the P1 promoters of gnathostome Runx1, Runx2 and Runx3 genes; instead these promoters contain dispersed single Runx-binding motifs. The 3'UTR of lamprey RunxB contains binding sites for miR-27 and miR-130b/301ab, which are conserved in mammalian Runx1 and Runx3, respectively. Overall, the Runx genes in lamprey seem to have experienced a different evolutionary trajectory from that of gnathostome Runx genes which are highly conserved all the way from cartilaginous fishes to mammals.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Proteínas de Peces/genética , Familia de Multigenes , Petromyzon/genética , Regiones no Traducidas 3'/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Subunidades alfa del Factor de Unión al Sitio Principal/clasificación , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Evolución Molecular , Exones/genética , Femenino , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Intrones/genética , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Petromyzon/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
2.
Mol Biol Cell ; 21(13): 2315-26, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20462957

RESUMEN

Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidades alfa del Factor de Unión al Sitio Principal/clasificación , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Insectos/clasificación , Insectos/genética , Insectos/metabolismo , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA