Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695719

RESUMEN

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Asunto(s)
Microglía , Receptores de GABA-A , Sueño de Onda Lenta , Sinapsis , Factor de Necrosis Tumoral alfa , Animales , Masculino , Ratones , Consolidación de la Memoria , Ratones Endogámicos C57BL , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transducción de Señal , Sueño/fisiología , Sinapsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562056

RESUMEN

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Asunto(s)
Electroencefalografía , Sueño de Onda Lenta , Humanos , Electroencefalografía/métodos , Sueño de Onda Lenta/fisiología , Sueño/fisiología , Fases del Sueño/fisiología , Polisomnografía
3.
Sci Rep ; 14(1): 8652, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622265

RESUMEN

This research explores different methodologies to modulate the effects of drowsiness on functional connectivity (FC) during resting-state functional magnetic resonance imaging (RS-fMRI). The study utilized a cohort of students (MRi-Share) and classified individuals into drowsy, alert, and mixed/undetermined states based on observed respiratory oscillations. We analyzed the FC group difference between drowsy and alert individuals after five different processing methods: the reference method, two based on physiological and a global signal regression of the BOLD time series signal, and two based on Gaussian standardizations of the FC distribution. According to the reference method, drowsy individuals exhibit higher cortico-cortical FC than alert individuals. First, we demonstrated that each method reduced the differences between drowsy and alert states. The second result is that the global signal regression was quantitively the most effective, minimizing significant FC differences to only 3.3% of the total FCs. However, one should consider the risks of overcorrection often associated with this methodology. Therefore, choosing a less aggressive form of regression, such as the physiological method or Gaussian-based approaches, might be a more cautious approach. Third and last, using the Gaussian-based methods, cortico-subcortical and intra-default mode network (DMN) FCs were significantly greater in alert than drowsy subjects. These findings bear resemblance to the anticipated patterns during the onset of sleep, where the cortex isolates itself to assist in transitioning into deeper slow wave sleep phases, simultaneously disconnecting the DMN.


Asunto(s)
Mapeo Encefálico , Sueño de Onda Lenta , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Vigilia , Sueño , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
4.
Sci Rep ; 14(1): 9057, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643331

RESUMEN

Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.


Asunto(s)
Consolidación de la Memoria , Sueño de Onda Lenta , Memoria/fisiología , Electroencefalografía , Sueño/fisiología , Fases del Sueño/fisiología , Consolidación de la Memoria/fisiología
5.
Elife ; 122024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661727

RESUMEN

We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.


Asunto(s)
Memoria a Largo Plazo , Sueño de Onda Lenta , Humanos , Sueño de Onda Lenta/fisiología , Masculino , Femenino , Memoria a Largo Plazo/fisiología , Adulto , Adulto Joven , Encéfalo/fisiología , Toma de Decisiones/fisiología , Vocabulario , Electroencefalografía
6.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688901

RESUMEN

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Asunto(s)
Adenosina , Núcleo Accumbens , Receptor de Adenosina A2A , Sueño de Onda Lenta , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Masculino , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Adenosina/metabolismo , Adenosina/farmacología , Regulación Alostérica , Sueño de Onda Lenta/fisiología , Sueño de Onda Lenta/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Luz , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Agonistas del Receptor de Adenosina A2/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-38683718

RESUMEN

Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.


Asunto(s)
Algoritmos , Electroencefalografía , Entropía , Sueño de Onda Lenta , Humanos , Electroencefalografía/métodos , Masculino , Femenino , Sueño de Onda Lenta/fisiología , Adulto , Adulto Joven , Estrés Psicológico/fisiopatología , Ritmo alfa/fisiología , Predicción , Ritmo beta/fisiología , Ritmo Delta , Privación de Sueño/fisiopatología , Reproducibilidad de los Resultados
8.
Mol Autism ; 15(1): 13, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570872

RESUMEN

BACKGROUND: Sleep disturbances are a common comorbidity to most neurodevelopmental disorders and tend to worsen disease symptomatology. It is thus crucial to understand mechanisms underlying sleep disturbances to improve patients' quality of life. Neuroligin-2 (NLGN2) is a synaptic adhesion protein regulating GABAergic transmission. It has been linked to autism spectrum disorders and schizophrenia in humans, and deregulations of its expression were shown to cause epileptic-like hypersynchronized cerebral activity in rodents. Importantly, the absence of Nlgn2 (knockout: KO) was previously shown to alter sleep-wake duration and quality in mice, notably increasing slow-wave sleep (SWS) delta activity (1-4 Hz) and altering its 24-h dynamics. This type of brain oscillation is involved in memory consolidation, and is also a marker of homeostatic sleep pressure. Sleep deprivation (SD) is notably known to impair cognition and the physiological response to sleep loss involves GABAergic transmission. METHODS: Using electrocorticographic (ECoG) recordings, we here first aimed to verify how individual slow wave (SW; 0.5-4 Hz) density and properties (e.g., amplitude, slope, frequency) contribute to the higher SWS delta activity and altered 24-h dynamics observed in Nlgn2 KO mice. We further investigated the response of these animals to SD. Finally, we tested whether sleep loss affects the gene expression of Nlgn2 and related GABAergic transcripts in the cerebral cortex of wild-type mice using RNA sequencing. RESULTS: Our results show that Nlgn2 KO mice have both greater SW amplitude and density, and that SW density is the main property contributing to the altered 24-h dynamics. We also found the absence of Nlgn2 to accelerate paradoxical sleep recovery following SD, together with profound alterations in ECoG activity across vigilance states. Sleep loss, however, did not modify the 24-h distribution of the hypersynchronized ECoG events observed in these mice. Finally, RNA sequencing confirmed an overall decrease in cortical expression of Nlgn2 and related GABAergic transcripts following SD in wild-type mice. CONCLUSIONS: This work brings further insight into potential mechanisms of sleep duration and quality deregulation in neurodevelopmental disorders, notably involving NLGN2 and GABAergic neurotransmission.


Asunto(s)
Privación de Sueño , Sueño de Onda Lenta , Animales , Humanos , Ratones , Electroencefalografía , Neuroliginas , Calidad de Vida , Sueño/fisiología , Privación de Sueño/metabolismo
9.
J Affect Disord ; 354: 347-355, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479512

RESUMEN

BACKGROUND: There is an urgent need for safe, rapid-acting treatment strategies for adolescent depression. In depressed adults, slow wave sleep deprivation (SWSD) improved next-day mood without disrupting sleep duration, but SWSD has not been tested in adolescents. In a pilot study, the aim was to assess the effect of SWSD on sleep physiology and mood outcomes (depression, rumination, anhedonia) among adolescents with depressive symptoms. METHODS: Sixteen adolescents (17.44 ± 1.46 yr, 12 female) completed three nights of polysomnographic sleep recording: Baseline, SWSD, and Recovery nights. Acoustic stimulation (tones of random pitch, duration, and volume) suppressed slow wave sleep (SWS) in real-time during SWSD. After each night, depression, rumination, and anhedonia severity were assessed. RESULTS: SWSD successfully suppressed SWS, increased N2, and had minimal impact on Rapid Eye Movement (REM), nocturnal awakenings, and total sleep time. While SWSD did not improve depression or anhedonia severity overall, lower baseline non-REM alpha activity and greater SWS rebound during recovery sleep correlated with SWSD-related reduction in clinician-rated depression severity. Next-day rumination severity decreased after SWSD, with sustained improvements following recovery sleep. However, rumination improvement was not associated with SWS suppression, but rather reduction in total sleep time and REM in exploratory correlation models. LIMITATIONS: Small sample size and large proportion of females. CONCLUSION: SWSD did not improve depression in adolescents overall but a subset with low non-REM alpha activity and intact homeostatic sleep regulation may benefit from this approach. Findings from this pilot study also suggest that partial sleep deprivation may be a beneficial therapeutic strategy for rumination in adolescents.


Asunto(s)
Privación de Sueño , Sueño de Onda Lenta , Adulto , Humanos , Adolescente , Femenino , Depresión , Proyectos Piloto , Anhedonia , Polisomnografía , Sueño/fisiología , Electroencefalografía
10.
Sleep ; 47(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38452190

RESUMEN

STUDY OBJECTIVES: Sleep supports systems memory consolidation through the precise temporal coordination of specific oscillatory events during slow-wave sleep, i.e. the neocortical slow oscillations (SOs), thalamic spindles, and hippocampal ripples. Beneficial effects of sleep on memory are also observed in infants, although the contributing regions, especially hippocampus and frontal cortex, are immature. Here, we examined in rats the development of these oscillatory events and their coupling during early life. METHODS: EEG and hippocampal local field potentials were recorded during sleep in male rats at postnatal days (PD)26 and 32, roughly corresponding to early (1-2 years) and late (9-10 years) human childhood, and in a group of adult rats (14-18 weeks, corresponding to ~22-29 years in humans). RESULTS: SO and spindle amplitudes generally increased from PD26 to PD32. In parallel, frontocortical EEG spindles increased in density and frequency, while changes in hippocampal ripples remained nonsignificant. The proportion of SOs co-occurring with spindles also increased from PD26 to PD32. Whereas parietal cortical spindles were phase-locked to the depolarizing SO-upstate already at PD26, over frontal cortex SO-spindle phase-locking emerged not until PD32. Co-occurrence of hippocampal ripples with spindles was higher during childhood than in adult rats, but significant phase-locking of ripples to the excitable spindle troughs was observed only in adult rats. CONCLUSIONS: Results indicate a protracted development of synchronized thalamocortical processing specifically in frontocortical networks (i.e. frontal SO-spindle coupling). However, synchronization within thalamocortical networks generally precedes synchronization of thalamocortical with hippocampal processing as reflected by the delayed occurrence of spindle-ripple phase-coupling.


Asunto(s)
Electroencefalografía , Hipocampo , Animales , Ratas , Masculino , Hipocampo/fisiología , Tálamo/fisiología , Neocórtex/fisiología , Sueño/fisiología , Sueño de Onda Lenta/fisiología , Ondas Encefálicas/fisiología
11.
Psychiatr Hung ; 39(1): 10-14, 2024.
Artículo en Húngaro | MEDLINE | ID: mdl-38502014

RESUMEN

We consider the disorders of arousal and sleep-related hypermotor epilepsy as genetic twin-conditions, one without, one with epilepsy. They share an augmented arousal-activity during NREM sleep with sleep-wake dissociations, culminating in sleep terrors and sleep-related hypermotor seizures with similar symptoms. The known mutations underlying the two spectra are different, but there are multifold population-genetic-, family- and even individual (the two conditions occurring in the same person) overlaps supporting common genetic roots. In the episodes of disorders of arousal, the anterior cingulate, anterior insular and pre-frontal cortices (shown to be involved in fear- and emotion processing) are activated within a sleeping brain. These regions overlap with the seizure-onset zones of successfully operated sleep-related hypermotor seizures, and notably, belong to the salience network being consistent with its hubs. The arousal-relatedness and the similar fearful disorientation occurring in sleep terrors and hypermotor seizures, make them alike the acute stress-responses emerging from sleep; triggered by false alarms. An acute stress-response can easily mobilize the hypothalamo-pituitary-adrenal axis (preparing fight-flight responses in wakefulness); through its direct pathways to and from the salience network. This hypothesis has never been studied.


Asunto(s)
Epilepsia , Terrores Nocturnos , Sueño de Onda Lenta , Humanos , Nivel de Alerta , Convulsiones
12.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494417

RESUMEN

During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.


Asunto(s)
Neocórtex , Sueño de Onda Lenta , Ratones , Animales , Giro del Cíngulo , Hipocampo , Sueño
13.
Commun Biol ; 7(1): 288, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459227

RESUMEN

Sleep boosts the integration of memories, and can thus facilitate relational learning. This benefit may be due to memory reactivation during non-REM sleep. We set out to test this by explicitly cueing reactivation using a technique called targeted memory reactivation (TMR), in which sounds are paired with learned material in wake and then softly played during subsequent sleep, triggering reactivation of the associated memories. We specifically tested whether TMR in slow wave sleep leads to enhancements in inferential thinking in a transitive inference task. Because the Up-phase of the slow oscillation is more responsive to cues than the Down-phase, we also asked whether Up-phase stimulation is more beneficial for such integration. Our data show that TMR during the Up-Phase boosts the ability to make inferences, but only for the most distant inferential leaps. Up-phase stimulation was also associated with detectable memory reinstatement, whereas Down-phase stimulation led to below-chance performance the next morning. Detection of memory reinstatement after Up-state stimulation was negatively correlated with performance on the most difficult inferences the next morning. These findings demonstrate that cueing memory reactivation at specific time points in sleep can benefit difficult relational learning problems.


Asunto(s)
Sueño de Onda Lenta , Humanos , Sueño de Onda Lenta/fisiología , Aprendizaje/fisiología , Sueño/fisiología , Señales (Psicología) , Sonido
14.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38367018
15.
Sleep Med ; 115: 155-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367357

RESUMEN

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sueño de Onda Lenta , Humanos , Enfermedad de Parkinson/complicaciones , Sueño REM , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/complicaciones , Estudios Transversales , Polisomnografía , Hipotonía Muscular , Cafeína , Progresión de la Enfermedad
16.
Sci Rep ; 14(1): 4669, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409133

RESUMEN

Substantial evidence suggests that the circadian decline of core body temperature (CBT) triggers the initiation of human sleep, with CBT continuing to decrease during sleep. Although the connection between habitual sleep and CBT patterns is established, the impact of external body cooling on sleep remains poorly understood. The main aim of the present study is to show whether a decline in body temperatures during sleep can be related to an increase in slow wave sleep (N3). This three-center study on 72 individuals of varying age, sex, and BMI used an identical type of a high-heat capacity mattress as a reproducible, non-disturbing way of body cooling, accompanied by measurements of CBT and proximal back skin temperatures, heart rate and sleep (polysomnography). The main findings were an increase in nocturnal sleep stage N3 (7.5 ± 21.6 min/7.5 h, mean ± SD; p = 0.0038) and a decrease in heart rate (- 2.36 ± 1.08 bpm, mean ± SD; p < 0.0001); sleep stage REM did not change (p = 0.3564). Subjects with a greater degree of body cooling exhibited a significant increase in nocturnal N3 and a decrease in REM sleep, mainly in the second part of the night. In addition, these subjects showed a phase advance in the NREM-REM sleep cycle distribution of N3 and REM. Both effects were significantly associated with increased conductive inner heat transfer, indicated by an increased CBT- proximal back skin temperature -gradient, rather than with changes in CBT itself. Our findings reveal a previously far disregarded mechanism in sleep research that has potential therapeutic implications: Conductive body cooling during sleep is a reliable method for promoting N3 and reducing heart rate.


Asunto(s)
Sueño de Onda Lenta , Humanos , Frecuencia Cardíaca/fisiología , Sueño/fisiología , Regulación de la Temperatura Corporal , Temperatura Corporal/fisiología , Fases del Sueño/fisiología
17.
Eur J Neurosci ; 59(5): 739-751, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342099

RESUMEN

Both non-rapid eye movement (NonREM) sleep and rapid eye movement (REM) sleep, as well as sleep spindle and ripple oscillations, are important for memory formation. Through cortical EEG recordings of prefrontal cortex and hippocampus during and after an inhibitory avoidance task, we analysed the dynamic changes in the amounts of sleep, spindle and ripple oscillations related to memory formation. The total amount of NonREM sleep was reduced during the first hour after learning. Moreover, significant decrease of the total spindle and ripple counts was observed at the first hour after learning as well. In addition, foot shock alone, with no associated learning, produced little effect on the dynamics of sleep oscillations, indicating that the learning experience is necessary for these changes to occur.


Asunto(s)
Reacción de Prevención , Sueño de Onda Lenta , Sueño , Sueño REM , Hipocampo , Electroencefalografía
18.
J Neurosci Methods ; 404: 110063, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38301833

RESUMEN

BACKGROUND: Sleep perturbation is widely used to investigate the physiological mechanisms that mediate sleep-wake dynamics, and to isolate the specific roles of sleep in health and disease. However, state-of-the-art methods to accomplish sleep perturbation in preclinical models are limited in their throughput, flexibility, and specificity. NEW METHOD: A system was developed to deliver vibro-tactile somatosensory stimulation aimed at controlled, selective sleep perturbation. The frequency and intensity of stimulation can be tuned to target a variety of experimental applications, from sudden arousal to sub-threshold transitions between light and deep stages of NREM sleep. This device was activated in closed-loop to selectively interrupt REM sleep in mice. RESULTS: Vibro-tactile stimulation effectively and selectively interrupted REM sleep - significantly reducing the average REM bout duration relative to matched, unstimulated baseline recordings. As REM sleep was repeatedly interrupted, homeostatic mechanisms prompted a progressively quicker return to REM sleep. These effects were dependent on the parameters of stimulation applied. COMPARISON WITH EXISTING METHODS: Existing sleep perturbation systems often require moving parts within the cage and/or restrictive housing. The system presented is unique in that it interrupts sleep without invading the animal's space. The ability to vary stimulation parameters is a great advantage over existing methods, as it allows for adaptation in response to habituation and/or circadian/homeostatic changes in arousal threshold. CONCLUSIONS: The proposed method of stimulation demonstrates feasibility in affecting mouse sleep within a standard home cage environment, thus limiting environmental stress. Furthermore, the ability to tune frequency and intensity of stimulation allows for graded control over the extent of sleep perturbation, which potentially expands the utility of this technology beyond applications related to sleep.


Asunto(s)
Sueño REM , Sueño de Onda Lenta , Ratones , Animales , Sueño REM/fisiología , Sueño/fisiología , Nivel de Alerta , Homeostasis , Electroencefalografía
19.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289699

RESUMEN

Marine mammals, especially cetaceans, have evolved a very special form of sleep characterized by unihemispheric slow-wave sleep (USWS) and a negligible amount or complete absence of rapid-eye-movement sleep; however, the underlying genetic mechanisms remain unclear. Here, we detected unique, significant selection signatures in basic helix-loop-helix ARNT like 2 (BMAL2; also called ARNTL2), a key circadian regulator, in marine mammal lineages, and identified two nonsynonymous amino acid substitutions (K204E and K346Q) in the important PER-ARNT-SIM domain of cetacean BMAL2 via sequence comparison with other mammals. In vitro assays revealed that these cetacean-specific mutations specifically enhanced the response to E-box-like enhancer and consequently promoted the transcriptional activation of PER2, which is closely linked to sleep regulation. The increased PER2 expression, which was further confirmed both in vitro and in vivo, is beneficial for allowing cetaceans to maintain continuous movement and alertness during sleep. Concordantly, the locomotor activities of zebrafish overexpressing the cetacean-specific mutant bmal2 were significantly higher than the zebrafish overexpressing the wild-type gene. Subsequently, transcriptome analyses revealed that cetacean-specific mutations caused the upregulation of arousal-related genes and the downregulation of several sleep-promoting genes, which is consistent with the need to maintain hemispheric arousal during USWS. Our findings suggest a potential close relationship between adaptive changes in BMAL2 and the remarkable adaptation of USWS and may provide novel insights into the genetic basis of the evolution of animal sleep.


Asunto(s)
Factores de Transcripción ARNTL , Cetáceos , Sueño de Onda Lenta , Animales , Locomoción/genética , Mamíferos , Sueño/genética , Sueño de Onda Lenta/genética , Pez Cebra , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Cetáceos/genética
20.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38227830

RESUMEN

STUDY OBJECTIVES: In aging, reduced delta power (0.5-4 Hz) during N2 and N3 sleep has been associated with gray matter (GM) atrophy and hypometabolism within frontal regions. Some studies have also reported associations between N2 and N3 sleep delta power in specific sub-bands and amyloid pathology. Our objective was to better understand the relationships between spectral power in delta sub-bands during N2-N3 sleep and brain integrity using multimodal neuroimaging. METHODS: In-home polysomnography was performed in 127 cognitively unimpaired older adults (mean age ±â€…SD: 69.0 ±â€…3.8 years). N2-N3 sleep EEG power was calculated in delta (0.5-4 Hz), slow delta (0.5-1 Hz), and fast delta (1-4 Hz) frequency bands. Participants also underwent magnetic resonance imaging and Florbetapir-PET (early and late acquisitions) scans to assess GM volume, brain perfusion, and amyloid burden. Amyloid accumulation over ~21 months was also quantified. RESULTS: Higher delta power was associated with higher GM volume mainly in fronto-cingular regions. Specifically, slow delta power was positively correlated with GM volume and perfusion in these regions, while the inverse association was observed with fast delta power. Delta power was neither associated with amyloid burden at baseline nor its accumulation over time, whatever the frequency band considered. CONCLUSIONS: Our results show that slow delta is particularly associated with preserved brain structure, and highlight the importance of analyzing delta power sub-bands to better understand the associations between delta power and brain integrity. Further longitudinal investigations with long follow-ups are needed to disentangle the associations among sleep, amyloid pathology, and dementia risk in older populations. CLINICAL TRIAL INFORMATION: Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL in supplemental materials. REGISTRATION: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.


Asunto(s)
Sueño de Onda Lenta , Anciano , Humanos , Encéfalo/diagnóstico por imagen , Electroencefalografía , Neuroimagen , Polisomnografía , Sueño , Fases del Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...